Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

r""" 

Constructors for polynomial rings 

 

This module provides the function :func:`PolynomialRing`, which constructs 

rings of univariate and multivariate polynomials, and implements caching to 

prevent the same ring being created in memory multiple times (which is 

wasteful and breaks the general assumption in Sage that parents are unique). 

 

There is also a function :func:`BooleanPolynomialRing_constructor`, used for 

constructing Boolean polynomial rings, which are not technically polynomial 

rings but rather quotients of them (see module 

:mod:`sage.rings.polynomial.pbori` for more details). 

""" 

 

#***************************************************************************** 

# Copyright (C) 2006 William Stein <wstein@gmail.com> 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

 

from __future__ import absolute_import, print_function 

 

from sage.structure.category_object import normalize_names 

import sage.rings.ring as ring 

import sage.rings.padics.padic_base_leaves as padic_base_leaves 

 

from sage.rings.integer import Integer 

from sage.rings.finite_rings.finite_field_constructor import is_FiniteField 

from sage.rings.finite_rings.integer_mod_ring import is_IntegerModRing 

 

from sage.misc.cachefunc import weak_cached_function 

 

from sage.categories.fields import Fields 

_Fields = Fields() 

from sage.categories.commutative_rings import CommutativeRings 

_CommutativeRings = CommutativeRings() 

from sage.categories.complete_discrete_valuation import CompleteDiscreteValuationRings, CompleteDiscreteValuationFields 

_CompleteDiscreteValuationRings = CompleteDiscreteValuationRings() 

_CompleteDiscreteValuationFields = CompleteDiscreteValuationFields() 

 

import sage.misc.weak_dict 

_cache = sage.misc.weak_dict.WeakValueDictionary() 

 

 

# The signature for this function is too complicated to express sensibly 

# in any other way besides *args and **kwds (in Python 3 or Cython, we 

# could probably do better thanks to PEP 3102). 

def PolynomialRing(base_ring, *args, **kwds): 

r""" 

Return the globally unique univariate or multivariate polynomial 

ring with given properties and variable name or names. 

 

There are many ways to specify the variables for the polynomial ring: 

 

1. ``PolynomialRing(base_ring, name, ...)`` 

2. ``PolynomialRing(base_ring, names, ...)`` 

3. ``PolynomialRing(base_ring, n, names, ...)`` 

4. ``PolynomialRing(base_ring, n, ..., var_array=var_array, ...)`` 

 

The ``...`` at the end of these commands stands for additional 

keywords, like ``sparse`` or ``order``. 

 

INPUT: 

 

- ``base_ring`` -- a ring 

 

- ``n`` -- an integer 

 

- ``name`` -- a string 

 

- ``names`` -- a list or tuple of names (strings), or a comma separated string 

 

- ``var_array`` -- a list or tuple of names, or a comma separated string 

 

- ``sparse`` -- bool: whether or not elements are sparse. The 

default is a dense representation (``sparse=False``) for 

univariate rings and a sparse representation (``sparse=True``) 

for multivariate rings. 

 

- ``order`` -- string or 

:class:`~sage.rings.polynomial.term_order.TermOrder` object, e.g., 

 

- ``'degrevlex'`` (default) -- degree reverse lexicographic 

- ``'lex'`` -- lexicographic 

- ``'deglex'`` -- degree lexicographic 

- ``TermOrder('deglex',3) + TermOrder('deglex',3)`` -- block ordering 

 

- ``implementation`` -- string or None; selects an implementation in cases 

where Sage includes multiple choices (currently `\ZZ[x]` can be 

implemented with ``'NTL'`` or ``'FLINT'``; default is ``'FLINT'``). 

For many base rings, the ``"singular"`` implementation is available. 

One can always specify ``implementation="generic"`` for a generic 

Sage implementation which does not use any specialized library. 

 

.. NOTE:: 

 

If the given implementation does not exist for rings with the given 

number of generators and the given sparsity, then an error results. 

