Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

""" 

Givaro Finite Field 

 

Finite fields that are implemented using Zech logs and the 

cardinality must be less than `2^{16}`. By default, Conway polynomials are 

used as minimal polynomial. 

""" 

from __future__ import absolute_import 

 

#***************************************************************************** 

# Copyright (C) 2010-2012 David Roe 

# Copyright (C) 2012 Travis Scrimshaw 

# Copyright (C) 2013 Peter Bruin 

# Copyright (C) 2014 Jeroen Demeyer 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

 

from sage.rings.finite_rings.finite_field_base import FiniteField, is_FiniteField 

from sage.rings.integer import Integer 

from sage.rings.finite_rings.element_givaro import Cache_givaro 

from sage.rings.integer_ring import ZZ 

from sage.databases.conway import ConwayPolynomials 

from sage.libs.pari.all import pari 

 

class FiniteField_givaro(FiniteField): 

""" 

Finite field implemented using Zech logs and the cardinality must be 

less than `2^{16}`. By default, Conway polynomials are used as minimal 

polynomials. 

 

INPUT: 

 

- ``q`` -- `p^n` (must be prime power) 

 

- ``name`` -- (default: ``'a'``) variable used for 

:meth:`~sage.rings.finite_rings.element_givaro.FiniteField_givaroElement.poly_repr()` 

 

- ``modulus`` -- A minimal polynomial to use for reduction. 

 

- ``repr`` -- (default: ``'poly'``) controls the way elements are printed 

to the user: 

 

- 'log': repr is 

:meth:`~sage.rings.finite_rings.element_givaro.FiniteField_givaroElement.log_repr()` 

- 'int': repr is 

:meth:`~sage.rings.finite_rings.element_givaro.FiniteField_givaroElement.int_repr()` 

- 'poly': repr is 

:meth:`~sage.rings.finite_rings.element_givaro.FiniteField_givaroElement.poly_repr()` 

 

- cache -- (default: ``False``) if ``True`` a cache of all elements of 

this field is created. Thus, arithmetic does not create new elements 

which speeds calculations up. Also, if many elements are needed during a 

calculation this cache reduces the memory requirement as at most 

:meth:`order` elements are created. 

 

OUTPUT: 

 

Givaro finite field with characteristic `p` and cardinality `p^n`. 

 

EXAMPLES: 

 

By default, Conway polynomials are used for extension fields:: 

 

sage: k.<a> = GF(2**8) 

sage: -a ^ k.degree() 

a^4 + a^3 + a^2 + 1 

sage: f = k.modulus(); f 

x^8 + x^4 + x^3 + x^2 + 1 

 

You may enforce a modulus:: 

 

sage: P.<x> = PolynomialRing(GF(2)) 

sage: f = x^8 + x^4 + x^3 + x + 1 # Rijndael Polynomial 

sage: k.<a> = GF(2^8, modulus=f) 

sage: k.modulus() 

x^8 + x^4 + x^3 + x + 1 

sage: a^(2^8) 

a 

 

You may enforce a random modulus:: 

 

sage: k = GF(3**5, 'a', modulus='random') 

sage: k.modulus() # random polynomial 

x^5 + 2*x^4 + 2*x^3 + x^2 + 2 

 

Three different representations are possible:: 

 

sage: FiniteField(9, 'a', impl='givaro', repr='poly').gen() 

a 

sage: FiniteField(9, 'a', impl='givaro', repr='int').gen() 

3 

sage: FiniteField(9, 'a', impl='givaro', repr='log').gen() 

1 

 

For prime fields, the default modulus is the polynomial `x - 1`, 

but you can ask for a different modulus:: 

 

sage: GF(1009, impl='givaro').modulus() 

x + 1008 

sage: GF(1009, impl='givaro', modulus='conway').modulus() 

x + 998 

""" 

def __init__(self, q, name="a", modulus=None, repr="poly", cache=False): 

""" 

Initialize ``self``. 

 

EXAMPLES:: 

 

sage: k.<a> = GF(2^3) 

sage: j.<b> = GF(3^4) 

sage: k == j 

False 

 

sage: GF(2^3,'a') == copy(GF(2^3,'a')) 

True 

sage: TestSuite(GF(2^3, 'a')).run() 

""" 

if repr not in ['int', 'log', 'poly']: 

raise ValueError("Unknown representation %s"%repr) 

 

q = Integer(q) 

if q < 2: 

raise ValueError("q must be a prime power") 

F = q.factor() 

if len(F) > 1: 

raise ValueError("q must be a prime power") 

p = F[0][0] 

k = F[0][1] 

 

if q >= 1<<16: 

raise ValueError("q must be < 2^16") 

 

from .finite_field_constructor import GF 

FiniteField.__init__(self, GF(p), name, normalize=False) 

 

from sage.rings.polynomial.polynomial_element import is_Polynomial 

if not is_Polynomial(modulus): 

raise TypeError("modulus must be a polynomial") 

 

self._cache = Cache_givaro(self, p, k, modulus, repr, cache) 

self._modulus = modulus 

 

def characteristic(self): 

""" 

Return the characteristic of this field. 

