Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

# -*- coding: utf-8 -*- 

r""" 

Fast calculation of cyclotomic polynomials 

  

This module provides a function :func:`cyclotomic_coeffs`, which calculates the 

coefficients of cyclotomic polynomials. This is not intended to be invoked 

directly by the user, but it is called by the method 

:meth:`~sage.rings.polynomial.polynomial_ring.PolynomialRing_general.cyclotomic_polynomial` 

method of univariate polynomial ring objects and the top-level 

:func:`~sage.misc.functional.cyclotomic_polynomial` function. 

""" 

  

#***************************************************************************** 

# Copyright (C) 2007 Robert Bradshaw <robertwb@math.washington.edu> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# 

# This code is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 

# General Public License for more details. 

# 

# The full text of the GPL is available at: 

# 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from __future__ import print_function, absolute_import 

  

import sys 

  

from cysignals.memory cimport sig_malloc, check_calloc, sig_free 

from cysignals.signals cimport sig_on, sig_off 

  

from sage.structure.element cimport parent 

  

from sage.arith.all import factor 

from sage.rings.infinity import infinity 

from sage.rings.integer_ring import ZZ 

from sage.misc.all import prod, subsets 

from sage.rings.integer cimport Integer 

from sage.rings.rational cimport Rational 

from sage.libs.pari.all import pari 

  

def cyclotomic_coeffs(nn, sparse=None): 

u""" 

This calculates the coefficients of the n-th cyclotomic polynomial 

by using the formula 

  

.. MATH:: 

  

\\Phi_n(x) = \\prod_{d|n} (1-x^{n/d})^{\\mu(d)} 

  

where `\\mu(d)` is the Möbius function that is 1 if d has an even 

number of distinct prime divisors, -1 if it has an odd number of 

distinct prime divisors, and 0 if d is not squarefree. 

  

Multiplications and divisions by polynomials of the 

form `1-x^n` can be done very quickly in a single pass. 

  

If sparse is True, the result is returned as a dictionary of the non-zero 

entries, otherwise the result is returned as a list of python ints. 

  

EXAMPLES:: 

  

sage: from sage.rings.polynomial.cyclotomic import cyclotomic_coeffs 

sage: cyclotomic_coeffs(30) 

[1, 1, 0, -1, -1, -1, 0, 1, 1] 

sage: cyclotomic_coeffs(10^5) 

{0: 1, 10000: -1, 20000: 1, 30000: -1, 40000: 1} 

sage: R = QQ['x'] 

sage: R(cyclotomic_coeffs(30)) 

x^8 + x^7 - x^5 - x^4 - x^3 + x + 1 

  

Check that it has the right degree:: 

  

sage: euler_phi(30) 

8 

sage: R(cyclotomic_coeffs(14)).factor() 

x^6 - x^5 + x^4 - x^3 + x^2 - x + 1 

  

The coefficients are not always +/-1:: 

  

sage: cyclotomic_coeffs(105) 

[1, 1, 1, 0, 0, -1, -1, -2, -1, -1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, -1, -1, -2, -1, -1, 0, 0, 1, 1, 1] 

  

In fact the height is not bounded by any polynomial in n (Erdos), 

although takes a while just to exceed linear:: 

  

sage: v = cyclotomic_coeffs(1181895) 

sage: max(v) 

14102773 

  

The polynomial is a palindrome for any n:: 

  

sage: n = ZZ.random_element(50000) 

sage: factor(n) 

3 * 10009 

sage: v = cyclotomic_coeffs(n, sparse=False) 

sage: v == list(reversed(v)) 

True 

  

AUTHORS: 

  

- Robert Bradshaw (2007-10-27): initial version (inspired by work of Andrew 

Arnold and Michael Monagan) 

""" 

factors = factor(nn) 

if any(e != 1 for _, e in factors): 

# If there are primes that occur in the factorization with multiplicity 

# greater than one we use the fact that Phi_ar(x) = Phi_r(x^a) when all 

# primes dividing a divide r. 

rad = prod(p for p, _ in factors) 

rad_coeffs = cyclotomic_coeffs(rad, sparse=True) 

pow = int(nn // rad) 

if sparse is None or sparse: 

L = {} 

else: 

L = [0] * (1 + pow * prod(p - 1 for p, _ in factors)) 

for mon, c in rad_coeffs.items(): 

L[mon * pow] = c 

return L 

  

elif len(factors) == 1 and not sparse: 

# \Phi_p is easy to calculate for p prime. 

return [1] * factors[0][0] 

  

