Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

""" 

Capped absolute template for complete discrete valuation rings 

  

In order to use this template you need to write a linkage file and gluing file. 

For an example see mpz_linkage.pxi (linkage file) and padic_capped_absolute_element.pyx (gluing file). 

  

The linkage file implements a common API that is then used in the class CAElement defined here. 

See the documentation of mpz_linkage.pxi for the functions needed. 

  

The gluing file does the following: 

  

- ctypedef's celement to be the appropriate type (e.g. mpz_t) 

- includes the linkage file 

- includes this template 

- defines a concrete class inheriting from CAElement, and implements 

any desired extra methods 

  

AUTHORS: 

  

- David Roe (2012-3-1) -- initial version 

""" 

  

#***************************************************************************** 

# Copyright (C) 2012 David Roe <roed.math@gmail.com> 

# William Stein <wstein@gmail.com> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# as published by the Free Software Foundation; either version 2 of 

# the License, or (at your option) any later version. 

# 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

  

# This file implements common functionality among template elements 

include "padic_template_element.pxi" 

  

from sage.structure.element cimport Element 

from sage.rings.padics.common_conversion cimport comb_prec, _process_args_and_kwds 

from sage.rings.integer_ring import ZZ 

from sage.rings.rational_field import QQ 

from sage.categories.sets_cat import Sets 

from sage.categories.sets_with_partial_maps import SetsWithPartialMaps 

from sage.categories.homset import Hom 

  

cdef class CAElement(pAdicTemplateElement): 

cdef int _set(self, x, long val, long xprec, absprec, relprec) except -1: 

""" 

Sets the value of this element from given defining data. 

  

This function is intended for use in conversion, and should 

not be called on an element created with :meth:`_new_c`. 

  

INPUT: 

  

- ``x`` -- data defining a `p`-adic element: int, long, 

Integer, Rational, other `p`-adic element... 

  

- ``val`` -- the valuation of the resulting element 

  

- ``xprec -- an inherent precision of ``x`` 

  

- ``absprec`` -- an absolute precision cap for this element 

  

- ``relprec`` -- a relative precision cap for this element 

  

TESTS:: 

  

sage: R = ZpCA(5) 

sage: a = R(17,5); a #indirect doctest 

2 + 3*5 + O(5^5) 

sage: a = R(75, absprec = 5, relprec = 4); a #indirect doctest 

3*5^2 + O(5^5) 

sage: a = R(25/9, absprec = 5); a #indirect doctest 

4*5^2 + 2*5^3 + O(5^5) 

sage: a = R(25/9, absprec = 5, relprec = 4); a #indirect doctest 

4*5^2 + 2*5^3 + O(5^5) 

""" 

cconstruct(self.value, self.prime_pow) 

cdef long rprec = comb_prec(relprec, self.prime_pow.prec_cap) 

cdef long aprec = comb_prec(absprec, min(self.prime_pow.prec_cap, xprec)) 

if aprec <= val: 

csetzero(self.value, self.prime_pow) 

self.absprec = aprec 

else: 

self.absprec = min(aprec, val + rprec) 

if isinstance(x,CAElement) and x.parent() is self.parent(): 

cshift(self.value, (<CAElement>x).value, 0, self.absprec, self.prime_pow, True) 

else: 

cconv(self.value, x, self.absprec, 0, self.prime_pow) 

  

cdef CAElement _new_c(self): 

""" 

Creates a new element with the same basic info. 

  

TESTS:: 

  

sage: R = ZpCA(5); R(6,5) * R(7,8) #indirect doctest 

2 + 3*5 + 5^2 + O(5^5) 

""" 

cdef type t = type(self) 

cdef CAElement ans = t.__new__(t) 

ans._parent = self._parent 

ans.prime_pow = self.prime_pow 

cconstruct(ans.value, ans.prime_pow) 

return ans 

  

cdef pAdicTemplateElement _new_with_value(self, celement value, long absprec): 

""" 

Creates a new element with a given value and absolute precision. 

  

Used by code that doesn't know the precision type. 

""" 

cdef CAElement ans = self._new_c() 

ans.absprec = absprec 

self.check_preccap() 

creduce(ans.value, value, absprec, ans.prime_pow) 

return ans 

  

cdef int _get_unit(self, celement value) except -1: 

""" 

Sets ``value`` to the unit of this p-adic element. 

""" 

cremove(value, self.value, 0, self.prime_pow) 

  

cdef int check_preccap(self) except -1: 

""" 

Checks that this element doesn't have precision higher than 

allowed by the precision cap. 

  

TESTS:: 

  

sage: ZpCA(5)(1).lift_to_precision(30) # indirect doctest 

Traceback (most recent call last): 

... 

PrecisionError: Precision higher than allowed by the precision cap. 

""" 

if self.absprec > self.prime_pow.prec_cap: 

raise PrecisionError("Precision higher than allowed by the precision cap.") 

  

def __copy__(self): 

""" 

Return a copy of this element. 

  

EXAMPLES:: 

  

sage: a = ZpCA(5,6)(17); b = copy(a) 

sage: a == b 

True 

sage: a is b 

False 

""" 

cdef CAElement ans = self._new_c() 

ans.absprec = self.absprec 

ccopy(ans.value, self.value, ans.prime_pow) 

return ans 

  

def __dealloc__(self): 

""" 

Deallocate the underlying data structure. 

  

TESTS:: 

  

sage: R = ZpCA(5) 

sage: a = R(17) 

sage: del(a) 

""" 

cdestruct(self.value, self.prime_pow) 

  

def __reduce__(self): 

""" 

Return a tuple of a function and data that can be used to unpickle this 

element. 

  

TESTS:: 

  

sage: a = ZpCA(5)(-3) 

sage: type(a) 

<type 'sage.rings.padics.padic_capped_absolute_element.pAdicCappedAbsoluteElement'> 

sage: loads(dumps(a)) == a 

True 

""" 

return unpickle_cae_v2, (self.__class__, self.parent(), cpickle(self.value, self.prime_pow), self.absprec) 

  

cpdef _neg_(self): 

""" 

Return the additive inverse of this element. 

  

EXAMPLES:: 

  

sage: R = Zp(5, prec=10, type='capped-abs') 

sage: a = R(1) 

sage: -a #indirect doctest 

4 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + 4*5^8 + 4*5^9 + O(5^10) 

""" 

cdef CAElement ans = self._new_c() 

ans.absprec = self.absprec 

cneg(ans.value, self.value, ans.absprec, ans.prime_pow) 

creduce_small(ans.value, ans.value, ans.absprec, ans.prime_pow) 

return ans 

  

cpdef _add_(self, _right): 

""" 

Return the sum of this element and ``_right``. 

  

EXAMPLES:: 

  

sage: R = ZpCA(13, 4) 

sage: R(2) + R(3) #indirect doctest 

5 + O(13^4) 

sage: R(12) + R(1) 

13 + O(13^4) 

  

Check that :trac:`20245` is resolved:: 

  

sage: R(1,1) + R(169,3) 

1 + O(13) 

""" 

cdef CAElement right = _right 

cdef CAElement ans = self._new_c() 

ans.absprec = min(self.absprec, right.absprec) 

cadd(ans.value, self.value, right.value, ans.absprec, ans.prime_pow) 

creduce(ans.value, ans.value, ans.absprec, ans.prime_pow) 

return ans 

  

cpdef _sub_(self, _right): 

""" 

Return the difference of this element and ``_right``. 

