Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

r""" 

Elements of bounded height in number fields 

 

Sage functions to list all elements of a given number field with height less 

than a specified bound. 

 

AUTHORS: 

 

- John Doyle (2013): initial version 

 

- David Krumm (2013): initial version 

 

REFERENCES: 

 

.. [Doyle-Krumm] John R. Doyle and David Krumm, Computing algebraic numbers 

of bounded height, :arxiv:`1111.4963` (2013). 

""" 

#***************************************************************************** 

# Copyright (C) 2013 John Doyle and David Krumm 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# as published by the Free Software Foundation; either version 2 of 

# the License, or (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from __future__ import print_function 

from six.moves import range 

 

from copy import copy 

from itertools import product 

from sage.rings.real_mpfr import RealField 

from sage.rings.number_field.unit_group import UnitGroup 

from sage.modules.free_module_element import vector 

from sage.matrix.constructor import column_matrix 

from sage.rings.rational_field import QQ 

from sage.functions.other import ceil 

from sage.geometry.polyhedron.constructor import Polyhedron 

from sage.structure.proof.all import number_field 

from sage.libs.pari.all import pari 

 

def bdd_norm_pr_gens_iq(K, norm_list): 

r""" 

Compute generators for all principal ideals in an imaginary quadratic field 

`K` whose norms are in ``norm_list``. 

 

The only keys for the output dictionary are integers n appearing in 

``norm_list``. 

 

The function will only be called with `K` an imaginary quadratic field. 

 

The function will return a dictionary for other number fields, but it may be 

incorrect. 

 

INPUT: 

 

- `K` - an imaginary quadratic number field 

- ``norm_list`` - a list of positive integers 

 

OUTPUT: 

 

- a dictionary of number field elements, keyed by norm 

 

EXAMPLES: 

 

In `QQ(i)`, there is one principal ideal of norm 4, two principal ideals of 

norm 5, but no principal ideals of norm 7:: 

 

sage: from sage.rings.number_field.bdd_height import bdd_norm_pr_gens_iq 

sage: K.<g> = NumberField(x^2 + 1) 

sage: L = range(10) 

sage: bdd_pr_ideals = bdd_norm_pr_gens_iq(K, L) 

sage: bdd_pr_ideals[4] 

[2] 

sage: bdd_pr_ideals[5] 

[-g - 2, -g + 2] 

sage: bdd_pr_ideals[7] 

[] 

 

There are no ideals in the ring of integers with negative norm:: 

 

sage: from sage.rings.number_field.bdd_height import bdd_norm_pr_gens_iq 

sage: K.<g> = NumberField(x^2 + 10) 

sage: L = range(-5,-1) 

sage: bdd_pr_ideals = bdd_norm_pr_gens_iq(K,L) 

sage: bdd_pr_ideals 

{-5: [], -4: [], -3: [], -2: []} 

 

Calling a key that is not in the input ``norm_list`` raises a KeyError:: 

 

sage: from sage.rings.number_field.bdd_height import bdd_norm_pr_gens_iq 

sage: K.<g> = NumberField(x^2 + 20) 

sage: L = range(100) 

sage: bdd_pr_ideals = bdd_norm_pr_gens_iq(K, L) 

sage: bdd_pr_ideals[100] 

Traceback (most recent call last): 

... 

KeyError: 100 

 

""" 

gens = dict() 

for n in norm_list: 

gens[n] = K.elements_of_norm(n) 

return gens 

 

 

def bdd_height_iq(K, height_bound): 

r""" 

Compute all elements in the imaginary quadratic field `K` which have 

relative multiplicative height at most ``height_bound``. 

 

The function will only be called with `K` an imaginary quadratic field. 

 

If called with `K` not an imaginary quadratic, the function will likely 

yield incorrect output. 

 

ALGORITHM: 

 

This is an implementation of Algorithm 5 in [Doyle-Krumm]. 

