Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

""" 

`p`-Adic Floating Point Elements 

  

Elements of `p`-Adic Rings with Floating Point Precision 

  

AUTHORS: 

  

- David Roe: initial version (2016-12-6) 

""" 

  

#***************************************************************************** 

# Copyright (C) 2016 David Roe <roed.math@gmail.com> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# as published by the Free Software Foundation; either version 2 of 

# the License, or (at your option) any later version. 

# 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

  

include "sage/libs/linkages/padics/mpz.pxi" 

include "FP_template.pxi" 

  

from sage.libs.pari.all import pari 

from sage.libs.pari.convert_gmp cimport new_gen_from_padic 

from sage.rings.finite_rings.integer_mod import Mod 

  

cdef extern from "sage/rings/padics/transcendantal.c": 

cdef void padicexp(mpz_t ans, const mpz_t a, unsigned long p, unsigned long prec, const mpz_t modulo) 

cdef void padicexp_Newton(mpz_t ans, const mpz_t a, unsigned long p, unsigned long prec, unsigned long precinit, const mpz_t modulo) 

  

  

cdef class PowComputer_(PowComputer_base): 

""" 

A PowComputer for a floating-point padic ring or field. 

""" 

def __init__(self, Integer prime, long cache_limit, long prec_cap, long ram_prec_cap, bint in_field): 

""" 

Initialization. 

  

EXAMPLES:: 

  

sage: R = ZpFP(5) 

sage: type(R.prime_pow) 

<type 'sage.rings.padics.padic_floating_point_element.PowComputer_'> 

sage: R.prime_pow._prec_type 

'floating-point' 

""" 

self._prec_type = 'floating-point' 

PowComputer_base.__init__(self, prime, cache_limit, prec_cap, ram_prec_cap, in_field) 

  

cdef class pAdicFloatingPointElement(FPElement): 

""" 

Constructs new element with given parent and value. 

  

INPUT: 

  

- ``x`` -- value to coerce into a floating point ring or field 

  

- ``absprec`` -- maximum number of digits of absolute precision 

  

- ``relprec`` -- maximum number of digits of relative precision 

  

EXAMPLES:: 

  

sage: R = Zp(5, 10, 'floating-point') 

  

Construct from integers:: 

  

sage: R(3) 

3 

sage: R(75) 

3*5^2 

sage: R(0) 

0 

sage: R(-1) 

4 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + 4*5^8 + 4*5^9 

sage: R(-5) 

4*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + 4*5^8 + 4*5^9 + 4*5^10 

sage: R(-7*25) 

3*5^2 + 3*5^3 + 4*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + 4*5^8 + 4*5^9 + 4*5^10 + 4*5^11 

  

Construct from rationals:: 

  

sage: R(1/2) 

3 + 2*5 + 2*5^2 + 2*5^3 + 2*5^4 + 2*5^5 + 2*5^6 + 2*5^7 + 2*5^8 + 2*5^9 

sage: R(-7875/874) 

3*5^3 + 2*5^4 + 2*5^5 + 5^6 + 3*5^7 + 2*5^8 + 3*5^10 + 3*5^11 + 3*5^12 

sage: R(15/425) 

Traceback (most recent call last): 

... 

ValueError: p divides the denominator 

  

Construct from IntegerMod:: 

  

sage: R(Integers(125)(3)) 

3 

sage: R(Integers(5)(3)) 

3 

sage: R(Integers(5^30)(3)) 

3 

sage: R(Integers(5^30)(1+5^23)) 

1 

sage: R(Integers(49)(3)) 

Traceback (most recent call last): 

... 

TypeError: p does not divide modulus 49 

  

:: 

  

sage: R(Integers(48)(3)) 

Traceback (most recent call last): 

... 

TypeError: p does not divide modulus 48 

  

Some other conversions:: 

  

sage: R(R(5)) 

5 

  

Construct from Pari objects:: 

  

sage: R = ZpFP(5) 

sage: x = pari(123123) ; R(x) 

3 + 4*5 + 4*5^2 + 4*5^3 + 5^4 + 4*5^5 + 2*5^6 + 5^7 

sage: R(pari(R(5252))) 

2 + 2*5^3 + 3*5^4 + 5^5 

sage: R = ZpFP(5,prec=5) 

sage: R(pari(-1)) 

4 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 

sage: pari(R(-1)) 

4 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + O(5^5) 

sage: pari(R(0)) 

0 

sage: R(pari(R(0,5))) 

0 

  

# todo: doctests for converting from other types of p-adic rings 

  

""" 

def lift(self): 

""" 

Return an integer or rational congruent to ``self`` modulo ``self``'s 

precision. If a rational is returned, its denominator will equal 

``p^ordp(self)``. 

  

This method will raise a ValueError when this element is infinity. 