  

EXAMPLES:: 

  

sage: R = ZpCA(13, 4) 

sage: R(10) - R(10) #indirect doctest 

O(13^4) 

sage: R(10) - R(11) 

12 + 12*13 + 12*13^2 + 12*13^3 + O(13^4) 

""" 

cdef CAElement right = _right 

cdef CAElement ans = self._new_c() 

ans.absprec = min(self.absprec, right.absprec) 

csub(ans.value, self.value, right.value, ans.absprec, ans.prime_pow) 

creduce(ans.value, ans.value, ans.absprec, ans.prime_pow) 

return ans 

  

def __invert__(self): 

""" 

Return the multiplicative inverse of this element. 

  

.. NOTE:: 

  

The result always lives in the fraction field, even if this element 

is a unit. 

  

EXAMPLES:: 

  

sage: R = ZpCA(17) 

sage: ~R(-1) == R(-1) 

True 

sage: ~R(5) * 5 

1 + O(17^20) 

sage: ~R(5) 

7 + 3*17 + 10*17^2 + 13*17^3 + 6*17^4 + 3*17^5 + 10*17^6 + 13*17^7 + 6*17^8 + 3*17^9 + 10*17^10 + 13*17^11 + 6*17^12 + 3*17^13 + 10*17^14 + 13*17^15 + 6*17^16 + 3*17^17 + 10*17^18 + 13*17^19 + O(17^20) 

sage: ~R(-1) == R(-1) #indirect doctest 

True 

""" 

return ~self.parent().fraction_field()(self) 

  

cpdef _mul_(self, _right): 

""" 

Return the product of this element and ``_right``. 

  

EXAMPLES:: 

  

sage: R = ZpCA(5) 

sage: a = R(20,5); b = R(75, 4); a * b #indirect doctest 

2*5^3 + 2*5^4 + O(5^5) 

""" 

cdef CAElement right = _right 

cdef CAElement ans = self._new_c() 

cdef long vals, valr 

if self.absprec == self.prime_pow.prec_cap and right.absprec == self.prime_pow.prec_cap: 

ans.absprec = self.absprec 

else: 

vals = self.valuation_c() 

valr = right.valuation_c() 

ans.absprec = min(vals + valr + min(self.absprec - vals, right.absprec - valr), self.prime_pow.prec_cap) 

cmul(ans.value, self.value, right.value, ans.absprec, ans.prime_pow) 

creduce(ans.value, ans.value, ans.absprec, ans.prime_pow) 

return ans 

  

cpdef _div_(self, right): 

""" 

Return the quotient of this element and ``right``. 

  

.. NOTE:: 

  

The result always lives in the fraction field, even if ``right`` is 

a unit. 

  

EXAMPLES:: 

  

sage: R = ZpCA(13, 4) 

sage: R(2) / R(3) # indirect doctest 

5 + 4*13 + 4*13^2 + 4*13^3 + O(13^4) 

sage: a = R(169 * 2) / R(13); a 

2*13 + O(13^3) 

sage: R(13) / R(169 * 2) 

7*13^-1 + 6 + O(13) 

sage: ~a 

7*13^-1 + 6 + O(13) 

sage: 1 / a 

7*13^-1 + 6 + O(13) 

""" 

K = self.parent().fraction_field() 

return K(self) / K(right) 

  

def __pow__(CAElement self, _right, dummy): 

""" 

Exponentiation. 

  

When ``right`` is divisible by `p` then one can get more 

precision than expected. See the documentation in 

:mod:`sage.rings.padics.CR_template.pxi` for more details. 

  

For `p`-adic exponents, `a^b` is defined as `\exp(b \log(a))`. 

Since the `p`-adic logarithm is defined for `a` a unit, the 

same is true of exponentiation. 

  

INPUT: 

  

- ``_right`` -- currently integers and `p`-adic exponents are 

supported. 

  

- ``dummy`` -- not used (Python's ``__pow__`` signature 

includes it) 

  

EXAMPLES:: 

  

sage: R = ZpCA(11, 5) 

sage: R(1/2)^5 

10 + 7*11 + 11^2 + 5*11^3 + 4*11^4 + O(11^5) 

sage: R(1/32) 

10 + 7*11 + 11^2 + 5*11^3 + 4*11^4 + O(11^5) 

sage: R(1/2)^5 == R(1/32) 

True 

sage: R(3)^1000 

1 + 4*11^2 + 3*11^3 + 7*11^4 + O(11^5) 

  

`p`-adic exponents are supported:: 

  

sage: R = ZpCA(11, 5, print_mode='terse') 

sage: a = R(3/14, 3); b = R(8/9); c = R(11,2) 

sage: a 

1046 + O(11^3) 

sage: b 

35790 + O(11^5) 

sage: a^b 

177 + O(11^3) 

sage: a^35790 

177 + O(11^3) 

sage: a^c 

848 + O(11^3) 

sage: (a.log()*c).exp() 

848 + O(11^3) 

  

sage: R = ZpCA(19, 5, print_mode='series') 

sage: a = R(8/5,4); a 

13 + 7*19 + 11*19^2 + 7*19^3 + O(19^4) 

sage: a^(R(19/7)) 

1 + 14*19^2 + 11*19^3 + 13*19^4 + O(19^5) 

sage: (a // R.teichmuller(13))^(R(19/7)) 

1 + 14*19^2 + 11*19^3 + 13*19^4 + O(19^5) 

sage: (a.log() * 19/7).exp() 

1 + 14*19^2 + 11*19^3 + 13*19^4 + O(19^5) 

""" 

cdef long relprec, val, rval 

cdef mpz_t tmp 

cdef Integer right 

cdef CAElement pright, ans 

cdef bint exact_exp 

if isinstance(_right, Integer) or isinstance(_right, (int, long)) \ 

or isinstance(_right, Rational): 

if _right < 0: 

base = ~self 

return base.__pow__(-_right, dummy) 

exact_exp = True 

elif self.parent() is _right.parent(): 

## For extension elements, we need to switch to the 

## fraction field sometimes in highly ramified extensions. 

exact_exp = False 

pright = _right 

else: 

self, _right = canonical_coercion(self, _right) 

return self.__pow__(_right, dummy) 

ans = self._new_c() 

if exact_exp and _right == 0: 

# return 1 to maximum precision 

ans.absprec = self.prime_pow.ram_prec_cap 

csetone(ans.value, ans.prime_pow) 

elif ciszero(self.value, self.prime_pow): 

# We may assume from above that right > 0 if exact. 

# So we return a zero of precision right * self.ordp. 

if isinstance(_right, (int, long)): 