 

EXAMPLES:: 

 

sage: p = GF(19^5,'a').characteristic(); p 

19 

sage: type(p) 

<type 'sage.rings.integer.Integer'> 

""" 

return Integer(self._cache.characteristic()) 

 

def order(self): 

""" 

Return the cardinality of this field. 

 

OUTPUT: 

 

Integer -- the number of elements in ``self``. 

 

EXAMPLES:: 

 

sage: n = GF(19^5,'a').order(); n 

2476099 

sage: type(n) 

<type 'sage.rings.integer.Integer'> 

""" 

return self._cache.order() 

 

def degree(self): 

r""" 

If the cardinality of ``self`` is `p^n`, then this returns `n`. 

 

OUTPUT: 

 

Integer -- the degree 

 

EXAMPLES:: 

 

sage: GF(3^4,'a').degree() 

4 

""" 

return Integer(self._cache.exponent()) 

 

def _repr_option(self, key): 

""" 

Metadata about the :meth:`_repr_` output. 

 

See :meth:`sage.structure.parent._repr_option` for details. 

 

EXAMPLES:: 

 

sage: GF(23**3, 'a', repr='log')._repr_option('element_is_atomic') 

True 

sage: GF(23**3, 'a', repr='int')._repr_option('element_is_atomic') 

True 

sage: GF(23**3, 'a', repr='poly')._repr_option('element_is_atomic') 

False 

""" 

if key == 'element_is_atomic': 

return self._cache.repr != 0 # 0 means repr='poly' 

return super(FiniteField_givaro, self)._repr_option(key) 

 

def random_element(self, *args, **kwds): 

""" 

Return a random element of ``self``. 

 

EXAMPLES:: 

 

sage: k = GF(23**3, 'a') 

sage: e = k.random_element(); e 

2*a^2 + 14*a + 21 

sage: type(e) 

<type 'sage.rings.finite_rings.element_givaro.FiniteField_givaroElement'> 

 

sage: P.<x> = PowerSeriesRing(GF(3^3, 'a')) 

sage: P.random_element(5) 

2*a + 2 + (a^2 + a + 2)*x + (2*a + 1)*x^2 + (2*a^2 + a)*x^3 + 2*a^2*x^4 + O(x^5) 

""" 

return self._cache.random_element() 

 

def _element_constructor_(self, e): 

""" 

Coerces several data types to ``self``. 

 

INPUT: 

 

- ``e`` -- data to coerce 

 

EXAMPLES: 

 

:class:`FiniteField_givaroElement` are accepted where the parent 

is either ``self``, equals ``self`` or is the prime subfield:: 

 

sage: k = GF(2**8, 'a') 

sage: k.gen() == k(k.gen()) 

True 

 

Floats, ints, longs, Integer are interpreted modulo characteristic:: 

 

sage: k(2) # indirect doctest 

0 

 

Floats are converted like integers:: 

 

sage: k(float(2.0)) 

0 

 

Rational are interpreted as ``self(numerator)/self(denominator)``. 

Both may not be greater than :meth:`characteristic`. 

:: 

 

sage: k = GF(3**8, 'a') 

sage: k(1/2) == k(1)/k(2) 

True 

 

Free module elements over :meth:`prime_subfield()` are interpreted 

'little endian':: 

 

sage: k = GF(2**8, 'a') 

sage: e = k.vector_space().gen(1); e 

(0, 1, 0, 0, 0, 0, 0, 0) 

sage: k(e) 

a 

 

``None`` yields zero:: 

 

sage: k(None) 

0 

 

Strings are evaluated as polynomial representation of elements in 

``self``:: 

 

sage: k('a^2+1') 

a^2 + 1 

 

Univariate polynomials coerce into finite fields by evaluating 

the polynomial at the field's generator:: 

 

sage: R.<x> = QQ[] 

sage: k.<a> = FiniteField(5^2, 'a', impl='givaro') 

sage: k(R(2/3)) 

4 

sage: k(x^2) 

a + 3 

sage: R.<x> = GF(5)[] 

sage: k(x^3-2*x+1) 

2*a + 4 

 

sage: x = polygen(QQ) 

sage: k(x^25) 

a 

 

sage: Q.<q> = FiniteField(5^3, 'q', impl='givaro') 

sage: L = GF(5) 

sage: LL.<xx> = L[] 

sage: Q(xx^2 + 2*xx + 4) 

q^2 + 2*q + 4 

 

Multivariate polynomials only coerce if constant:: 

 

sage: R = k['x,y,z']; R 

Multivariate Polynomial Ring in x, y, z over Finite Field in a of size 5^2 

sage: k(R(2)) 

2 

sage: R = QQ['x,y,z'] 

sage: k(R(1/5)) 

Traceback (most recent call last): 

... 