 

OUTPUT: 

 

``PolynomialRing(base_ring, name, sparse=False)`` returns a univariate 

polynomial ring; also, PolynomialRing(base_ring, names, sparse=False) 

yields a univariate polynomial ring, if names is a list or tuple 

providing exactly one name. All other input formats return a 

multivariate polynomial ring. 

 

UNIQUENESS and IMMUTABILITY: In Sage there is exactly one 

single-variate polynomial ring over each base ring in each choice 

of variable, sparseness, and implementation. There is also exactly 

one multivariate polynomial ring over each base ring for each 

choice of names of variables and term order. The names of the 

generators can only be temporarily changed after the ring has been 

created. Do this using the localvars context: 

 

EXAMPLES: 

 

**1. PolynomialRing(base_ring, name, ...)** 

 

:: 

 

sage: PolynomialRing(QQ, 'w') 

Univariate Polynomial Ring in w over Rational Field 

sage: PolynomialRing(QQ, name='w') 

Univariate Polynomial Ring in w over Rational Field 

 

Use the diamond brackets notation to make the variable 

ready for use after you define the ring:: 

 

sage: R.<w> = PolynomialRing(QQ) 

sage: (1 + w)^3 

w^3 + 3*w^2 + 3*w + 1 

 

You must specify a name:: 

 

sage: PolynomialRing(QQ) 

Traceback (most recent call last): 

... 

TypeError: you must specify the names of the variables 

 

sage: R.<abc> = PolynomialRing(QQ, sparse=True); R 

Sparse Univariate Polynomial Ring in abc over Rational Field 

 

sage: R.<w> = PolynomialRing(PolynomialRing(GF(7),'k')); R 

Univariate Polynomial Ring in w over Univariate Polynomial Ring in k over Finite Field of size 7 

 

The square bracket notation:: 

 

sage: R.<y> = QQ['y']; R 

Univariate Polynomial Ring in y over Rational Field 

sage: y^2 + y 

y^2 + y 

 

In fact, since the diamond brackets on the left determine the 

variable name, you can omit the variable from the square brackets:: 

 

sage: R.<zz> = QQ[]; R 

Univariate Polynomial Ring in zz over Rational Field 

sage: (zz + 1)^2 

zz^2 + 2*zz + 1 

 

This is exactly the same ring as what PolynomialRing returns:: 

 

sage: R is PolynomialRing(QQ,'zz') 

True 

 

However, rings with different variables are different:: 

 

sage: QQ['x'] == QQ['y'] 

False 

 

Sage has two implementations of univariate polynomials over the 

integers, one based on NTL and one based on FLINT. The default 

is FLINT. Note that FLINT uses a "more dense" representation for 

its polynomials than NTL, so in particular, creating a polynomial 

like 2^1000000 * x^1000000 in FLINT may be unwise. 

:: 

 

sage: ZxNTL = PolynomialRing(ZZ, 'x', implementation='NTL'); ZxNTL 

Univariate Polynomial Ring in x over Integer Ring (using NTL) 

sage: ZxFLINT = PolynomialRing(ZZ, 'x', implementation='FLINT'); ZxFLINT 

Univariate Polynomial Ring in x over Integer Ring 

sage: ZxFLINT is ZZ['x'] 

True 

sage: ZxFLINT is PolynomialRing(ZZ, 'x') 

True 

sage: xNTL = ZxNTL.gen() 

sage: xFLINT = ZxFLINT.gen() 

sage: xNTL.parent() 

Univariate Polynomial Ring in x over Integer Ring (using NTL) 

sage: xFLINT.parent() 

Univariate Polynomial Ring in x over Integer Ring 

 

There is a coercion from the non-default to the default 

implementation, so the values can be mixed in a single 

expression:: 

 

sage: (xNTL + xFLINT^2) 

x^2 + x 

 