# The following bounds are from Michael Monagan: 

# For all n < 169,828,113, the height of Phi_n(x) is less than 60 bits. 

# At n = 169828113, we get a height of 31484567640915734951 which is 65 bits 

# For n=10163195, the height of Phi_n(x) is 1376877780831, 40.32 bits. 

# For n<10163195, the height of Phi_n(x) is <= 74989473, 26.16 bits. 

cdef long fits_long_limit = 169828113 if sizeof(long) >= 8 else 10163195 

if nn >= fits_long_limit and bateman_bound(nn) > sys.maxsize: 

# Do this to avoid overflow. 

print("Warning: using PARI (slow!)") 

from sage.interfaces.gp import pari 

return [int(a) for a in pari.polcyclo(nn).Vecrev()] 

  

cdef long d, max_deg = 0, n = nn 

primes = [int(p) for p, _ in factors] 

prime_subsets = list(subsets(primes)) 

if n > 5000: 

prime_subsets.sort(key=lambda a: -prod(a)) 

  

for s in prime_subsets: 

if len(s) % 2 == 0: 

d = prod(s) 

max_deg += n / d 

  

cdef long* coeffs = <long*>check_calloc(max_deg+1, sizeof(long)) 

coeffs[0] = 1 

  

cdef long k, dd, offset = 0, deg = 0 

for s in prime_subsets: 

if len(s) % 2 == 0: 

d = prod(s) 

dd = n / d 

# f *= (1-x^dd) 

sig_on() 

for k from deg+dd >= k >= dd: 

coeffs[k] -= coeffs[k-dd] 

deg += dd 

sig_off() 

  

prime_subsets.reverse() 

for s in prime_subsets: 

if len(s) % 2 == 1: 

d = prod(s) 

dd = n / d 

# f /= (1-x^dd) 

sig_on() 

for k from deg >= k > deg-dd: 

coeffs[k] = -coeffs[k] 

for k from deg-dd >= k >= offset: 

coeffs[k] = coeffs[k+dd] - coeffs[k] 

offset += dd 

sig_off() 

  

cdef long non_zero = 0 

if sparse is None: 

for k from offset <= k <= deg: 

non_zero += coeffs[k] != 0 

sparse = non_zero < 0.25*(deg-offset) 

  

if sparse: 

L = {} 

for k from offset <= k <= deg: 

if coeffs[k]: 

L[k-offset] = coeffs[k] 

else: 

L = [coeffs[k] for k from offset <= k <= deg] 

  

sig_free(coeffs) 

return L 

  

def cyclotomic_value(n, x): 

""" 

Return the value of the `n`-th cyclotomic polynomial evaluated at `x`. 

  

INPUT: 

  

- n -- an Integer, specifying which cyclotomic polynomial is to be 

evaluated. 

- x -- an element of a ring. 

  

OUTPUT: 

  

- the value of the cyclotomic polynomial `\Phi_n` at `x`. 

  

ALGORITHM: 

  

- Reduce to the case that `n` is squarefree: use the identity 

  

.. MATH:: 

  

\Phi_n(x) = \Phi_q(x^{n/q}) 

  

where `q` is the radical of `n`. 

  

- Use the identity 

  

.. MATH:: 

  

\Phi_n(x) = \prod_{d | n} (x^d - 1)^{\mu(n / d)}, 

  

where `\mu` is the Möbius function. 

  

- Handles the case that `x^d = 1` for some `d`, but not the case that 

`x^d - 1` is non-invertible: in this case polynomial evaluation is 

used instead. 

  

EXAMPLES:: 

  

sage: cyclotomic_value(51, 3) 

1282860140677441 

sage: cyclotomic_polynomial(51)(3) 

1282860140677441 

  

It works for non-integral values as well:: 

  

sage: cyclotomic_value(144, 4/3) 

79148745433504023621920372161/79766443076872509863361 

sage: cyclotomic_polynomial(144)(4/3) 

79148745433504023621920372161/79766443076872509863361 

  

TESTS:: 

  

sage: R.<x> = QQ[] 

sage: K.<i> = NumberField(x^2 + 1) 

sage: for y in [-1, 0, 1, 2, 1/2, Mod(3, 8), Mod(3,11), GF(9,'a').gen(), Zp(3)(54), i, x^2+2]: 

....: for n in [1..60]: 

....: val1 = cyclotomic_value(n, y) 

....: val2 = cyclotomic_polynomial(n)(y) 

....: if val1 != val2: 

....: print("Wrong value for cyclotomic_value(%s, %s) in %s"%(n,y,parent(y))) 

....: if val1.parent() is not val2.parent(): 

....: print("Wrong parent for cyclotomic_value(%s, %s) in %s"%(n,y,parent(y))) 