 

INPUT: 

 

- `K` - an imaginary quadratic number field 

- ``height_bound`` - a real number 

 

OUTPUT: 

 

- an iterator of number field elements 

 

EXAMPLES:: 

 

sage: from sage.rings.number_field.bdd_height import bdd_height_iq 

sage: K.<a> = NumberField(x^2 + 191) 

sage: for t in bdd_height_iq(K,8): 

....: print(exp(2*t.global_height())) 

1.00000000000000 

1.00000000000000 

1.00000000000000 

4.00000000000000 

4.00000000000000 

4.00000000000000 

4.00000000000000 

8.00000000000000 

8.00000000000000 

8.00000000000000 

8.00000000000000 

8.00000000000000 

8.00000000000000 

8.00000000000000 

8.00000000000000 

 

There are 175 elements of height at most 10 in `QQ(\sqrt(-3))`:: 

 

sage: from sage.rings.number_field.bdd_height import bdd_height_iq 

sage: K.<a> = NumberField(x^2 + 3) 

sage: len(list(bdd_height_iq(K,10))) 

175 

 

The only elements of multiplicative height 1 in a number field are 0 and 

the roots of unity:: 

 

sage: from sage.rings.number_field.bdd_height import bdd_height_iq 

sage: K.<a> = NumberField(x^2 + x + 1) 

sage: list(bdd_height_iq(K,1)) 

[0, a + 1, a, -1, -a - 1, -a, 1] 

 

A number field has no elements of multiplicative height less than 1:: 

 

sage: from sage.rings.number_field.bdd_height import bdd_height_iq 

sage: K.<a> = NumberField(x^2 + 5) 

sage: list(bdd_height_iq(K,0.9)) 

[] 

 

""" 

if height_bound < 1: 

return 

yield K(0) 

roots_of_unity = K.roots_of_unity() 

for zeta in roots_of_unity: 

yield zeta 

 

# Get a complete set of ideal class representatives 

class_group_reps = [] 

class_group_rep_norms = [] 

for c in K.class_group(): 

a = c.ideal() 

class_group_reps.append(a) 

class_group_rep_norms.append(a.norm()) 

class_number = len(class_group_reps) 

 

# Find principal ideals of bounded norm 

possible_norm_set = set([]) 

for n in range(class_number): 

for m in range(1, height_bound + 1): 

possible_norm_set.add(m*class_group_rep_norms[n]) 

bdd_ideals = bdd_norm_pr_gens_iq(K, possible_norm_set) 

 

# Distribute the principal ideals 

generator_lists = [] 

for n in range(class_number): 

this_ideal = class_group_reps[n] 

this_ideal_norm = class_group_rep_norms[n] 

gens = [] 

for i in range(1, height_bound + 1): 

for g in bdd_ideals[i*this_ideal_norm]: 

if g in this_ideal: 

gens.append(g) 

generator_lists.append(gens) 

 

# Build all the output numbers 

for n in range(class_number): 

gens = generator_lists[n] 

s = len(gens) 

for i in range(s): 

for j in range(i + 1, s): 

if K.ideal(gens[i], gens[j]) == class_group_reps[n]: 

new_number = gens[i]/gens[j] 

for zeta in roots_of_unity: 

yield zeta*new_number 

yield zeta/new_number 

 

def bdd_norm_pr_ideal_gens(K, norm_list): 

r""" 

Compute generators for all principal ideals in a number field `K` whose 

norms are in ``norm_list``. 

 

INPUT: 

 

- `K` - a number field 

- ``norm_list`` - a list of positive integers 

 

OUTPUT: 

 

- a dictionary of number field elements, keyed by norm 

 

EXAMPLES: 

 

There is only one principal ideal of norm 1, and it is generated by the 

element 1:: 

 

sage: from sage.rings.number_field.bdd_height import bdd_norm_pr_ideal_gens 

sage: K.<g> = QuadraticField(101) 

sage: bdd_norm_pr_ideal_gens(K, [1]) 

{1: [1]} 

 

:: 

 

sage: from sage.rings.number_field.bdd_height import bdd_norm_pr_ideal_gens 

sage: K.<g> = QuadraticField(123) 

sage: bdd_norm_pr_ideal_gens(K, range(5)) 

{0: [0], 1: [1], 2: [-g - 11], 3: [], 4: [2]} 

 

:: 

 

sage: from sage.rings.number_field.bdd_height import bdd_norm_pr_ideal_gens 

sage: K.<g> = NumberField(x^5 - x + 19) 

sage: b = bdd_norm_pr_ideal_gens(K, range(30)) 

sage: key = ZZ(28) 

sage: b[key] 

[157*g^4 - 139*g^3 - 369*g^2 + 848*g + 158, g^4 + g^3 - g - 7] 

 

""" 

 

negative_norm_units = K.elements_of_norm(-1) 

gens = dict() 

if len(negative_norm_units) == 0: 

for n in norm_list: 

if not n: 

gens[n] = [K.zero()] 

else: 

gens[n] = K.elements_of_norm(n) + K.elements_of_norm(-n) 

else: 

for n in norm_list: 

gens[n] = K.elements_of_norm(n) 

return gens 

 

def integer_points_in_polytope(matrix, interval_radius): 

r""" 

Return the set of integer points in the polytope obtained by acting on a 

cube by a linear transformation. 

