Coverage for local/lib/python2.7/site-packages/sage/rings/ideal_monoid.py : 61%
 
         
         
    Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
| """ Monoid of ideals in a commutative ring """ from __future__ import absolute_import 
 from sage.structure.parent import Parent import sage.rings.integer_ring from . import ideal from sage.categories.monoids import Monoids 
 
 def IdealMonoid(R): r""" Return the monoid of ideals in the ring ``R``. 
 EXAMPLES:: 
 sage: R = QQ['x'] sage: sage.rings.ideal_monoid.IdealMonoid(R) Monoid of ideals of Univariate Polynomial Ring in x over Rational Field """ 
 
 class IdealMonoid_c(Parent): r""" The monoid of ideals in a commutative ring. 
 TESTS:: 
 sage: R = QQ['x'] sage: M = sage.rings.ideal_monoid.IdealMonoid(R) sage: TestSuite(M).run() Failure in _test_category: ... The following tests failed: _test_elements 
 (The "_test_category" test fails but I haven't the foggiest idea why.) """ 
 Element = ideal.Ideal_generic # this doesn't seem to do anything 
 def __init__(self, R): r""" Initialize ``self``. 
 TESTS:: 
 sage: R = QuadraticField(-23, 'a') sage: M = sage.rings.ideal_monoid.IdealMonoid(R); M # indirect doctest Monoid of ideals of Number Field in a with defining polynomial x^2 + 23 """ category=Monoids()) 
 def _repr_(self): r""" Return a string representation of ``self``. 
 TESTS:: 
 sage: R = QuadraticField(-23, 'a') sage: M = sage.rings.ideal_monoid.IdealMonoid(R); M._repr_() 'Monoid of ideals of Number Field in a with defining polynomial x^2 + 23' """ 
 def ring(self): r""" Return the ring of which this is the ideal monoid. 
 EXAMPLES:: 
 sage: R = QuadraticField(-23, 'a') sage: M = sage.rings.ideal_monoid.IdealMonoid(R); M.ring() is R True """ 
 def _element_constructor_(self, x): r""" Create an ideal in this monoid from ``x``. 
 EXAMPLES:: 
 sage: R.<a> = QuadraticField(-23) sage: M = sage.rings.ideal_monoid.IdealMonoid(R) sage: M(a) # indirect doctest Fractional ideal (a) sage: M([a-4, 13]) Fractional ideal (13, 1/2*a + 9/2) """ else: y = self.__R.ideal(x, side=side) 
 def _coerce_map_from_(self, x): r""" Used by coercion framework. 
 EXAMPLES:: 
 sage: R = QuadraticField(-23, 'a') sage: M = R.ideal_monoid() sage: M.has_coerce_map_from(R) # indirect doctest True sage: M.has_coerce_map_from(QQ.ideal_monoid()) True sage: M.has_coerce_map_from(Zmod(6)) False sage: M.has_coerce_map_from(loads(dumps(M))) True """ else: 
 def __eq__(self, other): r""" Check whether ``self`` is not equal to ``other``. 
 EXAMPLES:: 
 sage: R = QuadraticField(-23, 'a') sage: M = R.ideal_monoid() sage: M == QQ False sage: M == 17 False sage: M == R.ideal_monoid() True """ else: 
 def __ne__(self, other): r""" Check whether ``self`` is not equal to ``other``. 
 EXAMPLES:: 
 sage: R = QuadraticField(-23, 'a') sage: M = R.ideal_monoid() sage: M != QQ True sage: M != 17 True sage: M != R.ideal_monoid() False """ |