_right = Integer(_right) 

if isinstance(_right, Integer): 

right = <Integer>_right 

if self.absprec == 0: 

ans.absprec = 0 

else: 

mpz_init(tmp) 

mpz_mul_si(tmp, right.value, self.absprec) 

if mpz_cmp_si(tmp, self.prime_pow.ram_prec_cap) >= 0: 

ans.absprec = self.prime_pow.ram_prec_cap 

else: 

ans.absprec = mpz_get_si(tmp) 

mpz_clear(tmp) 

csetzero(ans.value, ans.prime_pow) 

else: 

if not exact_exp and self.absprec > 0: 

raise ValueError("in order to raise to a p-adic exponent, base must be a unit") 

raise PrecisionError("Need more precision") 

else: 

val = self.valuation_c() 

if exact_exp: 

# exact_pow_helper is defined in padic_template_element.pxi 

right = exact_pow_helper(&relprec, self.absprec - val, _right, self.prime_pow) 

mpz_init(tmp) 

mpz_mul_si(tmp, right.value, val) 

if mpz_cmp_si(tmp, self.prime_pow.ram_prec_cap) >= 0: 

ans.absprec = self.prime_pow.ram_prec_cap 

csetzero(ans.value, ans.prime_pow) 

else: 

ans.absprec = min(mpz_get_si(tmp) + relprec, self.prime_pow.ram_prec_cap) 

cpow(ans.value, self.value, right.value, ans.absprec, ans.prime_pow) 

mpz_clear(tmp) 

else: 

rval = pright.valuation_c() 

if rval != 0: 

pright = pright.unit_part() 

# We may assume that val = 0 since the following will quickly raise an error otherwise. 

# padic_pow_helper is defined in padic_template_element.pxi 

ans.absprec = padic_pow_helper(ans.value, self.value, val, self.absprec, 

pright.value, rval, pright.absprec, self.prime_pow) 

return ans 

  

cdef pAdicTemplateElement _lshift_c(self, long shift): 

""" 

Multiplies by `\pi^{\mbox{shift}}`. 

  

Negative shifts may truncate the result. 

  

TESTS:: 

  

sage: R = ZpCA(5); a = R(17); a << 2 

2*5^2 + 3*5^3 + O(5^20) 

sage: a << -1 

3 + O(5^19) 

sage: a << 0 == a 

True 

sage: a << 400 

O(5^20) 

sage: a << -400 

O(5^0) 

""" 

if shift < 0: 

return self._rshift_c(-shift) 

elif shift == 0: 

return self 

cdef CAElement ans = self._new_c() 

if shift >= self.prime_pow.prec_cap: 

csetzero(ans.value, ans.prime_pow) 

ans.absprec = self.prime_pow.prec_cap 

else: 

ans.absprec = min(self.absprec + shift, self.prime_pow.prec_cap) 

cshift(ans.value, self.value, shift, ans.absprec, ans.prime_pow, False) 

return ans 

  

cdef pAdicTemplateElement _rshift_c(self, long shift): 

""" 

Divides by ``\pi^{\mbox{shift}}``. 

  

Positive shifts may truncate the result. 

  

TESTS:: 

  

sage: R = ZpCA(5); a = R(77); a >> 1 

3*5 + O(5^19) 

sage: a >> -1 

2*5 + 3*5^3 + O(5^20) 

sage: a >> 0 == a 

True 

sage: a >> 400 

O(5^0) 

sage: a >> -400 

O(5^20) 

""" 

if shift < 0: 

return self._lshift_c(-shift) 

elif shift == 0: 

return self 

cdef CAElement ans = self._new_c() 

if shift >= self.absprec: 

csetzero(ans.value, ans.prime_pow) 

ans.absprec = 0 

else: 

ans.absprec = self.absprec - shift 

cshift(ans.value, self.value, -shift, ans.absprec, ans.prime_pow, False) 

return ans 

  

def add_bigoh(self, absprec): 

""" 

Returns a new element with absolute precision decreased to 

``absprec``. The precision never increases. 

  

INPUT: 

  

- ``absprec`` -- an integer or infinity 

  

OUTPUT: 

  

``self`` with precision set to the minimum of ``self's`` precision and ``prec`` 

  

EXAMPLES:: 

  

sage: R = Zp(7,4,'capped-abs','series'); a = R(8); a.add_bigoh(1) 

1 + O(7) 

  

sage: k = ZpCA(3,5) 

sage: a = k(41); a 

2 + 3 + 3^2 + 3^3 + O(3^5) 

sage: a.add_bigoh(7) 

2 + 3 + 3^2 + 3^3 + O(3^5) 

sage: a.add_bigoh(3) 

2 + 3 + 3^2 + O(3^3) 

  

TESTS: 

  

Verify that :trac:`13591` has been resolved:: 

  

sage: k(3).add_bigoh(-1) 

O(3^-1) 

  

""" 

cdef long aprec, newprec 

if absprec is infinity: 

return self 

if isinstance(absprec, int): 

aprec = absprec 

else: 

if not isinstance(absprec, Integer): 

absprec = Integer(absprec) 

if mpz_fits_slong_p((<Integer>absprec).value) == 0: 

if mpz_sgn((<Integer>absprec).value) == -1: 

raise ValueError("absprec must fit into a signed long") 

else: 

aprec = self.prime_pow.ram_prec_cap 

else: 

aprec = mpz_get_si((<Integer>absprec).value) 

if aprec >= self.absprec: 

return self 

if aprec < 0: 

return self.parent().fraction_field()(self).add_bigoh(absprec) 

cdef CAElement ans = self._new_c() 

ans.absprec = aprec 

creduce(ans.value, self.value, ans.absprec, ans.prime_pow) 

return ans 

  

cpdef bint _is_exact_zero(self) except -1: 

""" 

Tests whether this element is an exact zero, which is always 

False for capped absolute elements. 

  

This function exists for compatibility with capped relative 

elements. 

  

EXAMPLES:: 

  

sage: ZpCA(5)(0)._is_exact_zero() 

False 

""" 

return False 

  

cpdef bint _is_inexact_zero(self) except -1: 

""" 

Determines whether this element is indistinguishable from 

zero. 

  

EXAMPLES:: 

  

sage: R = ZpCA(7, 5) 

sage: R(7^5)._is_inexact_zero() 

True 

sage: R(0,4)._is_inexact_zero() 

True 

sage: R(0)._is_inexact_zero() 

True 

""" 

return ciszero(self.value, self.prime_pow) 

  

def is_zero(self, absprec = None): 

r""" 

Determines whether this element is zero modulo 

`\pi^{\mbox{absprec}}`. 

  

If ``absprec is None``, returns ``True`` if this element is 

indistinguishable from zero. 

  

INPUT: 

  

- ``absprec`` -- an integer, infinity, or ``None`` 

  

EXAMPLES:: 

  

sage: R = ZpCA(17, 6) 

sage: R(0).is_zero() 

True 

sage: R(17^6).is_zero() 

True 

sage: R(17^2).is_zero(absprec=2) 

True 

sage: R(17^6).is_zero(absprec=10) 

Traceback (most recent call last): 

... 

