Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

""" 

Eisenstein Extension Generic 

 

This file implements the shared functionality for Eisenstein extensions. 

 

AUTHORS: 

 

- David Roe 

""" 

from __future__ import absolute_import 

 

#***************************************************************************** 

# Copyright (C) 2008 David Roe <roed.math@gmail.com> 

# William Stein <wstein@gmail.com> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# as published by the Free Software Foundation; either version 2 of 

# the License, or (at your option) any later version. 

# 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

 

from .padic_extension_generic import pAdicExtensionGeneric 

from .misc import precprint 

from sage.rings.infinity import infinity 

from sage.misc.latex import latex 

from sage.rings.integer import Integer 

 

class EisensteinExtensionGeneric(pAdicExtensionGeneric): 

def __init__(self, poly, prec, print_mode, names, element_class): 

""" 

Initializes self. 

 

EXAMPLES:: 

 

sage: A = Zp(7,10) 

sage: S.<x> = A[] 

sage: B.<t> = A.ext(x^2+7) #indirect doctest 

""" 

pAdicExtensionGeneric.__init__(self, poly, prec, print_mode, names, element_class) 

#self._precompute() 

 

def _repr_(self, do_latex = False): 

""" 

Returns a print representation of this extension. 

 

EXAMPLES:: 

 

sage: A = Zp(7,10) 

sage: S.<x> = A[] 

sage: B.<t> = A.ext(x^2+7) 

sage: B #indirect doctest 

Eisenstein Extension in t defined by x^2 + 7 with capped relative precision 20 over 7-adic Ring 

""" 

if do_latex: 

return "Eisenstein Extension in %s defined by %s over %s"%(self.latex_name(), latex(self.defining_polynomial(exact=True)), latex(self.ground_ring())) 

else: 

return "Eisenstein Extension in %s defined by %s %s over %s-adic %s"%(self.variable_name(), self.defining_polynomial(exact=True), precprint(self._prec_type(), self.precision_cap(), self.variable_name()), self.prime(), "Field" if self.is_field() else "Ring") 

 

def ramification_index(self, K = None): 

""" 

Returns the ramification index of self over K, or over the 

ground ring if K is None. 

 

The ramification index is the index of the image of the 

valuation map on K in the image of the valuation map on self 

(both normalized so that the valuation of p is 1). 

 

INPUT: 

 

- self -- an Eisenstein extension 

- K -- a subring of self (default None -> self.ground_ring()) 

 

OUTPUT: 

 

- The ramification index of the extension self/K 

 

EXAMPLES:: 

 

sage: A = Zp(7,10) 

sage: S.<x> = A[] 

sage: B.<t> = A.ext(x^2+7) 

sage: B.ramification_index() 

2 

""" 

if K is None or K is self.ground_ring(): 

return self.modulus().degree() 

elif K is self: 

return 1 

else: 

raise NotImplementedError 

 

def inertia_degree(self, K = None): 

""" 

Returns the inertia degree of self over K, or the ground ring 

if K is None. 

 

The inertia degree is the degree of the extension of residue 

fields induced by this extensions. Since Eisenstein 

extensions are totally ramified, this will be 1 for K=None. 

 

INPUT: 

 

- self -- an Eisenstein extension 

- K -- a subring of self (default None -> self.ground_ring()) 

 

OUTPUT: 

 

- The degree of the induced extensions of residue fields. 

 

EXAMPLES:: 

 

sage: A = Zp(7,10) 

sage: S.<x> = A[] 

sage: B.<t> = A.ext(x^2+7) 

sage: B.inertia_degree() 

1 

""" 

if K is None or K is self.ground_ring(): 

return Integer(1) 

elif K is self: 

return Integer(1) 

else: 

raise NotImplementedError 

 

def inertia_subring(self): 

""" 

Returns the inertia subring. 

 

Since an Eisenstein extension is totally ramified, this is 

just the ground field. 

 

EXAMPLES:: 

 

sage: A = Zp(7,10) 

sage: S.<x> = A[] 

sage: B.<t> = A.ext(x^2+7) 

sage: B.inertia_subring() 

7-adic Ring with capped relative precision 10 

""" 

return self.ground_ring() 

 

def residue_class_field(self): 

""" 

Returns the residue class field. 

 

INPUT: 

 

- self -- a p-adic ring 

 

OUTPUT: 

 

- the residue field 

 

EXAMPLES:: 

 

sage: A = Zp(7,10) 

sage: S.<x> = A[] 

sage: B.<t> = A.ext(x^2+7) 

sage: B.residue_class_field() 

Finite Field of size 7 

""" 

return self.ground_ring().residue_class_field() 

 

def residue_ring(self, n): 

""" 

Return the quotient of the ring of integers by the nth power of its maximal ideal. 

 

EXAMPLES:: 

 

sage: S.<x> = ZZ[] 

sage: W.<w> = Zp(5).extension(x^2 - 5) 

sage: W.residue_ring(1) 

Ring of integers modulo 5 

 

The following requires implementing more general Artinian rings:: 

 

sage: W.residue_ring(2) 

Traceback (most recent call last): 

... 

NotImplementedError 

""" 

if n == 1: 

return self.ground_ring().residue_ring(1) 

else: 

raise NotImplementedError 

 

#def discriminant(self, K=None): 

# if K is self: 

# return 1 

# else: 

# raise NotImplementedError 

 

#def automorphisms(self): 

# raise NotImplementedError 

 

#def galois_group(self): 

# r""" 

# Returns the Galois group of self's fraction field over Qp. 

# """ 

# ## 

# ## If K is a number field, then K.galois_group() can return 

# ## other variants, i.e. via Pari or KASH. We could consider 

# ## doing this. 

# ## 

# raise NotImplementedError 

 

#def is_abelian(self): 

# raise NotImplementedError 

 

#def is_normal(self): 

# raise NotImplementedError 

 

def gen(self, n=0): 

""" 

Returns a generator for self as an extension of its ground ring. 

 

EXAMPLES:: 

 

sage: A = Zp(7,10) 

sage: S.<x> = A[] 

sage: B.<t> = A.ext(x^2+7) 

sage: B.gen() 

t + O(t^21) 

""" 

if n != 0: 

raise IndexError("only one generator") 

return self([0,1]) 

 

def uniformizer_pow(self, n): 

""" 

Returns the nth power of the uniformizer of self (as an 

element of self). 

 

EXAMPLES:: 

 

sage: A = Zp(7,10) 

sage: S.<x> = A[] 

sage: B.<t> = A.ext(x^2+7) 

sage: B.uniformizer_pow(5) 

t^5 + O(t^25) 

""" 

if n is infinity: 

return self(0) 

else: 

return self(1) << n 

 

def uniformizer(self): 

""" 

Returns the uniformizer of self, ie a generator for the unique 

maximal ideal. 

 

EXAMPLES:: 

 

sage: A = Zp(7,10) 

sage: S.<x> = A[] 

sage: B.<t> = A.ext(x^2+7) 

sage: B.uniformizer() 

t + O(t^21) 

""" 

return self.gen() 

 

def _uniformizer_print(self): 

""" 

Returns a string representation of how the uniformizer of self 

prints. Mainly for internal use. 

 

EXAMPLES:: 

 

sage: A = Zp(7,10) 

sage: S.<x> = A[] 

sage: B.<t> = A.ext(x^2+7) 

sage: B._uniformizer_print() 

't' 

""" 

return self.variable_name() 

 

# def has_pth_root(self): 

# raise NotImplementedError 

 

# def has_root_of_unity(self, n): 

# raise NotImplementedError