Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

""" 

Enumeration of Totally Real Fields 

  

AUTHORS: 

  

- Craig Citro and John Voight (2007-11-04): 

Type checking and other polishing. 

- John Voight (2007-10-09): 

Improvements: Smyth bound, Lagrange multipliers for b. 

- John Voight (2007-09-19): 

Various optimization tweaks. 

- John Voight (2007-09-01): 

Initial version. 

""" 

  

#***************************************************************************** 

# Copyright (C) 2007 William Stein and John Voight 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

  

from __future__ import absolute_import, print_function 

  

from libc.math cimport sqrt 

from cysignals.memory cimport sig_malloc, sig_free 

  

from sage.arith.all import binomial, gcd 

from sage.libs.gmp.mpz cimport * 

from sage.rings.rational_field import RationalField 

from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing 

from sage.rings.real_mpfi import RealIntervalField 

from sage.rings.real_mpfr import RealField 

from sage.rings.integer_ring import ZZ 

from sage.rings.integer cimport Integer 

  

# Other global variables 

ZZx = PolynomialRing(ZZ, 'x') 

  

from libc.math cimport lrint, floor, ceil, fabs, round 

  

  

#********************************************************************* 

# Auxiliary routine 

# Hermite constant, naive Newton-Raphson, and a specialized Lagrange 

# multiplier solver. 

#********************************************************************* 

  

def hermite_constant(n): 

r""" 

This function returns the nth Hermite constant 

  

The nth Hermite constant (typically denoted `\gamma_n`), is defined 

to be 

  

.. MATH:: 

  

\max_L \min_{0 \neq x \in L} ||x||^2 

  

where `L` runs over all lattices of dimension `n` and determinant `1`. 

  

For `n \leq 8` it returns the exact value of `\gamma_n`, and for 

`n > 9` it returns an upper bound on `\gamma_n`. 

  

INPUT: 

  

- n -- integer 

  

OUTPUT: 

  

- (an upper bound for) the Hermite constant gamma_n 

  

EXAMPLES:: 

  

sage: hermite_constant(1) # trivial one-dimensional lattice 

1.0 

sage: hermite_constant(2) # Eisenstein lattice 

1.1547005383792515 

sage: 2/sqrt(3.) 

1.15470053837925 

sage: hermite_constant(8) # E_8 

2.0 

  

.. NOTE:: 

  

The upper bounds used can be found in [CS]_ and [CE]_. 

  

REFERENCES: 

  

.. [CE] Henry Cohn and Noam Elkies, New upper bounds on sphere 

packings I, Ann. Math. 157 (2003), 689--714. 

  

.. [CS] \J.H. Conway and N.J.A. Sloane, Sphere packings, lattices 

and groups, 3rd. ed., Grundlehren der Mathematischen 

Wissenschaften, vol. 290, Springer-Verlag, New York, 1999. 

  

AUTHORS: 

  

- John Voight (2007-09-03) 

""" 

  

if n <= 8: 

# Exact values are known for gamma_n. 

gamman = [1, 1, 4./3, 2, 4, 8, 64./3, 64, 256][n] 

gamma = gamman**(1./n) 

elif n <= 36: 

gamma = [2.13263235569928, 2.26363016185702, 2.39334691240146, 

2.52178702088414, 2.64929462619823, 2.77580405570023, 

2.90147761892077, 3.02639364467182, 3.15067928476872, 

3.27433066745617, 3.39744386110070, 3.52006195697466, 

3.64224310140724, 3.76403701226104, 3.88547626036618, 

4.00659977840648, 4.12744375027069, 4.24804458298177, 

4.36843113799634, 4.48863097933934, 4.60866759008263, 

4.72856660611662, 4.84834821242630, 4.96803435811402, 

5.08764086822471, 5.20718687262715, 5.32668836123079, 

5.44615801810606][n-9] 

else: 

# Mordell's inequality. 

gamma = 5.44615801810606**((n-1.)/35) 

  

return gamma 

  

cdef double eval_seq_as_poly(int *f, int n, double x): 

r""" 

Evaluates the sequence a, thought of as a polynomial with 

  

.. MATH:: 

  

f[n]*x^n + f[n-1]*x^(n-1) + ... + f[0]. 

""" 

cdef double s, xp 

  

# Horner's method: With polynomials of small degree, we shouldn't 

# expect asymptotic methods to be any faster. 

s = f[n] 

for i from n > i >= 0: 

s = s*x+f[i] 

return s 

  

cdef double newton(int *f, int *df, int n, double x0, double eps): 

r""" 

Find the real root x of f (with derivative df) near x0 

with provable precision eps, i.e. |x-z| < eps where z is the actual 

root. 