PrecisionError: Not enough precision to determine if element is zero 

""" 

if absprec is infinity: 

raise PrecisionError("Not enough precision to determine if element is zero") 

cdef bint iszero = ciszero(self.value, self.prime_pow) 

if absprec is None: 

return iszero 

cdef long val = self.valuation_c() 

if isinstance(absprec, int): 

if iszero and absprec > self.absprec: 

raise PrecisionError("Not enough precision to determine if element is zero") 

return val >= absprec 

if not isinstance(absprec, Integer): 

absprec = Integer(absprec) 

if iszero: 

if mpz_cmp_si((<Integer>absprec).value, val) > 0: 

raise PrecisionError("Not enough precision to determine if element is zero") 

else: 

return True 

return mpz_cmp_si((<Integer>absprec).value, val) <= 0 

  

def __nonzero__(self): 

""" 

Whether this element should be considered true in a boolean context. 

  

For most applications, explicitly specifying the power of p 

modulo which the element is supposed to be nonzero is 

preferable. 

  

EXAMPLES:: 

  

sage: R = ZpCA(5); a = R(0); b = R(0,5); c = R(75) 

sage: bool(a), bool(b), bool(c) 

(False, False, True) 

""" 

return not ciszero(self.value, self.prime_pow) 

  

def is_equal_to(self, _right, absprec=None): 

r""" 

Determines whether the inputs are equal modulo 

`\pi^{\mbox{absprec}}`. 

  

INPUT: 

  

- ``right`` -- a `p`-adic element with the same parent 

  

- ``absprec`` -- an integer, infinity, or ``None`` 

  

EXAMPLES:: 

  

sage: R = ZpCA(2, 6) 

sage: R(13).is_equal_to(R(13)) 

True 

sage: R(13).is_equal_to(R(13+2^10)) 

True 

sage: R(13).is_equal_to(R(17), 2) 

True 

sage: R(13).is_equal_to(R(17), 5) 

False 

sage: R(13).is_equal_to(R(13+2^10),absprec=10) 

Traceback (most recent call last): 

... 

PrecisionError: Elements not known to enough precision 

""" 

if absprec is infinity: 

raise PrecisionError("Elements not known to enough precision") 

cdef CAElement right 

cdef long aprec, rprec, sval, rval 

if self.parent() is _right.parent(): 

right = _right 

else: 

right = self.parent()(_right) 

if absprec is None: 

aprec = min(self.absprec, right.absprec) 

else: 

if not isinstance(absprec, Integer): 

absprec = Integer(absprec) 

if mpz_fits_slong_p((<Integer>absprec).value) == 0: 

if mpz_sgn((<Integer>absprec).value) < 0: 

return True 

else: 

raise PrecisionError("Elements not known to enough precision") 

aprec = mpz_get_si((<Integer>absprec).value) 

if aprec > self.absprec or aprec > right.absprec: 

raise PrecisionError("Elements not known to enough precision") 

return ccmp(self.value, right.value, aprec, aprec < self.absprec, aprec < right.absprec, self.prime_pow) == 0 

  

cdef int _cmp_units(self, pAdicGenericElement _right) except -2: 

""" 

This function is used in comparing `p`-adic elements. 

  

EXAMPLES:: 

  

sage: R = ZpCA(37) 

sage: R(17) == R(17+37^6) # indirect doctest 

False 

""" 

cdef CAElement right = _right 

cdef long aprec = min(self.absprec, right.absprec) 

if aprec == 0: 

return 0 

return ccmp(self.value, right.value, aprec, aprec < self.absprec, aprec < right.absprec, self.prime_pow) 

  

cdef pAdicTemplateElement lift_to_precision_c(self, long absprec): 

""" 

Returns an arbitrary lift of this element to higher precision. 

  

If ``absprec`` is less than the absolute precision of this 

element this function will return the input element. 

  

INPUT: 

  

- ``absprec`` -- an integer, at most the precision cap of the 

parent. 

  

EXAMPLES:: 

  

sage: R = ZpCA(19) 

sage: a = R(19, 7); a 

19 + O(19^7) 

sage: a.lift_to_precision(12) # indirect doctest 

19 + O(19^12) 

sage: a.lift_to_precision(4) is a 

True 

""" 

cdef CAElement ans 

if absprec == maxordp: 

absprec = self.prime_pow.prec_cap 

if absprec <= self.absprec: 

return self 

ans = self._new_c() 

ccopy(ans.value, self.value, ans.prime_pow) 

ans.absprec = absprec 

return ans 

  

def _cache_key(self): 

r""" 

Return a hashable key which identifies this element for caching. 

  

TESTS:: 

  

sage: R.<a> = ZqCA(9) 

sage: (9*a)._cache_key() 

(..., ((), (), (0, 1)), 20) 

  

.. SEEALSO:: 

  

:meth:`sage.misc.cachefunc._cache_key` 

""" 

tuple_recursive = lambda l: tuple(tuple_recursive(x) for x in l) if hasattr(l, '__iter__') else l 

return (self.parent(), tuple_recursive(trim_zeros(list(self.expansion()))), self.precision_absolute()) 

  

def _teichmuller_set_unsafe(self): 

""" 

Sets this element to the Teichmuller representative with the 

same residue. 

  

.. WARNING:: 

  

This function modifies the element, which is not safe. 

Elements are supposed to be immutable. 

  

EXAMPLES:: 

  

sage: R = ZpCA(17,5); a = R(11) 

sage: a 

11 + O(17^5) 

sage: a._teichmuller_set_unsafe(); a 

11 + 14*17 + 2*17^2 + 12*17^3 + 15*17^4 + O(17^5) 

sage: E = a.expansion(lift_mode='teichmuller'); E 

17-adic expansion of 11 + 14*17 + 2*17^2 + 12*17^3 + 15*17^4 + O(17^5) (teichmuller) 

sage: list(E) 

[11 + 14*17 + 2*17^2 + 12*17^3 + 15*17^4 + O(17^5), O(17^5), O(17^5), O(17^5), O(17^5)] 

  

Note that if you set an element which is congruent to 0 you 

get 0 to maximum precision:: 

  

sage: b = R(17*5); b 

5*17 + O(17^5) 

sage: b._teichmuller_set_unsafe(); b 

O(17^5) 

""" 

if self.valuation_c() > 0: 

csetzero(self.value, self.prime_pow) 

self.absprec = self.prime_pow.prec_cap 

elif self.absprec == 0: 

raise ValueError("not enough precision") 

else: 

cteichmuller(self.value, self.value, self.absprec, self.prime_pow) 

  

def polynomial(self, var='x'): 

""" 

Returns a polynomial over the base ring that yields this element 

when evaluated at the generator of the parent. 

  

INPUT: 

  

- ``var`` -- string, the variable name for the polynomial 

  

EXAMPLES:: 

  

sage: R.<a> = ZqCA(5^3) 

sage: a.polynomial() 

(1 + O(5^20))*x + (O(5^20)) 

sage: a.polynomial(var='y') 

(1 + O(5^20))*y + (O(5^20)) 

sage: (5*a^2 + R(25, 4)).polynomial() 

(5 + O(5^4))*x^2 + (O(5^4))*x + (5^2 + O(5^4)) 

""" 

R = self.base_ring() 

S = R[var] 

prec = self.precision_absolute() 

e = self.parent().e() 

L = ccoefficients(self.value, 0, self.absprec, self.prime_pow) 

if e == 1: 

L = [R(c, prec) for c in L] 

else: 

L = [R(c, (prec - i - 1) // e + 1) for i, c in enumerate(L)] 

return S(L) 

  

def precision_absolute(self): 

""" 

The absolute precision of this element. 