The result of such an expression will use the default, i.e., 

the FLINT implementation:: 

 

sage: (xNTL + xFLINT^2).parent() 

Univariate Polynomial Ring in x over Integer Ring 

 

The generic implementation uses neither NTL nor FLINT:: 

 

sage: Zx = PolynomialRing(ZZ, 'x', implementation='generic'); Zx 

Univariate Polynomial Ring in x over Integer Ring 

sage: Zx.element_class 

<... 'sage.rings.polynomial.polynomial_element.Polynomial_generic_dense'> 

 

**2. PolynomialRing(base_ring, names, ...)** 

 

:: 

 

sage: R = PolynomialRing(QQ, 'a,b,c'); R 

Multivariate Polynomial Ring in a, b, c over Rational Field 

 

sage: S = PolynomialRing(QQ, ['a','b','c']); S 

Multivariate Polynomial Ring in a, b, c over Rational Field 

 

sage: T = PolynomialRing(QQ, ('a','b','c')); T 

Multivariate Polynomial Ring in a, b, c over Rational Field 

 

All three rings are identical:: 

 

sage: R is S 

True 

sage: S is T 

True 

 

There is a unique polynomial ring with each term order:: 

 

sage: R = PolynomialRing(QQ, 'x,y,z', order='degrevlex'); R 

Multivariate Polynomial Ring in x, y, z over Rational Field 

sage: S = PolynomialRing(QQ, 'x,y,z', order='invlex'); S 

Multivariate Polynomial Ring in x, y, z over Rational Field 

sage: S is PolynomialRing(QQ, 'x,y,z', order='invlex') 

True 

sage: R == S 

False 

 

Note that a univariate polynomial ring is returned, if the list 

of names is of length one. If it is of length zero, a multivariate 

polynomial ring with no variables is returned. 

 

:: 

 

sage: PolynomialRing(QQ,["x"]) 

Univariate Polynomial Ring in x over Rational Field 

sage: PolynomialRing(QQ,[]) 

Multivariate Polynomial Ring in no variables over Rational Field 

 

The Singular implementation always returns a multivariate ring, 

even for 1 variable:: 

 

sage: PolynomialRing(QQ, "x", implementation="singular") 

Multivariate Polynomial Ring in x over Rational Field 

sage: P.<x> = PolynomialRing(QQ, implementation="singular"); P 

Multivariate Polynomial Ring in x over Rational Field 

 

**3. PolynomialRing(base_ring, n, names, ...)** (where the arguments 

``n`` and ``names`` may be reversed) 

 

If you specify a single name as a string and a number of 

variables, then variables labeled with numbers are created. 

 

:: 

 

sage: PolynomialRing(QQ, 'x', 10) 

Multivariate Polynomial Ring in x0, x1, x2, x3, x4, x5, x6, x7, x8, x9 over Rational Field 

 

sage: PolynomialRing(QQ, 2, 'alpha0') 

Multivariate Polynomial Ring in alpha00, alpha01 over Rational Field 

 

sage: PolynomialRing(GF(7), 'y', 5) 

Multivariate Polynomial Ring in y0, y1, y2, y3, y4 over Finite Field of size 7 

 

sage: PolynomialRing(QQ, 'y', 3, sparse=True) 

Multivariate Polynomial Ring in y0, y1, y2 over Rational Field 

 

Note that a multivariate polynomial ring is returned when an 

explicit number is given. 