The sequence a corresponds to the polynomial f with 

  

.. MATH:: 

  

f(x) = x^n + a[n-1]*x^(n-1) + ... + a[0]. 

  

This function (for speed reasons) has no error checking and no 

guarantees are made as to the convergence; a naive Newton-Raphson 

method is used. 

""" 

cdef double x, rdx, dx, fx 

  

x = x0 

dx = eval_seq_as_poly(f,n,x)/eval_seq_as_poly(df,n-1,x) 

x -= dx 

while fabs(dx) > eps: 

# In truly optimized code, one could tune by automatically 

# iterating a certain number of times based on the size of dx to 

# save on a few comparisons. 

# This savings should be almost negligible...? 

dx = eval_seq_as_poly(f,n,x)/eval_seq_as_poly(df,n-1,x) 

x -= dx 

  

# Small hack for improved performance elsewhere: if it is close to an 

# integer, give it full precision as an integer. 

rdx = round(x) 

if fabs(rdx-x) < eps: 

x = rdx 

  

# Now ensure that either f(x-eps) or f(x+eps) has opposite sign 

# as f(x), which implies that |x-z| < eps. 

fx = eval_seq_as_poly(f,n,x) 

while not (fx == 0 or fx*eval_seq_as_poly(f,n,x+eps) < 0 or 

fx*eval_seq_as_poly(f,n,x-eps) < 0): 

dx = eval_seq_as_poly(f,n,x)/eval_seq_as_poly(df,n-1,x) 

x -= dx 

fx = eval_seq_as_poly(f,n,x) 

return x 

  

cdef void newton_in_intervals(int *f, int *df, int n, double *beta, 

double eps, double *rts): 

r""" 

Find the real roots of f in the intervals specified by beta: 

  

(beta[0],beta[1]), (beta[1],beta[2]), ..., (beta[n-1], beta[n]) 

  

Calls newton_kernel, so same provisos apply---in particular, 

each interval should contain a unique simple root. 

Note the derivative *df is passed but is recomputed--this is 

just a way to save a malloc and free for each call. 

""" 

cdef int i 

  

for i from 0 <= i < n: 

df[i] = f[i+1]*(i+1) 

for i from 0 <= i < n: 

rts[i] = newton(f, df, n, (beta[i]+beta[i+1])/2, eps) 

  

cpdef lagrange_degree_3(int n, int an1, int an2, int an3): 

r""" 

Private function. Solves the equations which arise in the Lagrange multiplier 

for degree 3: for each 1 <= r <= n-2, we solve 

  

r*x^i + (n-1-r)*y^i + z^i = s_i (i = 1,2,3) 

  

where the s_i are the power sums determined by the coefficients a. 

We output the largest value of z which occurs. 

We use a precomputed elimination ideal. 

  

EXAMPLES:: 

  

sage: ls = sage.rings.number_field.totallyreal_data.lagrange_degree_3(3,0,1,2) 

sage: [RealField(10)(x) for x in ls] 

[-1.0, -1.0] 

sage: sage.rings.number_field.totallyreal_data.lagrange_degree_3(3,6,1,2) # random 

[-5.8878, -5.8878] 

  

TESTS: 

  

Check that :trac:`13101` is solved:: 

  

sage: sage.rings.number_field.totallyreal_data.lagrange_degree_3(4,12,19,42) 

[0.0, -1.0] 

""" 

cdef double zmin, zmax, val 

cdef double *roots_data 

cdef long coeffs[7] 

cdef int r, rsq, rcu 

cdef int nr, nrsq, nrcu 

cdef int s1, s1sq, s1cu, s1fo, s2, s2sq, s2cu, s3, s3sq 

cdef int found_minmax = 0 

  

RRx = PolynomialRing(RealField(20),'x') 

  

# Newton's relations. 

s1 = -an1 

s2 = -(an1*s1 + 2*an2) 

s3 = -(an1*s2 + an2*s1 + 3*an3) 

  

s1sq = s1*s1 

s1cu = s1*s1sq 

s1fo = s1*s1cu 

s2sq = s2*s2 

s2cu = s2*s2sq 

s3sq = s3*s3 

  

z4minmax = [] 

  

for r from 1 <= r <= n-2: 

nr = n-1-r 

# common subexpressions 

rsq = r*r 

rcu = r*rsq 

nrsq = nr*nr 

nrcu = nr*nrsq 

  