  

This is the power of the maximal ideal modulo which this 

element is defined. 

  

EXAMPLES:: 

  

sage: R = Zp(7,4,'capped-abs'); a = R(7); a.precision_absolute() 

4 

""" 

cdef Integer ans = Integer.__new__(Integer) 

mpz_set_si(ans.value, self.absprec) 

return ans 

  

def precision_relative(self): 

""" 

The relative precision of this element. 

  

This is the power of the maximal ideal modulo which the unit 

part of this element is defined. 

  

EXAMPLES:: 

  

sage: R = Zp(7,4,'capped-abs'); a = R(7); a.precision_relative() 

3 

""" 

cdef Integer ans = Integer.__new__(Integer) 

mpz_set_si(ans.value, self.absprec - self.valuation_c()) 

return ans 

  

cpdef pAdicTemplateElement unit_part(CAElement self): 

r""" 

Returns the unit part of this element. 

  

EXAMPLES:: 

  

sage: R = Zp(17,4,'capped-abs', 'val-unit') 

sage: a = R(18*17) 

sage: a.unit_part() 

18 + O(17^3) 

sage: type(a) 

<type 'sage.rings.padics.padic_capped_absolute_element.pAdicCappedAbsoluteElement'> 

sage: R(0).unit_part() 

O(17^0) 

""" 

cdef CAElement ans = (<CAElement>self)._new_c() 

cdef long val = cremove(ans.value, (<CAElement>self).value, (<CAElement>self).absprec, (<CAElement>self).prime_pow) 

ans.absprec = (<CAElement>self).absprec - val 

return ans 

  

cdef long valuation_c(self): 

""" 

Returns the valuation of this element. 

  

TESTS:: 

  

sage: R = ZpCA(5) 

sage: R(5^5*1827).valuation() 

5 

sage: R(1).valuation() 

0 

sage: R(2).valuation() 

0 

sage: R(5).valuation() 

1 

sage: R(10).valuation() 

1 

sage: R(25).valuation() 

2 

sage: R(50).valuation() 

2 

sage: R(0).valuation() 

20 

sage: R(0,6).valuation() 

6 

""" 

return cvaluation(self.value, self.absprec, self.prime_pow) 

  

cpdef val_unit(self): 

""" 

Returns a 2-tuple, the first element set to the valuation of this 

element, and the second to the unit part of this element. 

  

For a zero element, the unit part is ``O(p^0)``. 

  

EXAMPLES:: 

  

sage: R = ZpCA(5) 

sage: a = R(75, 6); b = a - a 

sage: a.val_unit() 

(2, 3 + O(5^4)) 

sage: b.val_unit() 

(6, O(5^0)) 

""" 

cdef CAElement unit = self._new_c() 

cdef Integer valuation = Integer.__new__(Integer) 

cdef long val = cremove(unit.value, self.value, self.absprec, self.prime_pow) 

mpz_set_si(valuation.value, val) 

unit.absprec = self.absprec - val 

return valuation, unit 

  

def __hash__(self): 

""" 

Hashing. 

  

.. WARNING:: 

  

Hashing of `p`-adic elements will likely be deprecated soon. See :trac:`11895`. 

  

EXAMPLES:: 

  

sage: R = ZpCA(11, 5) 

sage: hash(R(3)) == hash(3) 

True 

""" 

return chash(self.value, 0, self.absprec, self.prime_pow) 

  

cdef class pAdicCoercion_ZZ_CA(RingHomomorphism): 

""" 

The canonical inclusion from the ring of integers to a capped absolute 

ring. 

  

EXAMPLES:: 

  

sage: f = ZpCA(5).coerce_map_from(ZZ); f 

Ring morphism: 

From: Integer Ring 

To: 5-adic Ring with capped absolute precision 20 

  

TESTS:: 

  

sage: TestSuite(f).run() 

  

""" 

def __init__(self, R): 

""" 

Initialization. 

  

EXAMPLES:: 

  

sage: f = ZpCA(5).coerce_map_from(ZZ); type(f) 

<type 'sage.rings.padics.padic_capped_absolute_element.pAdicCoercion_ZZ_CA'> 

""" 

RingHomomorphism.__init__(self, ZZ.Hom(R)) 

self._zero = R.element_class(R, 0) 

self._section = pAdicConvert_CA_ZZ(R) 

  

cdef dict _extra_slots(self): 

""" 

Helper for copying and pickling. 

  

EXAMPLES:: 

  

sage: f = ZpCA(5).coerce_map_from(ZZ) 

sage: g = copy(f) # indirect doctest 

sage: g == f 

True 

sage: g(6) 

1 + 5 + O(5^20) 

sage: f(6) == g(6) 

True 

""" 

_slots = RingHomomorphism._extra_slots(self) 

_slots['_zero'] = self._zero 

_slots['_section'] = self.section() # use method since it copies coercion-internal sections. 

return _slots 

  

cdef _update_slots(self, dict _slots): 

""" 

Helper for copying and pickling. 

  

EXAMPLES:: 

  

sage: f = ZpCA(5).coerce_map_from(ZZ) 

sage: g = copy(f) # indirect doctest 

sage: g == f 

True 

sage: g(6) 

1 + 5 + O(5^20) 

sage: f(6) == g(6) 

True 

""" 

self._zero = _slots['_zero'] 

self._section = _slots['_section'] 

RingHomomorphism._update_slots(self, _slots) 

  

cpdef Element _call_(self, x): 

""" 

Evaluation. 

  

EXAMPLES:: 

  

sage: f = ZpCA(5).coerce_map_from(ZZ) 

sage: f(0).parent() 

5-adic Ring with capped absolute precision 20 

sage: f(5) 

5 + O(5^20) 

""" 

if mpz_sgn((<Integer>x).value) == 0: 

return self._zero 

cdef CAElement ans = self._zero._new_c() 

ans.absprec = ans.prime_pow.prec_cap 

cconv_mpz_t(ans.value, (<Integer>x).value, ans.absprec, True, ans.prime_pow) 

return ans 

  

cpdef Element _call_with_args(self, x, args=(), kwds={}): 

""" 

This function is used when some precision cap is passed in 

(relative or absolute or both). 

  

See the documentation for 

:meth:`pAdicCappedAbsoluteElement.__init__` for more details. 