  

sage: cyclotomic_value(20, I) 

5 

sage: a = cyclotomic_value(10, mod(3, 11)); a 

6 

sage: a.parent() 

Ring of integers modulo 11 

sage: cyclotomic_value(30, -1.0) 

1.00000000000000 

sage: S.<t> = R.quotient(R.cyclotomic_polynomial(15)) 

sage: cyclotomic_value(15, t) 

0 

sage: cyclotomic_value(30, t) 

2*t^7 - 2*t^5 - 2*t^3 + 2*t 

sage: S.<t> = R.quotient(x^10) 

sage: cyclotomic_value(2^128-1, t) 

-t^7 - t^6 - t^5 + t^2 + t + 1 

sage: cyclotomic_value(10,mod(3,4)) 

1 

  

Check that the issue with symbolic element in :trac:`14982` is fixed:: 

  

sage: a = cyclotomic_value(3, I) 

sage: a.pyobject() 

I 

sage: parent(_) 

Number Field in I with defining polynomial x^2 + 1 

""" 

n = ZZ(n) 

if n < 3: 

if n == 1: 

return x - ZZ.one() 

if n == 2: 

return x + ZZ.one() 

raise ValueError("n must be positive") 

  

P = parent(x) 

try: 

return P(pari.polcyclo(n, x).sage()) 

except Exception: 

pass 

one = P(1) 

  

# The following is modeled on the implementation in PARI and is 

# used for cases for which PARI doesn't work. These are in 

# particular: 

# - n does not fit in a C long; 

# - x is some Sage type which cannot be converted to PARI; 

# - PARI's algorithm encounters a zero-divisor which is not zero. 

  

factors = n.factor() 

cdef Py_ssize_t i, j, ti, L, root_of_unity = -1 

primes = [p for p, _ in factors] 

L = len(primes) 

if any(e != 1 for _, e in factors): 

# If there are primes that occur in the factorization with multiplicity 

# greater than one we use the fact that Phi_ar(x) = Phi_r(x^a) when all 

# primes dividing a divide r. 

rad = prod(primes) 

pow = n // rad 

x = x ** pow 

n = rad 

if x == 1: 

# if n is prime, return n 

if L == 1: 

return n * x # in case the parent of x has nonzero characteristic 

else: 

return x 

xd = [x] # the x^d for d | n 

cdef char mu 

cdef char* md = <char*>sig_malloc(sizeof(char) * (1 << L)) # the mu(d) for d | n 

try: 

md[0] = 1 

if L & 1: 

mu = -1 

num = 1 

den = x - 1 

else: 

mu = 1 

num = x - 1 

den = 1 

for i in xrange(L): 

ti = 1 << i 

p = primes[i] 

for j in xrange(ti): 

xpow = xd[j]**p 

xd.append(xpow) 

md[ti+j] = -md[j] 

# if xpow = 1, we record such smallest index, 

# and deal with the corresponding factors at the end. 

if xpow == one: 

if root_of_unity == -1: 

root_of_unity = ti+j 

elif mu == md[ti+j]: 

num *= xpow - one 

else: 

den *= xpow - one 

finally: 

sig_free(md) 

try: 

ans = num / den 

except ZeroDivisionError: 

# We fall back on evaluation of the cyclotomic polynomial. 

# This case is triggered in cyclotomic_value(10, mod(3, 4)) for example. 

from sage.misc.functional import cyclotomic_polynomial 

return cyclotomic_polynomial(n)(x) 

if root_of_unity >= 0: 

# x is a root of unity. If root_of_unity=2^L, x is a primitive 

# root of unity and the value is zero 

if root_of_unity == (1 << L) - 1: 

return x - x # preserves the parent, as well as precision for p-adic x 

# x is a primitive d-th root of unity, where d|n and d<n. 

# If root_of_unity = (1<<L) - (1<<(i-1)) - 1 for some i < L, 

# then n/d == primes[i] and we need to multiply by primes[i], 

# otherwise n/d is composite and nothing more needs to be done. 

for i in xrange(L): 

if root_of_unity + (1 << i) + 1 == 1 << L: 

ans *= primes[i] 

break 

return x.parent()(ans) 

  

  

def bateman_bound(nn): 

""" 

Reference: 

  

Bateman, P. T.; Pomerance, C.; Vaughan, R. C. 

*On the size of the coefficients of the cyclotomic polynomial.* 

""" 

_, n = nn.val_unit(2) 

primes = [p for p, _ in factor(n)] 

j = len(primes) 

return prod(primes[k] ** (2 ** (j - k - 2) - 1) for k in xrange(j - 2))