## x^6 

coeffs[6] = rcu*nr + rcu + 2*rsq*nrsq + 5*rsq*nr + 3*rsq + \ 

r*nrcu + 5*r*nrsq + 7*r*nr + 3*r + nrcu + \ 

3*nrsq + 3*nr + 1 

  

## x^5 

coeffs[5] = -6*rsq*nr*s1 - 6*rsq*s1 - 6*r*nrsq*s1 - 18*r*nr*s1 - \ 

12*r*s1 - 6*nrsq*s1 - 12*nr*s1 - 6*s1 

  

## x^4 

coeffs[4] = -3*rcu*s2 - 3*rsq*nr*s2 + 3*rsq*s1sq - 6*rsq*s2 - \ 

3*r*nrsq*s2 + 15*r*nr*s1sq - 6*r*nr*s2 + 18*r*s1sq - \ 

3*r*s2 - 3*nrcu*s2 + 3*nrsq*s1sq - 6*nrsq*s2 + \ 

18*nr*s1sq - 3*nr*s2 + 15*s1sq 

  

## x^3 

coeffs[3] = -2*rcu*nr*s3 - 4*rsq*nrsq*s3 + 6*rsq*nr*s1*s2 - \ 

6*rsq*nr*s3 + 12*rsq*s1*s2 - 2*r*nrcu*s3 + \ 

6*r*nrsq*s1*s2 - 6*r*nrsq*s3 - 4*r*nr*s1cu + \ 

12*r*nr*s1*s2 - 4*r*nr*s3 - 12*r*s1cu + 12*r*s1*s2 + \ 

12*nrsq*s1*s2 - 12*nr*s1cu + 12*nr*s1*s2 - \ 

20*s1cu 

  

## x^2 

coeffs[2] = 3*rcu*s2sq + 6*rsq*nr*s1*s3 - 3*rsq*nr*s2sq - \ 

6*rsq*s1sq*s2 + 3*rsq*s2sq + 6*r*nrsq*s1*s3 - \ 

3*r*nrsq*s2sq - 6*r*nr*s1sq*s2 + 12*r*nr*s1*s3 + \ 

3*r*nr*s2sq + 3*r*s1fo - 18*r*s1sq*s2 + \ 

3*nrcu*s2sq - 6*nrsq*s1sq*s2 + 3*nrsq*s2sq + \ 

3*nr*s1fo - 18*nr*s1sq*s2 + 15*s1fo 

  

## x^1 

coeffs[1] = 6*rsq*nr*s2*s3 - 6*rsq*s1*s2sq + 6*r*nrsq*s2*s3 - \ 

12*r*nr*s1sq*s3 - 6*r*nr*s1*s2sq + 12*r*s1cu*s2 - \ 

6*nrsq*s1*s2sq + 12*nr*s1cu*s2 - 6*s1*s1fo 

  

## x^0 

coeffs[0] = rcu*nr*s3sq - rcu*s2cu + 2*rsq*nrsq*s3sq - \ 

6*rsq*nr*s1*s2*s3 + rsq*nr*s2cu + 3*rsq*s1sq*s2sq + \ 

r*nrcu*s3sq - 6*r*nrsq*s1*s2*s3 + r*nrsq*s2cu + \ 

4*r*nr*s1cu*s3 + 3*r*nr*s1sq*s2sq - \ 

3*r*s1fo*s2 - nrcu*s2cu + \ 

3*nrsq*s1sq*s2sq - 3*nr*s1fo*s2 + \ 

s1sq*s1fo 

  

  

fcoeff = [ int(coeffs[i]) for i in range(7) ] 

f = ZZx(fcoeff) 

df = ZZx([i*coeffs[i] for i in range(1,7)]) 

f = f//gcd(f,df) 

fcoeff = [int(c) for c in f.list()] 

  

rts = RRx(fcoeff).roots() 

  

if len(rts) > 0: 

rts = [rts[i][0] for i in range(len(rts))] 

z4minmax = [min(rts + z4minmax), max(rts + z4minmax)] 

  

if not z4minmax: 

return [0.0, -1.0] 

  

return z4minmax 

  

cdef int __len_primes = 46 

cdef long primessq[46] 

primessq_py = [4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 26569, 27889, 29929, 32041, 32761, 36481, 37249, 38809, 39601] 

for i from 0 <= i < 46: 

primessq[i] = primessq_py[i] 

  

def int_has_small_square_divisor(sage.rings.integer.Integer d): 

r""" 

Returns the largest a such that a^2 divides d and a has prime divisors < 200. 