  

EXAMPLES:: 

  

sage: R = ZpCA(5,4) 

sage: type(R(10,2)) 

<type 'sage.rings.padics.padic_capped_absolute_element.pAdicCappedAbsoluteElement'> 

sage: R(10,2) 

2*5 + O(5^2) 

sage: R(10,3,1) 

2*5 + O(5^2) 

sage: R(10,absprec=2) 

2*5 + O(5^2) 

sage: R(10,relprec=2) 

2*5 + O(5^3) 

sage: R(10,absprec=1) 

O(5) 

sage: R(10,empty=True) 

O(5^0) 

""" 

cdef long val, aprec, rprec 

cdef CAElement ans 

_process_args_and_kwds(&aprec, &rprec, args, kwds, True, self._zero.prime_pow) 

if mpz_sgn((<Integer>x).value) == 0: 

if aprec >= self._zero.prime_pow.prec_cap: 

return self._zero 

ans = self._zero._new_c() 

csetzero(ans.value, ans.prime_pow) 

ans.absprec = aprec 

else: 

val = get_ordp(x, self._zero.prime_pow) 

ans = self._zero._new_c() 

if aprec <= val: 

csetzero(ans.value, ans.prime_pow) 

ans.absprec = aprec 

else: 

ans.absprec = min(aprec, val + rprec) 

cconv_mpz_t(ans.value, (<Integer>x).value, ans.absprec, True, self._zero.prime_pow) 

return ans 

  

def section(self): 

""" 

Returns a map back to the ring of integers that approximates an element 

by an integer. 

  

EXAMPLES:: 

  

sage: f = ZpCA(5).coerce_map_from(ZZ).section() 

sage: f(ZpCA(5)(-1)) - 5^20 

-1 

""" 

from sage.misc.constant_function import ConstantFunction 

if not isinstance(self._section.domain, ConstantFunction): 

import copy 

self._section = copy.copy(self._section) 

return self._section 

  

cdef class pAdicConvert_CA_ZZ(RingMap): 

""" 

The map from a capped absolute ring back to the ring of integers that 

returns the smallest non-negative integer approximation to its input 

which is accurate up to the precision. 

  

Raises a ``ValueError`` if the input is not in the closure of the image of 

the ring of integers. 

  

EXAMPLES:: 

  

sage: f = ZpCA(5).coerce_map_from(ZZ).section(); f 

Set-theoretic ring morphism: 

From: 5-adic Ring with capped absolute precision 20 

To: Integer Ring 

""" 

def __init__(self, R): 

""" 

Initialization. 

  

EXAMPLES:: 

  

sage: f = ZpCA(5).coerce_map_from(ZZ).section(); type(f) 

<type 'sage.rings.padics.padic_capped_absolute_element.pAdicConvert_CA_ZZ'> 

sage: f.category() 

Category of homsets of sets 

""" 

if R.degree() > 1 or R.characteristic() != 0 or R.residue_characteristic() == 0: 

RingMap.__init__(self, Hom(R, ZZ, SetsWithPartialMaps())) 

else: 

RingMap.__init__(self, Hom(R, ZZ, Sets())) 

  

cpdef Element _call_(self, _x): 

""" 

Evaluation. 

  

EXAMPLES:: 

  

sage: f = ZpCA(5).coerce_map_from(ZZ).section() 

sage: f(ZpCA(5)(-1)) - 5^20 

-1 

sage: f(ZpCA(5)(0)) 

0 

""" 

cdef Integer ans = Integer.__new__(Integer) 

cdef CAElement x = _x 

cconv_mpz_t_out(ans.value, x.value, 0, x.absprec, x.prime_pow) 

return ans 

  

cdef class pAdicConvert_QQ_CA(Morphism): 

""" 

The inclusion map from the rationals to a capped absolute ring that is 

defined on all elements with non-negative `p`-adic valuation. 

  

EXAMPLES:: 

  

sage: f = ZpCA(5).convert_map_from(QQ); f 

Generic morphism: 

From: Rational Field 

To: 5-adic Ring with capped absolute precision 20 

""" 

def __init__(self, R): 

""" 

Initialization. 

  

EXAMPLES:: 

  

sage: f = ZpCA(5).convert_map_from(QQ); type(f) 

<type 'sage.rings.padics.padic_capped_absolute_element.pAdicConvert_QQ_CA'> 

""" 

Morphism.__init__(self, Hom(QQ, R, SetsWithPartialMaps())) 

self._zero = R.element_class(R, 0) 

  

cdef dict _extra_slots(self): 

""" 

Helper for copying and pickling. 

  

EXAMPLES:: 

  

sage: f = ZpCA(5).convert_map_from(QQ) 

sage: g = copy(f) # indirect doctest 

sage: g == f # todo: comparison not implemented 

True 

sage: g(1/6) 

1 + 4*5 + 4*5^3 + 4*5^5 + 4*5^7 + 4*5^9 + 4*5^11 + 4*5^13 + 4*5^15 + 4*5^17 + 4*5^19 + O(5^20) 

sage: g(1/6) == f(1/6) 

True 

""" 

_slots = Morphism._extra_slots(self) 

_slots['_zero'] = self._zero 

return _slots 

  

cdef _update_slots(self, dict _slots): 

""" 

Helper for copying and pickling. 

  

EXAMPLES:: 

  

sage: f = ZpCA(5).convert_map_from(QQ) 

sage: g = copy(f) # indirect doctest 

sage: g == f # todo: comparison not implemented 

True 

sage: g(1/6) 

1 + 4*5 + 4*5^3 + 4*5^5 + 4*5^7 + 4*5^9 + 4*5^11 + 4*5^13 + 4*5^15 + 4*5^17 + 4*5^19 + O(5^20) 

sage: g(1/6) == f(1/6) 

True 

""" 

self._zero = _slots['_zero'] 

Morphism._update_slots(self, _slots) 

  

cpdef Element _call_(self, x): 

""" 

Evaluation. 

  

EXAMPLES:: 

  

sage: f = ZpCA(5,4).convert_map_from(QQ) 

sage: f(1/7) 

3 + 3*5 + 2*5^3 + O(5^4) 

sage: f(0) 

O(5^4) 

""" 

if mpq_sgn((<Rational>x).value) == 0: 

return self._zero 

cdef CAElement ans = self._zero._new_c() 

cconv_mpq_t(ans.value, (<Rational>x).value, ans.prime_pow.prec_cap, True, ans.prime_pow) 

ans.absprec = ans.prime_pow.prec_cap 

return ans 

  

cpdef Element _call_with_args(self, x, args=(), kwds={}): 

""" 

This function is used when some precision cap is passed in (relative or absolute or both). 

  

See the documentation for :meth:`pAdicCappedAbsoluteElement.__init__` for more details. 

  

EXAMPLES:: 

  

sage: R = ZpCA(5,4) 

sage: type(R(10/3,2)) 

<type 'sage.rings.padics.padic_capped_absolute_element.pAdicCappedAbsoluteElement'> 

sage: R(10/3,2) 

4*5 + O(5^2) 

sage: R(10/3,3,1) 

4*5 + O(5^2) 

sage: R(10/3,absprec=2) 

4*5 + O(5^2) 

sage: R(10/3,relprec=2) 

4*5 + 5^2 + O(5^3) 

sage: R(10/3,absprec=1) 

O(5) 

sage: R(10/3,empty=True) 

O(5^0) 

sage: R(3/100,relprec=3) 

Traceback (most recent call last): 

... 