 

:: 

 

sage: PolynomialRing(QQ,"x",1) 

Multivariate Polynomial Ring in x over Rational Field 

sage: PolynomialRing(QQ,"x",0) 

Multivariate Polynomial Ring in no variables over Rational Field 

 

It is easy in Python to create fairly arbitrary variable names. For 

example, here is a ring with generators labeled by the primes less 

than 100:: 

 

sage: R = PolynomialRing(ZZ, ['x%s'%p for p in primes(100)]); R 

Multivariate Polynomial Ring in x2, x3, x5, x7, x11, x13, x17, x19, x23, x29, x31, x37, x41, x43, x47, x53, x59, x61, x67, x71, x73, x79, x83, x89, x97 over Integer Ring 

 

By calling the 

:meth:`~sage.structure.category_object.CategoryObject.inject_variables` 

method, all those variable names are available for interactive use:: 

 

sage: R.inject_variables() 

Defining x2, x3, x5, x7, x11, x13, x17, x19, x23, x29, x31, x37, x41, x43, x47, x53, x59, x61, x67, x71, x73, x79, x83, x89, x97 

sage: (x2 + x41 + x71)^2 

x2^2 + 2*x2*x41 + x41^2 + 2*x2*x71 + 2*x41*x71 + x71^2 

 

**4. PolynomialRing(base_ring, n, ..., var_array=var_array, ...)** 

 

This creates an array of variables where each variables begins with an 

entry in ``var_array`` and is indexed from 0 to `n-1`. :: 

 

sage: PolynomialRing(ZZ, 3, var_array=['x','y']) 

Multivariate Polynomial Ring in x0, y0, x1, y1, x2, y2 over Integer Ring 

sage: PolynomialRing(ZZ, 3, var_array='a,b') 

Multivariate Polynomial Ring in a0, b0, a1, b1, a2, b2 over Integer Ring 

 

It is possible to create higher-dimensional arrays:: 

 

sage: PolynomialRing(ZZ, 2, 3, var_array=('p', 'q')) 

Multivariate Polynomial Ring in p00, q00, p01, q01, p02, q02, p10, q10, p11, q11, p12, q12 over Integer Ring 

sage: PolynomialRing(ZZ, 2, 3, 4, var_array='m') 

Multivariate Polynomial Ring in m000, m001, m002, m003, m010, m011, m012, m013, m020, m021, m022, m023, m100, m101, m102, m103, m110, m111, m112, m113, m120, m121, m122, m123 over Integer Ring 

 

The array is always at least 2-dimensional. So, if 

``var_array`` is a single string and only a single number `n` 

is given, this creates an `n \times n` array of variables:: 

 

sage: PolynomialRing(ZZ, 2, var_array='m') 

Multivariate Polynomial Ring in m00, m01, m10, m11 over Integer Ring 

 

**Square brackets notation** 

 

You can alternatively create a polynomial ring over a ring `R` with 

square brackets:: 

 

sage: RR["x"] 

Univariate Polynomial Ring in x over Real Field with 53 bits of precision 

sage: RR["x,y"] 

Multivariate Polynomial Ring in x, y over Real Field with 53 bits of precision 

sage: P.<x,y> = RR[]; P 

Multivariate Polynomial Ring in x, y over Real Field with 53 bits of precision 

 

This notation does not allow to set any of the optional arguments. 

 

**Changing variable names** 

 

Consider :: 

 

sage: R.<x,y> = PolynomialRing(QQ,2); R 

Multivariate Polynomial Ring in x, y over Rational Field 

sage: f = x^2 - 2*y^2 

 

You can't just globally change the names of those variables. 

This is because objects all over Sage could have pointers to 

that polynomial ring. :: 

 

sage: R._assign_names(['z','w']) 

Traceback (most recent call last): 

... 

ValueError: variable names cannot be changed after object creation. 

 

However, you can very easily change the names within a ``with`` block:: 

 

sage: with localvars(R, ['z','w']): 

....: print(f) 

z^2 - 2*w^2 

 

After the ``with`` block the names revert to what they were before:: 

 

sage: print(f) 

x^2 - 2*y^2 

 

TESTS: 

 

We test here some changes introduced in :trac:`9944`. 

 

If there is no dense implementation for the given number of 

variables, then requesting a dense ring is an error:: 

 

sage: S.<x,y> = PolynomialRing(QQ, sparse=False) 

Traceback (most recent call last): 

... 