  

EXAMPLES:: 

  

sage: from sage.rings.number_field.totallyreal_data import int_has_small_square_divisor 

sage: int_has_small_square_divisor(500) 

100 

sage: is_prime(691) 

True 

sage: int_has_small_square_divisor(691) 

1 

sage: int_has_small_square_divisor(691^2) 

1 

""" 

  

cdef int i 

cdef Integer asq 

  

asq = ZZ(1) 

for i from 0 <= i < __len_primes: 

while mpz_divisible_ui_p(d.value, primessq[i]): 

asq *= primessq[i] 

mpz_divexact_ui(d.value, d.value, primessq[i]) 

  

return asq 

  

cdef int eval_seq_as_poly_int(int *f, int n, int x): 

r""" 

Evaluates the sequence a, thought of as a polynomial with 

  

.. MATH:: 

  

f[n]*x^n + f[n-1]*x^(n-1) + ... + f[0]. 

""" 

cdef int s, xp 

  

s = f[n] 

for i from n > i >= 0: 

s = s*x+f[i] 

return s 

  

cdef double eps_abs, phi, sqrt2 

eps_abs = 10.**(-12) 

phi = 0.618033988749895 

sqrt2 = 1.41421356237310 

  

cdef int easy_is_irreducible(int *a, int n): 

r""" 

Very often, polynomials have roots in {+/-1, +/-2, +/-phi, sqrt2}, so we rule 

these out quickly. Returns 0 if reducible, 1 if inconclusive. 

""" 

cdef int s, t, st, sgn, i 

  

# Check if a has a root in {1,-1,2,-2}. 

if eval_seq_as_poly_int(a,n,1) == 0 or eval_seq_as_poly_int(a,n,-1) == 0 or eval_seq_as_poly_int(a,n,2) == 0 or eval_seq_as_poly_int(a,n,-2) == 0: 

return 0 

  

# Check if f has factors x^2-x-1, x^2+x-1, x^2-2, respectively. 

# Note we only call the ZZx constructor if we're almost certain to reject. 

if fabs(eval_seq_as_poly(a,n,-phi)) < eps_abs: 

s = 2*a[n] 

t = 0 

for i from n > i >= 0: 

st = (s+t)//2 

s = 2*t+st+2*a[i] 

t = st 

if s == 0 and t == 0: 

return 0 

if fabs(eval_seq_as_poly(a,n,phi)) < eps_abs: 

s = 2*a[n] 

t = 0 

for i from n > i >= 0: 

st = (s-t)//2 

s = 2*t-st+2*a[i] 

t = st 

if s == 0 and t == 0: 

return 0 

if fabs(eval_seq_as_poly(a,n,sqrt2)) < eps_abs: 

s = a[n] 

t = 0 

for i from n > i >= 0: 

st = s 

s = 2*t+a[i] 

t = st 

if s == 0 and t == 0: 

return 0 

  

return 1 

  

def easy_is_irreducible_py(f): 

""" 

Used solely for testing easy_is_irreducible. 

  

EXAMPLES:: 

  

sage: sage.rings.number_field.totallyreal_data.easy_is_irreducible_py(pari('x^2+1')) 

1 

sage: sage.rings.number_field.totallyreal_data.easy_is_irreducible_py(pari('x^2-1')) 

0 

""" 

cdef int a[10] 

  

for i from 0 <= i < len(f): 

a[i] = f[i] 

return easy_is_irreducible(a, len(f)-1) 

  

  

  

#**************************************************************************** 

# Main class and routine 

#**************************************************************************** 

  

# Global precision to find roots; this should probably depend on the 

# architecture in some way. Algorithm gives provably correct results 

# for any eps, but an optimal value of eps will be neither too large 

# (which gives trivial bounds on coefficients) nor too small (which 

# spends needless time computing higher precision on the roots). 

cdef double eps_global 

eps_global = 10.**(-4) 

  

from .totallyreal_phc import __lagrange_bounds_phc 

  

cdef class tr_data: 

r""" 

This class encodes the data used in the enumeration of totally real 

fields. 

  

We do not give a complete description here. For more information, 

see the attached functions; all of these are used internally by the 

functions in totallyreal.py, so see that file for examples and 

further documentation. 

""" 

  

def __init__(self, int n, B, a=[]): 

r""" 

Initialization routine (constructor). 