ValueError: p divides denominator 

""" 

cdef long val, aprec, rprec 

cdef CAElement ans 

_process_args_and_kwds(&aprec, &rprec, args, kwds, True, self._zero.prime_pow) 

if mpq_sgn((<Rational>x).value) == 0: 

if aprec >= self._zero.prime_pow.prec_cap: 

return self._zero 

ans = self._zero._new_c() 

csetzero(ans.value, ans.prime_pow) 

ans.absprec = aprec 

else: 

val = get_ordp(x, self._zero.prime_pow) 

ans = self._zero._new_c() 

if aprec <= val: 

csetzero(ans.value, ans.prime_pow) 

ans.absprec = aprec 

else: 

ans.absprec = min(aprec, val + rprec) 

cconv_mpq_t(ans.value, (<Rational>x).value, ans.absprec, True, self._zero.prime_pow) 

return ans 

  

cdef class pAdicCoercion_CA_frac_field(RingHomomorphism): 

""" 

The canonical inclusion of Zq into its fraction field. 

  

EXAMPLES:: 

  

sage: R.<a> = ZqCA(27, implementation='FLINT') 

sage: K = R.fraction_field() 

sage: f = K.coerce_map_from(R); f 

Ring morphism: 

From: Unramified Extension in a defined by x^3 + 2*x + 1 with capped absolute precision 20 over 3-adic Ring 

To: Unramified Extension in a defined by x^3 + 2*x + 1 with capped relative precision 20 over 3-adic Field 

  

TESTS:: 

  

sage: TestSuite(f).run() 

  

""" 

def __init__(self, R, K): 

""" 

Initialization. 

  

EXAMPLES:: 

  

sage: R.<a> = ZqCA(27, implementation='FLINT') 

sage: K = R.fraction_field() 

sage: f = K.coerce_map_from(R); type(f) 

<type 'sage.rings.padics.qadic_flint_CA.pAdicCoercion_CA_frac_field'> 

""" 

RingHomomorphism.__init__(self, R.Hom(K)) 

self._zero = K(0) 

self._section = pAdicConvert_CA_frac_field(K, R) 

  

cpdef Element _call_(self, _x): 

""" 

Evaluation. 

  

EXAMPLES:: 

  

sage: R.<a> = ZqCA(27, implementation='FLINT') 

sage: K = R.fraction_field() 

sage: f = K.coerce_map_from(R) 

sage: f(a) 

a + O(3^20) 

""" 

cdef CAElement x = _x 

cdef CRElement ans = self._zero._new_c() 

ans.ordp = cremove(ans.unit, x.value, x.absprec, x.prime_pow) 

ans.relprec = x.absprec - ans.ordp 

return ans 

  

cpdef Element _call_with_args(self, _x, args=(), kwds={}): 

""" 

This function is used when some precision cap is passed in 

(relative or absolute or both). 

  

See the documentation for 

:meth:`pAdicCappedAbsoluteElement.__init__` for more details. 

  

EXAMPLES:: 

  

sage: R.<a> = ZqCA(27, implementation='FLINT') 

sage: K = R.fraction_field() 

sage: f = K.coerce_map_from(R) 

sage: f(a, 3) 

a + O(3^3) 

sage: b = 9*a 

sage: f(b, 3) 

a*3^2 + O(3^3) 

sage: f(b, 4, 1) 

a*3^2 + O(3^3) 

sage: f(b, 4, 3) 

a*3^2 + O(3^4) 

sage: f(b, absprec=4) 

a*3^2 + O(3^4) 

sage: f(b, relprec=3) 

a*3^2 + O(3^5) 

sage: f(b, absprec=1) 

O(3) 

sage: f(R(0)) 

O(3^20) 

""" 

cdef long aprec, rprec 

cdef CAElement x = _x 

cdef CRElement ans = self._zero._new_c() 

cdef bint reduce = False 

_process_args_and_kwds(&aprec, &rprec, args, kwds, False, ans.prime_pow) 

if x.absprec < aprec: 

aprec = x.absprec 

reduce = True 

ans.ordp = cremove(ans.unit, x.value, aprec, x.prime_pow) 

ans.relprec = aprec - ans.ordp 

if rprec < ans.relprec: 

ans.relprec = rprec 

reduce = True 

if ans.relprec < 0: 

ans.relprec = 0 

ans.ordp = aprec 

csetzero(ans.unit, x.prime_pow) 

elif reduce: 

creduce(ans.unit, ans.unit, ans.relprec, x.prime_pow) 

return ans 

  

def section(self): 

""" 

Returns a map back to the ring that converts elements of 

non-negative valuation. 

  

EXAMPLES:: 

  

sage: R.<a> = ZqCA(27, implementation='FLINT') 

sage: K = R.fraction_field() 

sage: f = K.coerce_map_from(R) 

sage: f(K.gen()) 

a + O(3^20) 

""" 

from sage.misc.constant_function import ConstantFunction 

if not isinstance(self._section.domain, ConstantFunction): 

import copy 

self._section = copy.copy(self._section) 

return self._section 

  

cdef dict _extra_slots(self): 

""" 

Helper for copying and pickling. 

  

TESTS:: 

  

sage: R.<a> = ZqCA(27, implementation='FLINT') 

sage: K = R.fraction_field() 

sage: f = K.coerce_map_from(R) 

sage: g = copy(f) # indirect doctest 

sage: g 

Ring morphism: 

From: Unramified Extension in a defined by x^3 + 2*x + 1 with capped absolute precision 20 over 3-adic Ring 

To: Unramified Extension in a defined by x^3 + 2*x + 1 with capped relative precision 20 over 3-adic Field 

sage: g == f 

True 

sage: g is f 

False 

sage: g(a) 

a + O(3^20) 

sage: g(a) == f(a) 

True 

  

""" 

_slots = RingHomomorphism._extra_slots(self) 

_slots['_zero'] = self._zero 

_slots['_section'] = self.section() # use method since it copies coercion-internal sections. 

return _slots 

  

cdef _update_slots(self, dict _slots): 

""" 

Helper for copying and pickling. 

  

TESTS:: 

  

sage: R.<a> = ZqCA(9, implementation='FLINT') 

sage: K = R.fraction_field() 

sage: f = K.coerce_map_from(R) 

sage: g = copy(f) # indirect doctest 

sage: g 

Ring morphism: 

From: Unramified Extension in a defined by x^2 + 2*x + 2 with capped absolute precision 20 over 3-adic Ring 

To: Unramified Extension in a defined by x^2 + 2*x + 2 with capped relative precision 20 over 3-adic Field 

sage: g == f 

True 

sage: g is f 

False 

sage: g(a) 

a + O(3^20) 

sage: g(a) == f(a) 

True 

  

""" 

self._zero = _slots['_zero'] 

self._section = _slots['_section'] 

RingHomomorphism._update_slots(self, _slots) 

  

def is_injective(self): 

r""" 

Return whether this map is injective. 

  

EXAMPLES:: 

  

sage: R.<a> = ZqCA(9, implementation='FLINT') 

sage: K = R.fraction_field() 

sage: f = K.coerce_map_from(R) 

sage: f.is_injective() 

True 

  

""" 

return True 

  

def is_surjective(self): 

r""" 

Return whether this map is surjective. 