NotImplementedError: a dense representation of multivariate polynomials is not supported 

 

Check uniqueness if the same implementation is used for different 

values of the ``"implementation"`` keyword:: 

 

sage: R = PolynomialRing(QQbar, 'j', implementation="generic") 

sage: S = PolynomialRing(QQbar, 'j', implementation=None) 

sage: R is S 

True 

 

sage: R = PolynomialRing(ZZ['t'], 'j', implementation="generic") 

sage: S = PolynomialRing(ZZ['t'], 'j', implementation=None) 

sage: R is S 

True 

 

sage: R = PolynomialRing(QQbar, 'j,k', implementation="generic") 

sage: S = PolynomialRing(QQbar, 'j,k', implementation=None) 

sage: R is S 

True 

 

sage: R = PolynomialRing(ZZ, 'j,k', implementation="singular") 

sage: S = PolynomialRing(ZZ, 'j,k', implementation=None) 

sage: R is S 

True 

 

sage: R = PolynomialRing(ZZ, 'p', sparse=True, implementation="generic") 

sage: S = PolynomialRing(ZZ, 'p', sparse=True) 

sage: R is S 

True 

 

The generic implementation is different in some cases:: 

 

sage: R = PolynomialRing(GF(2), 'j', implementation="generic"); type(R) 

<class 'sage.rings.polynomial.polynomial_ring.PolynomialRing_field_with_category'> 

sage: S = PolynomialRing(GF(2), 'j'); type(S) 

<class 'sage.rings.polynomial.polynomial_ring.PolynomialRing_dense_mod_p_with_category'> 

 

sage: R = PolynomialRing(ZZ, 'x,y', implementation="generic"); type(R) 

<class 'sage.rings.polynomial.multi_polynomial_ring.MPolynomialRing_polydict_domain_with_category'> 

sage: S = PolynomialRing(ZZ, 'x,y'); type(S) 

<type 'sage.rings.polynomial.multi_polynomial_libsingular.MPolynomialRing_libsingular'> 

 

Sparse univariate polynomials only support a generic 

implementation:: 

 

sage: R = PolynomialRing(ZZ, 'j', sparse=True); type(R) 

<class 'sage.rings.polynomial.polynomial_ring.PolynomialRing_integral_domain_with_category'> 

sage: R = PolynomialRing(GF(49), 'j', sparse=True); type(R) 

<class 'sage.rings.polynomial.polynomial_ring.PolynomialRing_field_with_category'> 

 

If the requested implementation is not known or not supported for 

the given arguments, then an error results:: 

 

sage: R.<x0> = PolynomialRing(ZZ, implementation='Foo') 

Traceback (most recent call last): 

... 

ValueError: unknown implementation 'Foo' for dense polynomial rings over Integer Ring 

sage: R.<x0> = PolynomialRing(GF(2), implementation='GF2X', sparse=True) 

Traceback (most recent call last): 

... 

ValueError: unknown implementation 'GF2X' for sparse polynomial rings over Finite Field of size 2 

sage: R.<x,y> = PolynomialRing(ZZ, implementation='FLINT') 

Traceback (most recent call last): 

... 

ValueError: unknown implementation 'FLINT' for multivariate polynomial rings 

sage: R.<x> = PolynomialRing(QQbar, implementation="whatever") 

Traceback (most recent call last): 

... 

ValueError: unknown implementation 'whatever' for dense polynomial rings over Algebraic Field 

sage: R.<x> = PolynomialRing(ZZ['t'], implementation="whatever") 

Traceback (most recent call last): 

... 

ValueError: unknown implementation 'whatever' for dense polynomial rings over Univariate Polynomial Ring in t over Integer Ring 

sage: PolynomialRing(RR, "x,y", implementation="whatever") 

Traceback (most recent call last): 

... 