  

INPUT: 

  

n -- integer, the degree 

B -- integer, the discriminant bound 

a -- list (default: []), the coefficient list to begin with, where 

a[len(a)]*x^n + ... + a[0]x^(n-len(a)) 

  

OUTPUT: 

  

the data initialized to begin enumeration of totally real fields 

with degree n, discriminant bounded by B, and starting with 

coefficients a. 

  

EXAMPLES:: 

  

sage: T = sage.rings.number_field.totallyreal_data.tr_data(2,100) 

sage: T.printa() 

k = 0 

a = [0, -1, 1] 

amax = [0, 0, 1] 

beta = [...] 

gnk = [...] 

""" 

  

cdef int i 

  

# Initialize constants. 

self.n = n 

self.B = B 

self.gamma = hermite_constant(n-1) 

  

# Declare the coefficients of the polynomials (and max such). 

self.a = <int*>sig_malloc(sizeof(int)*(n+1)) 

if self.a == NULL: raise MemoryError 

self.amax = <int*>sig_malloc(sizeof(int)*(n+1)) 

if self.amax == NULL: raise MemoryError 

# df is memory set aside for the derivative, as 

# used in Newton iteration above. 

self.df = <int*>sig_malloc(sizeof(int)*(n+1)) 

if self.df == NULL: raise MemoryError 

  

for i from 0 <= i < n+1: 

self.a[i] = 0 

self.amax[i] = 0 

self.df[i] = 0 

  

# beta is an array of arrays (of length n) which list the 

# roots of the derivatives. 

self.beta = <double*>sig_malloc(sizeof(double)*n*(n+1)) 

if self.beta == NULL: raise MemoryError 

# gnk is the collection of (normalized) derivatives. 

self.gnk = <int*>sig_malloc(sizeof(int)*(n+1)*n) 

if self.gnk == NULL: raise MemoryError 

  

for i from 0 <= i < (n+1)*n: 

self.beta[i] = <double>0 

self.gnk[i] = 0 

  

  

# Initialize variables. 

if a == []: 

# No starting input, all polynomials will be found; initialize to zero. 

a = [0]*n + [1] 

for i from 0 <= i < n+1: 

self.a[i] = a[i] 

self.amax[i] = a[i] 

self.a[n-1] = -(n//2) 

self.amax[n-1] = 0 

self.k = n-2 

elif len(a) <= n+1: 

# First few coefficients have been specified. 

# The value of k is the largest index of the coefficients of a which is 

# currently unknown; e.g., if k == -1, then we can iterate 

# over polynomials, and if k == n-1, then we have finished iterating. 

if a[len(a)-1] != 1: 

raise ValueError("a[len(a)-1](=%s) must be 1 so polynomial is monic" % a[len(a)-1]) 

  

k = n-len(a) 

self.k = k 

a = [0]*(k+1) + a 

for i from 0 <= i < n+1: 

self.a[i] = a[i] 

self.amax[i] = a[i] 

  

# Bounds come from an application of Lagrange multipliers in degrees 2,3. 

self.b_lower = -1./n*(self.a[n-1] + (n-1.)*sqrt((1.*self.a[n-1])**2 - 2.*(1+1./(n-1))*self.a[n-2])) 

self.b_upper = -1./n*(self.a[n-1] - (n-1.)*sqrt((1.*self.a[n-1])**2 - 2.*(1+1./(n-1))*self.a[n-2])) 

if k < n-3: 

bminmax = lagrange_degree_3(n,a[n-1],a[n-2],a[n-3]) 

if bminmax: 

self.b_lower = bminmax[0] 

self.b_upper = bminmax[1] 

  

# Annoying, but must reverse coefficients for NumPy. 

gnk = [int(binomial(j,k+2))*a[j] for j in range(k+2,n+1)] 

gnk.reverse() 

import numpy 

rts = numpy.roots(gnk).tolist() 

rts.sort() 

self.beta[(k+1)*(n+1)+0] = self.b_lower 

for i from 0 <= i < n-k-2: 

self.beta[(k+1)*(n+1)+(i+1)] = rts[i] 

self.beta[(k+1)*(n+1)+(n-k-1)] = self.b_upper 

  

# Now to really initialize gnk. 

gnk = [0] + [binomial(j,k+1)*a[j] for j in range (k+2,n+1)] 

for i from 0 <= i < n-k: 

self.gnk[(k+1)*n+i] = gnk[i] 

else: 

# Bad input! 

raise ValueError("a has length %s > n+1" % len(a)) 

  

def __dealloc__(self): 

r""" 

Destructor. 