  

EXAMPLES:: 

  

sage: R.<a> = ZqCA(9, implementation='FLINT') 

sage: K = R.fraction_field() 

sage: f = K.coerce_map_from(R) 

sage: f.is_surjective() 

False 

  

""" 

return False 

  

  

cdef class pAdicConvert_CA_frac_field(Morphism): 

""" 

The section of the inclusion from `\ZZ_q`` to its fraction field. 

  

EXAMPLES:: 

  

sage: R.<a> = ZqCA(27, implementation='FLINT') 

sage: K = R.fraction_field() 

sage: f = R.convert_map_from(K); f 

Generic morphism: 

From: Unramified Extension in a defined by x^3 + 2*x + 1 with capped relative precision 20 over 3-adic Field 

To: Unramified Extension in a defined by x^3 + 2*x + 1 with capped absolute precision 20 over 3-adic Ring 

""" 

def __init__(self, K, R): 

""" 

Initialization. 

  

EXAMPLES:: 

  

sage: R.<a> = ZqCA(27, implementation='FLINT') 

sage: K = R.fraction_field() 

sage: f = R.convert_map_from(K); type(f) 

<type 'sage.rings.padics.qadic_flint_CA.pAdicConvert_CA_frac_field'> 

""" 

Morphism.__init__(self, Hom(K, R, SetsWithPartialMaps())) 

self._zero = R(0) 

  

cpdef Element _call_(self, _x): 

""" 

Evaluation. 

  

EXAMPLES:: 

  

sage: R.<a> = ZqCA(27, implementation='FLINT') 

sage: K = R.fraction_field() 

sage: f = R.convert_map_from(K) 

sage: f(K.gen()) 

a + O(3^20) 

""" 

cdef CRElement x = _x 

if x.ordp < 0: raise ValueError("negative valuation") 

cdef CAElement ans = self._zero._new_c() 

cdef bint reduce = False 

ans.absprec = x.relprec + x.ordp 

if ans.absprec > ans.prime_pow.ram_prec_cap: 

ans.absprec = ans.prime_pow.ram_prec_cap 

reduce = True 

if x.ordp >= ans.absprec: 

csetzero(ans.value, ans.prime_pow) 

else: 

cshift(ans.value, x.unit, x.ordp, ans.absprec, ans.prime_pow, reduce) 

return ans 

  

cpdef Element _call_with_args(self, _x, args=(), kwds={}): 

""" 

This function is used when some precision cap is passed in 

(relative or absolute or both). 

  

See the documentation for 

:meth:`pAdicCappedAbsoluteElement.__init__` for more details. 

  

EXAMPLES:: 

  

sage: R.<a> = ZqCA(27, implementation='FLINT') 

sage: K = R.fraction_field() 

sage: f = R.convert_map_from(K); a = K(a) 

sage: f(a, 3) 

a + O(3^3) 

sage: b = 9*a 

sage: f(b, 3) 

a*3^2 + O(3^3) 

sage: f(b, 4, 1) 

a*3^2 + O(3^3) 

sage: f(b, 4, 3) 

a*3^2 + O(3^4) 

sage: f(b, absprec=4) 

a*3^2 + O(3^4) 

sage: f(b, relprec=3) 

a*3^2 + O(3^5) 

sage: f(b, absprec=1) 

O(3) 

sage: f(K(0)) 

O(3^20) 

""" 

cdef long aprec, rprec 

cdef CRElement x = _x 

if x.ordp < 0: raise ValueError("negative valuation") 

cdef CAElement ans = self._zero._new_c() 

cdef bint reduce = False 

_process_args_and_kwds(&aprec, &rprec, args, kwds, True, ans.prime_pow) 

if x.relprec < rprec: 

rprec = x.relprec 

reduce = True 

ans.absprec = rprec + x.ordp 

if aprec < ans.absprec: 

ans.absprec = aprec 

reduce = True 

if x.ordp >= ans.absprec: 

csetzero(ans.value, ans.prime_pow) 

else: 

sig_on() 

cshift(ans.value, x.unit, x.ordp, ans.absprec, ans.prime_pow, reduce) 

sig_off() 

return ans 

  

cdef dict _extra_slots(self): 

""" 

Helper for copying and pickling. 

  

TESTS:: 

  

sage: R.<a> = ZqCA(27, implementation='FLINT') 

sage: K = R.fraction_field() 

sage: f = R.convert_map_from(K) 

sage: a = K(a) 

sage: g = copy(f) # indirect doctest 

sage: g 

Generic morphism: 

From: Unramified Extension in a defined by x^3 + 2*x + 1 with capped relative precision 20 over 3-adic Field 

To: Unramified Extension in a defined by x^3 + 2*x + 1 with capped absolute precision 20 over 3-adic Ring 

sage: g == f 

True 

sage: g is f 

False 

sage: g(a) 

a + O(3^20) 

sage: g(a) == f(a) 

True 

""" 

_slots = Morphism._extra_slots(self) 

_slots['_zero'] = self._zero 

return _slots 

  

cdef _update_slots(self, dict _slots): 

""" 

Helper for copying and pickling. 

  

TESTS:: 

  

sage: R.<a> = ZqCA(9, implementation='FLINT') 

sage: K = R.fraction_field() 

sage: f = R.convert_map_from(K) 

sage: a = f(a) 

sage: g = copy(f) # indirect doctest 

sage: g 

Generic morphism: 

From: Unramified Extension in a defined by x^2 + 2*x + 2 with capped relative precision 20 over 3-adic Field 

To: Unramified Extension in a defined by x^2 + 2*x + 2 with capped absolute precision 20 over 3-adic Ring 

sage: g == f 

True 

sage: g is f 

False 

sage: g(a) 

a + O(3^20) 

sage: g(a) == f(a) 

True 

  

""" 

self._zero = _slots['_zero'] 

Morphism._update_slots(self, _slots) 

  

def unpickle_cae_v2(cls, parent, value, absprec): 

""" 

Unpickle capped absolute elements. 

  

INPUT: 

  

- ``cls`` -- the class of the capped absolute element. 

  

- ``parent`` -- the parent, a `p`-adic ring 

  

- ``value`` -- a Python object wrapping a celement, of the kind 

accepted by the cunpickle function. 

  

- ``absprec`` -- a Python int or Sage integer. 

  

EXAMPLES:: 

  

sage: from sage.rings.padics.padic_capped_absolute_element import unpickle_cae_v2, pAdicCappedAbsoluteElement 

sage: R = ZpCA(5,8) 

sage: a = unpickle_cae_v2(pAdicCappedAbsoluteElement, R, 42, int(6)); a 

2 + 3*5 + 5^2 + O(5^6) 

sage: a.parent() is R 

True 

""" 

cdef CAElement ans = cls.__new__(cls) 

ans._parent = parent 

ans.prime_pow = <PowComputer_?>parent.prime_pow 

cconstruct(ans.value, ans.prime_pow) 

cunpickle(ans.value, value, ans.prime_pow) 

ans.absprec = absprec 

return ans