ValueError: unknown implementation 'whatever' for multivariate polynomial rings 

sage: PolynomialRing(RR, name="x", implementation="singular") 

Traceback (most recent call last): 

... 

NotImplementedError: polynomials over Real Field with 53 bits of precision are not supported in Singular 

 

The following corner case used to result in a warning message from 

``libSingular``, and the generators of the resulting polynomial 

ring were not zero:: 

 

sage: R = Integers(1)['x','y'] 

sage: R.0 == 0 

True 

 

We verify that :trac:`13187` is fixed:: 

 

sage: var('t') 

t 

sage: PolynomialRing(ZZ, name=t) == PolynomialRing(ZZ, name='t') 

True 

 

We verify that polynomials with interval coefficients from 

:trac:`7712` and :trac:`13760` are fixed:: 

 

sage: P.<y,z> = PolynomialRing(RealIntervalField(2)) 

sage: Q.<x> = PolynomialRing(P) 

sage: C = (y-x)^3 

sage: C(y/2) 

1.?*y^3 

sage: R.<x,y> = PolynomialRing(RIF,2) 

sage: RIF(-2,1)*x 

0.?e1*x 

 

For historical reasons, we allow redundant variable names with the 

angle bracket notation. The names must be consistent though! :: 

 

sage: P.<x,y> = PolynomialRing(ZZ, "x,y"); P 

Multivariate Polynomial Ring in x, y over Integer Ring 

sage: P.<x,y> = ZZ["x,y"]; P 

Multivariate Polynomial Ring in x, y over Integer Ring 

sage: P.<x,y> = PolynomialRing(ZZ, 2, "x"); P 

Traceback (most recent call last): 

... 

TypeError: variable names specified twice inconsistently: ('x0', 'x1') and ('x', 'y') 

 

We test a lot of invalid input:: 

 

sage: PolynomialRing(4) 

Traceback (most recent call last): 

... 

TypeError: base_ring 4 must be a ring 

sage: PolynomialRing(QQ, -1) 

Traceback (most recent call last): 

... 

ValueError: number of variables must be non-negative 

sage: PolynomialRing(QQ, 1) 

Traceback (most recent call last): 

... 

TypeError: you must specify the names of the variables 

sage: PolynomialRing(QQ, "x", None) 

Traceback (most recent call last): 

... 

TypeError: invalid arguments ('x', None) for PolynomialRing 

sage: PolynomialRing(QQ, "x", "y") 

Traceback (most recent call last): 

... 

TypeError: variable names specified twice: 'x' and 'y' 

sage: PolynomialRing(QQ, 1, "x", 2) 

Traceback (most recent call last): 

... 

TypeError: number of variables specified twice: 1 and 2 

sage: PolynomialRing(QQ, "x", names="x") 

Traceback (most recent call last): 

... 

TypeError: variable names specified twice inconsistently: ('x',) and 'x' 

sage: PolynomialRing(QQ, name="x", names="x") 

Traceback (most recent call last): 

... 

TypeError: keyword argument 'name' cannot be combined with 'names' 

sage: PolynomialRing(QQ, var_array='x') 

Traceback (most recent call last): 

... 

TypeError: you must specify the number of the variables 

sage: PolynomialRing(QQ, 2, 'x', var_array='x') 

Traceback (most recent call last): 

... 

TypeError: unable to convert 'x' to an integer 

""" 

if not ring.is_Ring(base_ring): 

raise TypeError("base_ring {!r} must be a ring".format(base_ring)) 

 

n = -1 # Unknown number of variables 

names = None # Unknown variable names 

 

# Use a single-variate ring by default unless the "singular" 

# implementation is asked. 

multivariate = kwds.get("implementation") == "singular" 

 

# Check specifically for None because it is an easy mistake to 

# make and Integer(None) returns 0, so we wouldn't catch this 

# otherwise. 

if any(arg is None for arg in args): 

raise TypeError("invalid arguments {!r} for PolynomialRing".format(args)) 