""" 

sig_free(self.df) 

sig_free(self.a) 

sig_free(self.amax) 

sig_free(self.beta) 

sig_free(self.gnk) 

  

def increment(self, verbose=False, haltk=0, phc=False): 

r""" 

This function 'increments' the totally real data to the next 

value which satisfies the bounds essentially given by Rolle's 

theorem, and returns the next polynomial as a sequence of 

integers. 

  

The default or usual case just increments the constant 

coefficient; then inductively, if this is outside of the 

bounds we increment the next higher coefficient, and so on. 

  

If there are no more coefficients to be had, returns the zero 

polynomial. 

  

INPUT: 

  

- verbose -- boolean to print verbosely computational details 

- haltk -- integer, the level at which to halt the inductive 

coefficient bounds 

- phc -- boolean, if PHCPACK is available, use it when k == n-5 to 

compute an improved Lagrange multiplier bound 

  

OUTPUT: 

  

The next polynomial, as a sequence of integers 

  

EXAMPLES:: 

  

sage: T = sage.rings.number_field.totallyreal_data.tr_data(2,100) 

sage: T.increment() 

[-24, -1, 1] 

sage: for i in range(19): _ = T.increment() 

sage: T.increment() 

[-3, -1, 1] 

sage: T.increment() 

[-25, 0, 1] 

""" 

cdef int *f_out 

cdef int i 

  

f_out = <int *>sig_malloc(sizeof(int) * (self.n + 1)) 

if f_out == NULL: 

raise MemoryError("unable to allocate coefficient list") 

for i from 0 <= i < self.n: 

f_out[i] = 0 

f_out[self.n] = 1 

  

self.incr(f_out, verbose, haltk, phc) 

  

g = [0] * (1 + self.n) 

for i from 0 <= i <= self.n: 

g[i] = f_out[i] 

sig_free(f_out) 

  

return g 

  

cdef void incr(self, int *f_out, int verbose, int haltk, int phc): 

r""" 

This function 'increments' the totally real data to the next 

value which satisfies the bounds essentially given by Rolle's 

theorem, and returns the next polynomial in the sequence 

f_out. 

  

The default or usual case just increments the constant 

coefficient; then inductively, if this is outside of the 

bounds we increment the next higher coefficient, and so on. 

  

If there are no more coefficients to be had, returns the zero 

polynomial. 

  

INPUT: 

  

- f_out -- an integer sequence, to be written with the coefficients of 

the next polynomial 

- verbose -- boolean to print verbosely computational details 

- haltk -- integer, the level at which to halt the inductive 

coefficient bounds 

- phc -- boolean, if PHCPACK is available, use it when k == n-5 to 

compute an improved Lagrange multiplier bound 

  

OUTPUT: 

  

None. The return value is stored in the variable f_out. 

""" 

  

cdef int n, np1, k, i, j, nk, kz 

cdef int *gnkm 

cdef int *gnkm1 

cdef double *betak 

cdef double bl, br, akmin, akmax, tmp_dbl 

cdef bint maxoutflag 

  

n = self.n 

np1 = n+1 

k = self.k 

  

# If k == -1, we have a full polynomial, so we add 1 to the constant coefficient. 

if k == -1: 

self.a[0] += 1 

# Can't have constant coefficient zero! 

if self.a[0] == 0: 

self.a[0] += 1 

if self.a[0] <= self.amax[0] and easy_is_irreducible(self.a, n): 

for i from 0 <= i < n: 

f_out[i] = self.a[i] 

return 

else: 

if verbose: 

print(" ", end="") 

for i from 0 <= i < np1: 

print(self.a[i], end="") 

print(">", end="") 

for i from 0 <= i < np1: 

print(self.amax[i], end="") 

print("") 

  

# Already reached maximum, so "carry the 1" to find the next value of k. 

k += 1 

while k <= n-1 and self.a[k] >= self.amax[k]: 

k += 1 

self.a[k] += 1 

self.gnk[n*k] = 0 

k -= 1 

# If we are working through an initialization routine, treat that. 

elif haltk and k == haltk-1: 

self.a[k] += 1 

if self.a[k] > self.amax[k]: 

k += 1 

while k <= n-1 and self.a[k] >= self.amax[k]: 

k += 1 

self.a[k] += 1 

self.gnk[n*k] = 0 

k -= 1 

  

# If in the previous step we finished all possible values of 

# the lastmost coefficient, so we must compute bounds on the next coefficient. 

# Recall k == n-1 implies iteration is complete. 

while k < n-1: 

# maxoutflag flags a required abort along the way 

maxoutflag = 0; 

  