 

Given an r-by-r matrix ``matrix`` and a real number ``interval_radius``, 

this function finds all integer lattice points in the polytope obtained by 

transforming the cube [-interval_radius,interval_radius]^r via the linear 

map induced by ``matrix``. 

 

INPUT: 

 

- ``matrix`` - a square matrix of real numbers 

- ``interval_radius`` - a real number 

 

OUTPUT: 

 

- a list of tuples of integers 

 

EXAMPLES: 

 

Stretch the interval [-1,1] by a factor of 2 and find the integers in the 

resulting interval:: 

 

sage: from sage.rings.number_field.bdd_height import integer_points_in_polytope 

sage: m = matrix([2]) 

sage: r = 1 

sage: integer_points_in_polytope(m,r) 

[(-2), (-1), (0), (1), (2)] 

 

Integer points inside a parallelogram:: 

 

sage: from sage.rings.number_field.bdd_height import integer_points_in_polytope 

sage: m = matrix([[1, 2],[3, 4]]) 

sage: r = RealField()(1.3) 

sage: integer_points_in_polytope(m,r) 

[(-3, -7), (-2, -5), (-2, -4), (-1, -3), (-1, -2), (-1, -1), (0, -1), (0, 0), (0, 1), (1, 1), (1, 2), (1, 3), (2, 4), (2, 5), (3, 7)] 

 

Integer points inside a parallelepiped:: 

 

sage: from sage.rings.number_field.bdd_height import integer_points_in_polytope 

sage: m = matrix([[1.2,3.7,0.2],[-5.3,-.43,3],[1.2,4.7,-2.1]]) 

sage: r = 2.2 

sage: L = integer_points_in_polytope(m,r) 

sage: len(L) 

4143 

 

If ``interval_radius`` is 0, the output should include only the zero tuple:: 

 

sage: from sage.rings.number_field.bdd_height import integer_points_in_polytope 

sage: m = matrix([[1,2,3,7],[4,5,6,2],[7,8,9,3],[0,3,4,5]]) 

sage: integer_points_in_polytope(m,0) 

[(0, 0, 0, 0)] 

 

""" 

 

T = matrix; d = interval_radius; r = T.nrows() 

 

# Find the vertices of the given box 

box_vertices = [vector(x) for x in product([-d, d], repeat=r)] 

 

# Transform the vertices 

T_trans = T.transpose() 

transformed_vertices = [v*T_trans for v in box_vertices] 

 

# Create polyhedron from transformed vertices and find integer points inside 

return list(Polyhedron(transformed_vertices, base_ring=QQ).integral_points()) 

 

 

def bdd_height(K, height_bound, precision=53, LLL=False): 

r""" 

Computes all elements in the number field `K` which have relative 

multiplicative height at most ``height_bound``. 

 

The algorithm requires arithmetic with floating point numbers; 

``precision`` gives the user the option to set the precision for such 

computations. 

 

It might be helpful to work with an LLL-reduced system of fundamental 

units, so the user has the option to perform an LLL reduction for the 

fundamental units by setting ``LLL`` to True. 

 

Certain computations may be faster assuming GRH, which may be done 

globally by using the number_field(True/False) switch. 

 

The function will only be called for number fields `K` with positive unit 

rank. An error will occur if `K` is `QQ` or an imaginary quadratic field. 

 

ALGORITHM: 

 

This is an implementation of the main algorithm (Algorithm 3) in 

[Doyle-Krumm]. 

 

INPUT: 

 

- ``height_bound`` - real number 

- ``precision`` - (default: 53) positive integer 

- ``LLL`` - (default: False) boolean value 

 

OUTPUT: 

 

- an iterator of number field elements 

 

.. WARNING:: 

 

In the current implementation, the output of the algorithm cannot be 

guaranteed to be correct due to the necessity of floating point 

computations. In some cases, the default 53-bit precision is 

considerably lower than would be required for the algorithm to 

generate correct output. 

 

.. TODO:: 

 

Should implement a version of the algorithm that guarantees correct 

output. See Algorithm 4 in [Doyle-Krumm] for details of an 

implementation that takes precision issues into account. 