  

EXAMPLES:: 

  

sage: R = Zp(7,4,'floating-point'); a = R(8); a.lift() 

8 

sage: R = QpFP(7,4); a = R(8); a.lift() 

8 

sage: R = QpFP(7,4); a = R(8/7); a.lift() 

8/7 

""" 

return self.lift_c() 

  

cdef lift_c(self): 

""" 

Implementation of lift. 

  

TESTS:: 

  

sage: ZpFP(5)(0).lift() #indirect doctest 

0 

sage: R = QpFP(5); R(0).lift() 

0 

sage: R(5/9).lift() 

264909532335070 

sage: R(9/5).lift() 

9/5 

""" 

cdef Integer ans 

cdef Rational ansr 

if self.ordp >= 0: 

ans = PY_NEW(Integer) 

if very_pos_val(self.ordp): 

mpz_set_ui(ans.value, 0) 

else: 

mpz_set(ans.value, self.unit) 

mpz_mul(ans.value, ans.value, self.prime_pow.pow_mpz_t_tmp(self.ordp)) 

return ans 

else: 

ansr = Rational.__new__(Rational) 

if very_neg_val(self.ordp): 

raise ValueError("infinity cannot be lifted to an integer or rational") 

mpz_set(mpq_numref(ansr.value), self.unit) 

mpz_set(mpq_denref(ansr.value), self.prime_pow.pow_mpz_t_tmp(-self.ordp)) 

return ansr 

  

def __pari__(self): 

""" 

Converts this element to an equivalent pari element. 

  

EXAMPLES:: 

  

sage: R = ZpFP(17, 10); a = ~R(14); pari(a) #indirect doctest 

11 + 3*17 + 17^2 + 6*17^3 + 13*17^4 + 15*17^5 + 10*17^6 + 3*17^7 + 17^8 + 6*17^9 + O(17^10) 

sage: pari(R(0)) 

0 

""" 

return self._to_gen() 

  

cdef pari_gen _to_gen(self): 

""" 

Converts this element to an equivalent pari element. 

  

EXAMPLES:: 

  

sage: R = ZpFP(5, 10); a = R(17); pari(a) #indirect doctest 

2 + 3*5 + O(5^10) 

sage: pari(R(0)) 

0 

""" 

if very_pos_val(self.ordp): 

return pari.zero() 

elif very_neg_val(self.ordp): 

raise ValueError("no analogue of p-adic infinity in pari") 

else: 

return new_gen_from_padic(self.ordp, self.prime_pow.prec_cap, 

self.prime_pow.prime.value, 

self.prime_pow.pow_mpz_t_top(), 

self.unit) 

def _integer_(self, Z=None): 

""" 

Returns an integer congruent to this element modulo 

``p^self.absolute_precision()``. 

  

EXAMPLES:: 

  

sage: R = ZpFP(5); a = R(-1); a._integer_() 

95367431640624 

""" 

if self.ordp < 0: 

raise ValueError("Cannot form an integer out of a p-adic field element with negative valuation") 

return self.lift_c() 

  

def residue(self, absprec=1, field=None, check_prec=False): 

""" 

Reduces this element modulo `p^{\mathrm{absprec}}`. 

  

INPUT: 

  

- ``absprec`` -- a non-negative integer (default: ``1``) 

  

- ``field`` -- boolean (default ``None``). Whether to return an element of GF(p) or Zmod(p). 

  

- ``check_prec`` -- boolean (default ``False``). No effect (for compatibility with other types). 

  

OUTPUT: 

  

This element reduced modulo `p^\mathrm{absprec}` as an element of 

`\ZZ/p^\mathrm{absprec}\ZZ` 

  

EXAMPLES:: 

  

sage: R = ZpFP(7,4) 

sage: a = R(8) 

sage: a.residue(1) 

1 

sage: a.residue(2) 

8 

  

sage: K = QpFP(7,4) 

sage: a = K(8) 

sage: a.residue(1) 

1 

sage: a.residue(2) 

8 

sage: b = K(1/7) 

sage: b.residue() 

Traceback (most recent call last): 

... 

ValueError: element must have non-negative valuation in order to compute residue. 

  

TESTS:: 

  

sage: R = ZpFP(7,4) 

sage: a = R(8) 

sage: a.residue(0) 

0 

sage: a.residue(-1) 

Traceback (most recent call last): 

... 