ZeroDivisionError: division by zero in finite field 

 

PARI elements are interpreted as finite field elements; this PARI 

flexibility is (absurdly!) liberal:: 

 

sage: k = GF(2**8, 'a') 

sage: k(pari('Mod(1,2)')) 

1 

sage: k(pari('Mod(2,3)')) 

a 

sage: k(pari('Mod(1,3)*a^20')) 

a^7 + a^5 + a^4 + a^2 

 

We can coerce from PARI finite field implementations:: 

 

sage: K.<a> = GF(3^10, impl="givaro") 

sage: a^20 

2*a^9 + 2*a^8 + a^7 + 2*a^5 + 2*a^4 + 2*a^3 + 1 

sage: M.<c> = GF(3^10, impl="pari_ffelt") 

sage: K(c^20) 

2*a^9 + 2*a^8 + a^7 + 2*a^5 + 2*a^4 + 2*a^3 + 1 

 

GAP elements need to be finite field elements:: 

 

sage: x = gap('Z(13)') 

sage: F = FiniteField(13, impl='givaro') 

sage: F(x) 

2 

sage: F(gap('0*Z(13)')) 

0 

sage: F = FiniteField(13^2, 'a', impl='givaro') 

sage: x = gap('Z(13)') 

sage: F(x) 

2 

sage: x = gap('Z(13^2)^3') 

sage: F(x) 

12*a + 11 

sage: F.multiplicative_generator()^3 

12*a + 11 

 

sage: k.<a> = GF(29^3) 

sage: k(48771/1225) 

28 

 

sage: F9 = FiniteField(9, impl='givaro', prefix='a') 

sage: F81 = FiniteField(81, impl='givaro', prefix='a') 

sage: F81(F9.gen()) 

2*a4^3 + 2*a4^2 + 1 

""" 

return self._cache.element_from_data(e) 

 

def gen(self, n=0): 

r""" 

Return a generator of ``self`` over its prime field, which is a 

root of ``self.modulus()``. 

 

INPUT: 

 

- ``n`` -- must be 0 

 

OUTPUT: 

 

An element `a` of ``self`` such that ``self.modulus()(a) == 0``. 

 

.. WARNING:: 

 

This generator is not guaranteed to be a generator for the 

multiplicative group. To obtain the latter, use 

:meth:`~sage.rings.finite_rings.finite_field_base.FiniteFields.multiplicative_generator()` 

or use the ``modulus="primitive"`` option when constructing 

the field. 

 

EXAMPLES:: 

 

sage: k = GF(3^4, 'b'); k.gen() 

b 

sage: k.gen(1) 

Traceback (most recent call last): 

... 

IndexError: only one generator 

sage: F = FiniteField(31, impl='givaro') 

sage: F.gen() 

1 

""" 

if n: 

raise IndexError("only one generator") 

return self._cache.gen() 

 

def prime_subfield(self): 

r""" 

Return the prime subfield `\GF{p}` of self if ``self`` is `\GF{p^n}`. 

 

EXAMPLES:: 

 

sage: GF(3^4, 'b').prime_subfield() 

Finite Field of size 3 

 

sage: S.<b> = GF(5^2); S 

Finite Field in b of size 5^2 

sage: S.prime_subfield() 

Finite Field of size 5 

sage: type(S.prime_subfield()) 

<class 'sage.rings.finite_rings.finite_field_prime_modn.FiniteField_prime_modn_with_category'> 

""" 

try: 

return self._prime_subfield 

except AttributeError: 

from .finite_field_constructor import GF 

self._prime_subfield = GF(self.characteristic()) 

return self._prime_subfield 

 

def log_to_int(self, n): 

r""" 

Given an integer `n` this method returns ``i`` where ``i`` 

satisfies `g^n = i` where `g` is the generator of ``self``; the 

result is interpreted as an integer. 

 

INPUT: 

 

- ``n`` -- log representation of a finite field element 

 

OUTPUT: 

 

integer representation of a finite field element. 

 

EXAMPLES:: 

 

sage: k = GF(2**8, 'a') 

sage: k.log_to_int(4) 

16 

sage: k.log_to_int(20) 

180 

""" 

return self._cache.log_to_int(n) 

 

def int_to_log(self, n): 

r""" 

Given an integer `n` this method returns `i` where `i` satisfies 

`g^i = n \mod p` where `g` is the generator and `p` is the 

characteristic of ``self``. 