 

EXAMPLES: 

 

There are no elements of negative height:: 

 

sage: from sage.rings.number_field.bdd_height import bdd_height 

sage: K.<g> = NumberField(x^5 - x + 7) 

sage: list(bdd_height(K,-3)) 

[] 

 

The only nonzero elements of height 1 are the roots of unity:: 

 

sage: from sage.rings.number_field.bdd_height import bdd_height 

sage: K.<g> = QuadraticField(3) 

sage: list(bdd_height(K,1)) 

[0, -1, 1] 

 

:: 

 

sage: from sage.rings.number_field.bdd_height import bdd_height 

sage: K.<g> = QuadraticField(36865) 

sage: len(list(bdd_height(K,101))) # long time (4 s) 

131 

 

:: 

 

sage: from sage.rings.number_field.bdd_height import bdd_height 

sage: K.<g> = NumberField(x^3 - 197*x + 39) 

sage: len(list(bdd_height(K, 200))) # long time (5 s) 

451 

 

:: 

 

sage: from sage.rings.number_field.bdd_height import bdd_height 

sage: K.<g> = NumberField(x^6 + 2) 

sage: len(list(bdd_height(K,60,precision=100))) # long time (5 s) 

1899 

 

:: 

 

sage: from sage.rings.number_field.bdd_height import bdd_height 

sage: K.<g> = NumberField(x^4 - x^3 - 3*x^2 + x + 1) 

sage: len(list(bdd_height(K,10,LLL=true))) 

99 

 

""" 

 

B = height_bound 

r1, r2 = K.signature(); r = r1 + r2 -1 

if B < 1: 

return 

yield K(0) 

roots_of_unity = K.roots_of_unity() 

if B == 1: 

for zeta in roots_of_unity: 

yield zeta 

return 

RF = RealField(precision) 

embeddings = K.places(prec=precision) 

logB = RF(B).log() 

 

def log_map(number): 

r""" 

Computes the image of an element of `K` under the logarithmic map. 

""" 

x = number 

x_logs = [] 

for i in range(r1): 

sigma = embeddings[i] 

x_logs.append(abs(sigma(x)).log()) 

for i in range(r1, r + 1): 

tau = embeddings[i] 

x_logs.append(2*abs(tau(x)).log()) 

return vector(x_logs) 

 

def log_height_for_generators(n, i, j): 

r""" 

Computes the logarithmic height of elements of the form `g_i/g_j`. 

""" 

gen_logs = generator_logs[n] 

Log_gi = gen_logs[i]; Log_gj = gen_logs[j] 

arch_sum = sum([max(Log_gi[k], Log_gj[k]) for k in range(r + 1)]) 

return (arch_sum - class_group_rep_norm_logs[n]) 

 

def packet_height(n, pair, u): 

r""" 

Computes the height of the element of `K` encoded by a given packet. 

""" 

gen_logs = generator_logs[n] 

i = pair[0] ; j = pair[1] 

Log_gi = gen_logs[i]; Log_gj = gen_logs[j] 

Log_u_gi = Log_gi + unit_log_dictionary[u] 

arch_sum = sum([max(Log_u_gi[k], Log_gj[k]) for k in range(r + 1)]) 

return (arch_sum - class_group_rep_norm_logs[n]) 

 

class_group_reps = [] 

class_group_rep_norms = [] 

class_group_rep_norm_logs = [] 

for c in K.class_group(): 

a = c.ideal() 

a_norm = a.norm() 

class_group_reps.append(a) 

class_group_rep_norms.append(a_norm) 

class_group_rep_norm_logs.append(RF(a_norm).log()) 

class_number = len(class_group_reps) 

 

# Get fundamental units and their images under the log map 

fund_units = UnitGroup(K).fundamental_units() 

fund_unit_logs = [log_map(fund_units[i]) for i in range(r)] 

unit_prec_test = fund_unit_logs 

try: 

[l.change_ring(QQ) for l in unit_prec_test] 

except ValueError: 

raise ValueError('Precision too low.') # QQ(log(0)) may occur if precision too low 

 

# If LLL is set to True, find an LLL-reduced system of fundamental units 

if LLL: 

cut_fund_unit_logs = column_matrix(fund_unit_logs).delete_rows([r]) 

lll_fund_units = [] 

for c in pari(cut_fund_unit_logs).qflll().sage().columns(): 

new_unit = 1 

for i in range(r): 

new_unit *= fund_units[i]**c[i] 

lll_fund_units.append(new_unit) 

fund_units = lll_fund_units 

fund_unit_logs = [log_map(_) for _ in fund_units] 

unit_prec_test = fund_unit_logs 

try: 