# Recall k == -1 means all coefficients are good to go. 

while k >= 0 and (not haltk or k >= haltk): 

if verbose: 

print(k, ":", end="") 

for i from 0 <= i < np1: 

print(self.a[i], end="") 

print("") 

  

if k == n-2: 

# We only know the value of a[n-1], the trace. Need to apply 

# basic bounds from Hunter's theorem and Siegel's theorem, with 

# improvements due to Smyth to get bounds on a[n-2]. 

bl = 1./2*(1-1./n)*(1.*self.a[n-1])**2 \ 

- 1./2*self.gamma*(1./n*self.B)**(1./(n-1)) 

self.a[k] = lrint(ceil(bl)) 

br = 1./2*(1.*self.a[n-1])**2 - 0.88595*n 

self.amax[k] = lrint(floor(br)) 

  

# If maximum is already greater than the minimum, break! 

if self.a[k] > self.amax[k]: 

if verbose: 

print(" ", end="") 

for i from 0 <= i < np1: 

print(self.a[i], end="") 

print(">", end="") 

for i from 0 <= i < np1: 

print(self.amax[i], end="") 

print("") 

maxoutflag = 1 

break 

  

# Knowing a[n-1] and a[n-2] means we can apply bounds from 

# the Lagrange multiplier in degree 2, which can be solved 

# immediately. 

self.b_lower = -1./n*(self.a[n-1] + (n-1.)*sqrt((1.*self.a[n-1])**2 - 2.*(1+1./(n-1))*self.a[n-2])) 

self.b_upper = -1./n*(self.a[n-1] - (n-1.)*sqrt((1.*self.a[n-1])**2 - 2.*(1+1./(n-1))*self.a[n-2])) 

  

# Initialize the second derivative. 

self.beta[k*np1+0] = self.b_lower 

self.beta[k*np1+1] = -self.a[n-1]*1./n 

self.beta[k*np1+2] = self.b_upper 

self.gnk[k*n+0] = 0 

self.gnk[k*n+1] = (n-1)*self.a[n-1] 

self.gnk[k*n+2] = n*(n-1)/2 

  

if verbose: 

print(" ", '%.2f' % self.beta[k * np1 + 1]) 

else: 

# Compute the roots of the derivative. 

self.gnk[(k+1)*n+0] += self.a[k+1] 

newton_in_intervals(&self.gnk[(k+1)*n], self.df, n-(k+1), 

&self.beta[(k+1)*np1], 

eps_global, &self.beta[k*np1+1]) 

if verbose: 

print(" ", end="") 

for i from 0 <= i < n-k-1: 

print('%.2f' % self.beta[k * np1 + 1 + i], end="") 

print("") 

  

for i from 0 <= i < n-k-1: 

if fabs(self.beta[k*np1+i] 

- self.beta[k*np1+(i+1)]) < 10*eps_global: 

# This happens reasonably infrequently, so calling 

# the Python routine should be sufficiently fast... 

f = ZZx([self.gnk[(k+1)*n+i] for i in range(n-(k+1)+1)]) 

# Could just take self.gnk(k+2)*n+i, but this may not be initialized... 

df = ZZx([i*self.gnk[(k+1)*n+i] for i in range(1,n-(k+1)+1)]) 

if gcd(f,df) != 1: 

if verbose: 

print(" gnk has multiple factor!") 

maxoutflag = 1 

break 

if maxoutflag: 

break 

  

# Bounds come from an application of Lagrange multipliers in degrees 2,3. 

if k == n-3: 

self.b_lower = -1./n*(self.a[n-1] + (n-1.)*sqrt((1.*self.a[n-1])**2 - 2.*(1+1./(n-1))*self.a[n-2])) 

self.b_upper = -1./n*(self.a[n-1] - (n-1.)*sqrt((1.*self.a[n-1])**2 - 2.*(1+1./(n-1))*self.a[n-2])) 

elif k == n-4: 

# New bounds from Lagrange multiplier in degree 3. 

bminmax = lagrange_degree_3(n,self.a[n-1],self.a[n-2],self.a[n-3]) 

if bminmax: 

self.b_lower = bminmax[0] 

self.b_upper = bminmax[1] 

elif k == n-5 and phc: 

# New bounds using phc/Lagrange multiplier in degree 4. 

bminmax = __lagrange_bounds_phc(n, 4, [self.a[i] for i from 0 <= i <= n]) 

if len(bminmax) > 0: 

self.b_lower = bminmax[0] 

self.b_upper = bminmax[1] 

else: 

maxoutflag = 1 

break 

  

if verbose: 

print(" [LM bounds:", '%.2f' % self.b_lower, 

'%.2f' % self.b_upper, end="") 

tb = sqrt((1.*self.a[n-1])**2 - 2.*self.a[n-2]) 

print("vs. +/-", '%.2f' % tb, ']') 