 

INPUT: 

 

- ``n`` -- integer representation of an finite field element 

 

OUTPUT: 

 

log representation of ``n`` 

 

EXAMPLES:: 

 

sage: k = GF(7**3, 'a') 

sage: k.int_to_log(4) 

228 

sage: k.int_to_log(3) 

57 

sage: k.gen()^57 

3 

""" 

return self._cache.int_to_log(n) 

 

def fetch_int(self, n): 

r""" 

Given an integer `n` return a finite field element in ``self`` 

which equals `n` under the condition that :meth:`gen()` is set to 

:meth:`characteristic()`. 

 

EXAMPLES:: 

 

sage: k.<a> = GF(2^8) 

sage: k.fetch_int(8) 

a^3 

sage: e = k.fetch_int(151); e 

a^7 + a^4 + a^2 + a + 1 

sage: 2^7 + 2^4 + 2^2 + 2 + 1 

151 

""" 

return self._cache.fetch_int(n) 

 

def _pari_modulus(self): 

""" 

Return the modulus of ``self`` in a format for PARI. 

 

EXAMPLES:: 

 

sage: GF(3^4,'a')._pari_modulus() 

Mod(1, 3)*a^4 + Mod(2, 3)*a^3 + Mod(2, 3) 

""" 

f = pari(str(self.modulus())) 

return f.subst('x', 'a') * pari("Mod(1,%s)"%self.characteristic()) 

 

def __iter__(self): 

""" 

Finite fields may be iterated over. 

 

EXAMPLES:: 

 

sage: list(GF(2**2, 'a')) 

[0, a, a + 1, 1] 

""" 

from .element_givaro import FiniteField_givaro_iterator 

return FiniteField_givaro_iterator(self._cache) 

 

def a_times_b_plus_c(self, a, b, c): 

""" 

Return ``a*b + c``. This is faster than multiplying ``a`` and ``b`` 

first and adding ``c`` to the result. 

 

INPUT: 

 

- ``a,b,c`` -- :class:`~~sage.rings.finite_rings.element_givaro.FiniteField_givaroElement` 

 

EXAMPLES:: 

 

sage: k.<a> = GF(2**8) 

sage: k.a_times_b_plus_c(a,a,k(1)) 

a^2 + 1 

""" 

return self._cache.a_times_b_plus_c(a, b, c) 

 

def a_times_b_minus_c(self, a, b, c): 

""" 

Return ``a*b - c``. 

 

INPUT: 

 

- ``a,b,c`` -- :class:`~sage.rings.finite_rings.element_givaro.FiniteField_givaroElement` 

 

EXAMPLES:: 

 

sage: k.<a> = GF(3**3) 

sage: k.a_times_b_minus_c(a,a,k(1)) 

a^2 + 2 

""" 

return self._cache.a_times_b_minus_c(a, b, c) 

 

def c_minus_a_times_b(self, a, b, c): 

""" 

Return ``c - a*b``. 

 

INPUT: 

 

- ``a,b,c`` -- :class:`~sage.rings.finite_rings.element_givaro.FiniteField_givaroElement` 

 

EXAMPLES:: 

 

sage: k.<a> = GF(3**3) 

sage: k.c_minus_a_times_b(a,a,k(1)) 

2*a^2 + 1 

""" 

return self._cache.c_minus_a_times_b(a, b, c) 

 

def frobenius_endomorphism(self, n=1): 

""" 

INPUT: 

 

- ``n`` -- an integer (default: 1) 

 

OUTPUT: 

 

The `n`-th power of the absolute arithmetic Frobenius 

endomorphism on this finite field. 

 

EXAMPLES:: 

 

sage: k.<t> = GF(3^5) 

sage: Frob = k.frobenius_endomorphism(); Frob 

Frobenius endomorphism t |--> t^3 on Finite Field in t of size 3^5 

 

sage: a = k.random_element() 

sage: Frob(a) == a^3 

True 

 

We can specify a power:: 

 

sage: k.frobenius_endomorphism(2) 

Frobenius endomorphism t |--> t^(3^2) on Finite Field in t of size 3^5 

 

The result is simplified if possible:: 

 

sage: k.frobenius_endomorphism(6) 

Frobenius endomorphism t |--> t^3 on Finite Field in t of size 3^5 

sage: k.frobenius_endomorphism(5) 

Identity endomorphism of Finite Field in t of size 3^5 

 

Comparisons work:: 

 

sage: k.frobenius_endomorphism(6) == Frob 

True 

sage: from sage.categories.morphism import IdentityMorphism 

sage: k.frobenius_endomorphism(5) == IdentityMorphism(k) 

True 

 

AUTHOR: 

 

- Xavier Caruso (2012-06-29) 

""" 

from sage.rings.finite_rings.hom_finite_field_givaro import FrobeniusEndomorphism_givaro 

return FrobeniusEndomorphism_givaro(self, n)