[l.change_ring(QQ) for l in unit_prec_test] 

except ValueError: 

raise ValueError('Precision too low.') # QQ(log(0)) may occur if precision too low 

 

# Find generators for principal ideals of bounded norm 

possible_norm_set = set([]) 

for n in range(class_number): 

for m in range(1, B + 1): 

possible_norm_set.add(m*class_group_rep_norms[n]) 

bdd_ideals = bdd_norm_pr_ideal_gens(K, possible_norm_set) 

 

# Distribute the principal ideal generators 

generator_lists = [] 

generator_logs = [] 

for n in range(class_number): 

this_ideal = class_group_reps[n] 

this_ideal_norm = class_group_rep_norms[n] 

gens = [] 

gen_logs = [] 

for i in range(1, B + 1): 

for g in bdd_ideals[i*this_ideal_norm]: 

if g in this_ideal: 

gens.append(g) 

gen_logs.append(log_map(g)) 

generator_lists.append(gens) 

generator_logs.append(gen_logs) 

 

# Compute the lists of relevant pairs and corresponding heights 

gen_height_dictionary = dict() 

relevant_pair_lists = [] 

for n in range(class_number): 

relevant_pairs = [] 

gens = generator_lists[n] 

s = len(gens) 

for i in range(s): 

for j in range(i + 1, s): 

if K.ideal(gens[i], gens[j]) == class_group_reps[n]: 

relevant_pairs.append([i, j]) 

gen_height_dictionary[(n, i, j)] = log_height_for_generators(n, i, j) 

relevant_pair_lists.append(relevant_pairs) 

 

# Find the bound for units to be computed 

gen_height_list = [gen_height_dictionary[x] for x in gen_height_dictionary.keys()] 

if len(gen_height_list) == 0: 

d = logB 

else: 

d = logB + max(gen_height_list) 

 

# Create the matrix whose columns are the logs of the fundamental units 

S = column_matrix(fund_unit_logs).delete_rows([r]) 

try: 

T = S.inverse() 

except ZeroDivisionError: 

raise ValueError('Precision too low.') 

 

# Find all integer lattice points in the unit polytope 

U = integer_points_in_polytope(T, ceil(d)) 

 

U0 = []; L0 = [] 

 

# Compute unit heights 

unit_height_dictionary = dict() 

unit_log_dictionary = dict() 

Ucopy = copy(U) 

 

for u in U: 

u_log = sum([u[j]*fund_unit_logs[j] for j in range(r)]) 

unit_log_dictionary[u] = u_log 

u_height = sum([max(u_log[k], 0) for k in range(r + 1)]) 

unit_height_dictionary[u] = u_height 

if u_height <= logB: 

U0.append(u) 

if u_height > d: 

Ucopy.remove(u) 

U = Ucopy 

 

# Sort U by height 

U = sorted(U, key=lambda u: unit_height_dictionary[u]) 

U_length = len(U) 

 

all_unit_tuples = set(copy(U0)) 

 

# Check candidate heights 

for n in range(class_number): 

relevant_pairs = relevant_pair_lists[n] 

for pair in relevant_pairs: 

i = pair[0] ; j = pair[1] 

gen_height = gen_height_dictionary[(n, i, j)] 

u_height_bound = logB + gen_height 

for k in range(U_length): 

u = U[k] 

u_height = unit_height_dictionary[u] 

if u_height <= u_height_bound: 

candidate_height = packet_height(n, pair, u) 

if candidate_height <= logB: 

L0.append([n, pair, u]) 

all_unit_tuples.add(u) 

else: 

break 

 

# Use previous data to build all necessary units 

units_dictionary = dict() 

for u in all_unit_tuples: 

unit = K(1) 

for j in range(r): 

unit *= (fund_units[j])**(u[j]) 

units_dictionary[u] = unit 

 

# Build all the output numbers 

for u in U0: 

unit = units_dictionary[u] 

for zeta in roots_of_unity: 

yield zeta*unit 

for packet in L0: 

n = packet[0] ; pair = packet[1] ; u = packet[2] 

i = pair[0] ; j = pair[1] 

relevant_pairs = relevant_pair_lists[n] 

gens = generator_lists[n] 

unit = units_dictionary[u] 

c = unit*gens[i]/gens[j] 

for zeta in roots_of_unity: 

yield zeta*c 

yield zeta/c