  

self.beta[k*np1+0] = self.b_lower 

self.beta[k*np1+n-k] = self.b_upper 

  

# Compute next g_(n-(k+1)), k times the formal integral of g_(n-k). 

gnkm = &self.gnk[k*n] 

gnkm1 = &self.gnk[(k+1)*n] 

gnkm[0] = 0 

for i from 1 <= i < n-k+1: 

gnkm[i] = gnkm[n+i-1]*(k+1)/i 

nk = n-(k+1) 

  

# Compute upper and lower bounds which guarantee one retains 

# a polynomial with all real roots. 

betak = &self.beta[k*np1] 

akmin = -eval_seq_as_poly(gnkm, n-k, betak[nk+1]) \ 

-fabs(eval_seq_as_poly(gnkm1, nk, betak[nk+1]))*eps_global 

for i from 1 <= i < (nk+1)/2+1: 

# Use the fact that f(z) <= f(x)+|f'(x)|eps if |x-z| < eps 

# for sufficiently small eps, f(z) = 0, and f''(z) < 0. 

tmp_dbl = -eval_seq_as_poly(gnkm, n-k, betak[nk+1-2*i]) \ 

-fabs(eval_seq_as_poly(gnkm1, nk, betak[nk+1-2*i]))*eps_global 

if tmp_dbl > akmin: 

akmin = tmp_dbl 

  

  

akmax = -eval_seq_as_poly(gnkm, n-k, betak[nk]) \ 

+fabs(eval_seq_as_poly(gnkm1, n-(k+1), betak[nk]))*eps_global 

for i from 1 <= i < nk/2+1: 

# Similar calculus statement here. 

tmp_dbl = -eval_seq_as_poly(gnkm, n-k, betak[nk-2*i]) \ 

+fabs(eval_seq_as_poly(gnkm1, nk, betak[nk-2*i]))*eps_global 

if tmp_dbl < akmax: 

akmax = tmp_dbl 

  

self.a[k] = lrint(ceil(akmin)) 

self.amax[k] = lrint(floor(akmax)) 

  

if self.a[n-1] == 0 and (n-k)%2 == 1: 

# Can replace alpha by -alpha, so if all 

# "odd" coefficients are zero, may assume next 

# "odd" coefficient is positive. 

kz = n-3 

while kz > k and self.a[kz] == 0: 

kz -= 2 

if kz == k: 

if self.a[k] < 0: 

self.a[k] = 0 

if self.a[k] == 0 and self.a[k+1] == 0: 

self.a[k] += 1 

# Can't have constant coefficient zero! 

if k == 0 and self.a[k] == 0: 

self.a[k] = 1 

  

if self.a[k] > self.amax[k]: 

if verbose: 

print(" ", end="") 

for i from 0 <= i < np1: 

print(self.a[i], end="") 

print(">", end="") 

for i from 0 <= i < np1: 

print(self.amax[i], end="") 

print("") 

maxoutflag = 1 

break 

  

self.k -= 1 

k -= 1 

  

if not maxoutflag and easy_is_irreducible(self.a, n): 

self.k = k 

for i from 0 <= i < n: 

f_out[i] = self.a[i] 

return 

else: 

k += 1 

while k <= n-1 and self.a[k] >= self.amax[k]: 

k += 1 

self.a[k] += 1 

self.gnk[n*k] = 0 

k -= 1 

  

# k == n-1, so iteration is complete; return the zero polynomial (of degree n+1). 

self.k = k 

f_out[n] = 0 

return 

  

def printa(self): 

""" 

Print relevant data for self. 

  

EXAMPLES:: 

  

sage: T = sage.rings.number_field.totallyreal_data.tr_data(3,2^10) 

sage: T.printa() 

k = 1 

a = [0, 0, -1, 1] 

amax = [0, 0, 0, 1] 

beta = [...] 

gnk = [...] 

  

""" 

print("k =", self.k) 

print("a =", [self.a[i] for i in range(self.n + 1)]) 

print("amax =", [self.amax[i] for i in range(self.n + 1)]) 

print("beta = ", [self.beta[i] for i in range(self.n * (self.n + 1))]) 

print("gnk = ", [self.gnk[i] for i in range(self.n * (self.n + 1))])