ValueError: cannot reduce modulo a negative power of p. 

sage: a.residue(5) 

8 

  

sage: a.residue(field=True).parent() 

Finite Field of size 7 

""" 

cdef Integer selfvalue, modulus 

cdef long aprec 

if not isinstance(absprec, Integer): 

absprec = Integer(absprec) 

if mpz_sgn((<Integer>absprec).value) < 0: 

raise ValueError("cannot reduce modulo a negative power of p.") 

if self.ordp < 0: 

raise ValueError("element must have non-negative valuation in order to compute residue.") 

if field is None: 

field = (absprec == 1) 

elif field and absprec != 1: 

raise ValueError("field keyword may only be set at precision 1") 

if mpz_fits_slong_p((<Integer>absprec).value) == 0: 

raise ValueError("absolute precision does not fit in a long") 

aprec = mpz_get_si((<Integer>absprec).value) 

modulus = PY_NEW(Integer) 

mpz_set(modulus.value, self.prime_pow.pow_mpz_t_tmp(aprec)) 

selfvalue = PY_NEW(Integer) 

if very_pos_val(self.ordp): 

mpz_set_ui(selfvalue.value, 0) 

else: 

# Need to do this better. 

mpz_mul(selfvalue.value, self.prime_pow.pow_mpz_t_tmp(self.ordp), self.unit) 

if field: 

from sage.rings.finite_rings.all import GF 

return GF(self.parent().prime())(selfvalue) 

else: 

return Mod(selfvalue, modulus) 

  

def _exp_binary_splitting(self, aprec): 

""" 

Compute the exponential power series of this element 

  

This is a helper method for :meth:`exp`. 

  

INPUT: 

  

- ``aprec`` -- an integer, the precision to which to compute the 

exponential 

  

NOTE:: 

  

The function does not check that its argument ``self`` is 

the disk of convergence of ``exp``. If this assumption is not 

fullfiled the behaviour of the function is not specified. 

  

ALGORITHM: 

  

Write 

  

.. MATH:: 

  

self = \sum_{i=1}^\infty a_i p^{2^i} 

  

with `0 \leq a_i < p^{2^i}` and compute 

`\exp(a_i p^{2^i})` using the standard Taylor expansion 

  

.. MATH:: 

  

\exp(x) = 1 + x + x^2/2 + x^3/6 + x^4/24 + \cdots 

  

together with a binary splitting method. 

  

The binary complexity of this algorithm is quasi-linear. 

  

EXAMPLES:: 

  

sage: R = Zp(7,5) 

sage: x = R(7) 

sage: x.exp(algorithm="binary_splitting") # indirect doctest 

1 + 7 + 4*7^2 + 2*7^3 + O(7^5) 

  

""" 

cdef unsigned long p 

cdef unsigned long prec = aprec 

cdef pAdicFloatingPointElement ans 

cdef Integer selfint = self.lift_c() 

  

if mpz_fits_slong_p(self.prime_pow.prime.value) == 0: 

raise NotImplementedError("The prime %s does not fit in a long" % self.prime_pow.prime) 

p = self.prime_pow.prime 

  

ans = self._new_c() 

ans.ordp = 0 

sig_on() 

padicexp(ans.unit, selfint.value, p, prec, self.prime_pow.pow_mpz_t_tmp(prec)) 

sig_off() 

  

return ans 

  

def _exp_newton(self, aprec, log_algorithm=None): 

""" 

Compute the exponential power series of this element 

  

This is a helper method for :meth:`exp`. 

  

INPUT: 

  

- ``aprec`` -- an integer, the precision to which to compute the 

exponential 

  

- ``log_algorithm`` (default: None) -- the algorithm used for 

computing the logarithm. This attribute is passed to the log 

method. See :meth:`log` for more details about the possible 

algorithms. 

  

NOTE:: 

  

The function does not check that its argument ``self`` is 

the disk of convergence of ``exp``. If this assumption is not 

fullfiled the behaviour of the function is not specified. 

  

ALGORITHM: 

  

Solve the equation `\log(x) = self` using the Newton scheme:: 

  

.. MATH:: 

  

x_{i+1} = x_i \cdot (1 + self - \log(x_i)) 

  

The binary complexity of this algorithm is roughly the same 

than that of the computation of the logarithm. 

  

EXAMPLES:: 

  

sage: R.<w> = Zq(7^2,5) 

sage: x = R(7*w) 

sage: x.exp(algorithm="newton") # indirect doctest 

1 + w*7 + (4*w + 2)*7^2 + (w + 6)*7^3 + 5*7^4 + O(7^5) 

""" 

cdef unsigned long p 

cdef unsigned long prec = aprec 

cdef pAdicFloatingPointElement ans 

cdef Integer selfint = self.lift_c() 

  

if mpz_fits_slong_p(self.prime_pow.prime.value) == 0: 

raise NotImplementedError("The prime %s does not fit in a long" % self.prime_pow.prime) 

p = self.prime_pow.prime 

  

ans = self._new_c() 

ans.ordp = 0 

mpz_set_ui(ans.unit, 1) 

sig_on() 

if p == 2: 

padicexp_Newton(ans.unit, selfint.value, p, prec, 2, self.prime_pow.pow_mpz_t_tmp(prec)) 

else: 

padicexp_Newton(ans.unit, selfint.value, p, prec, 1, self.prime_pow.pow_mpz_t_tmp(prec)) 

sig_off() 

  

return ans