 

if "var_array" in kwds: 

for forbidden in "name", "names": 

if forbidden in kwds: 

raise TypeError("keyword argument '%s' cannot be combined with 'var_array'" % forbidden) 

 

names = kwds.pop("var_array") 

if isinstance(names, (tuple, list)): 

# Input is a 1-dimensional array 

dim = 1 

else: 

# Input is a 0-dimensional (if a single string was given) 

# or a 1-dimensional array 

names = normalize_names(-1, names) 

dim = len(names) > 1 

multivariate = True 

 

if not args: 

raise TypeError("you must specify the number of the variables") 

# The total dimension must be at least 2 

if len(args) == 1 and not dim: 

args = [args[0], args[0]] 

 

# All arguments in *args should be a number of variables 

suffixes = [""] 

for arg in args: 

k = Integer(arg) 

if k < 0: 

raise ValueError("number of variables must be non-negative") 

suffixes = [s + str(i) for s in suffixes for i in range(k)] 

names = [v + s for s in suffixes for v in names] 

else: # No "var_array" keyword 

if "name" in kwds: 

if "names" in kwds: 

raise TypeError("keyword argument 'name' cannot be combined with 'names'") 

names = [kwds.pop("name")] 

 

# Interpret remaining arguments in *args as either a number of 

# variables or as variable names 

for arg in args: 

try: 

k = Integer(arg) 

except TypeError: 

# Interpret arg as names 

if names is not None: 

raise TypeError("variable names specified twice: %r and %r" % (names, arg)) 

names = arg 

else: 

# Interpret arg as number of variables 

if n >= 0: 

raise TypeError("number of variables specified twice: %r and %r" % (n, arg)) 

if k < 0: 

raise ValueError("number of variables must be non-negative") 

n = k 

# If number of variables was explicitly given, always 

# return a multivariate ring 

multivariate = True 

 

if names is None: 

try: 

names = kwds.pop("names") 

except KeyError: 

raise TypeError("you must specify the names of the variables") 

 

names = normalize_names(n, names) 

 

# At this point, we have only handled the "names" keyword if it was 

# needed. Since we know the variable names, it would logically be 

# an error to specify an additional "names" keyword. However, 

# people often abuse the preparser with 

# R.<x> = PolynomialRing(QQ, 'x') 

# and we allow this for historical reasons. However, the names 

# must be consistent! 

if "names" in kwds: 

kwnames = kwds.pop("names") 

if kwnames != names: 

raise TypeError("variable names specified twice inconsistently: %r and %r" % (names, kwnames)) 

 

if multivariate or len(names) != 1: 

return _multi_variate(base_ring, names, **kwds) 

else: 

return _single_variate(base_ring, names, **kwds) 

 

 

def unpickle_PolynomialRing(base_ring, arg1=None, arg2=None, sparse=False): 

""" 

Custom unpickling function for polynomial rings. 

 

This has the same positional arguments as the old 

``PolynomialRing`` constructor before :trac:`23338`. 

""" 

args = [arg for arg in (arg1, arg2) if arg is not None] 

return PolynomialRing(base_ring, *args, sparse=sparse) 

 

from sage.structure.sage_object import register_unpickle_override 

register_unpickle_override('sage.rings.polynomial.polynomial_ring_constructor', 'PolynomialRing', unpickle_PolynomialRing) 

 

 

def _get_from_cache(key): 

key = tuple(key) 

return _cache.get(key) 

 

 

def _save_in_cache(key, R): 

key = tuple(key) 

_cache[key] = R 

 

 

def _single_variate(base_ring, name, sparse=None, implementation=None, order=None): 

# The "order" argument is unused, but we allow it (and ignore it) 

# for consistency with the multi-variate case. 

sparse = bool(sparse) 

 

# "implementation" must be last 

key = [base_ring, name, sparse, implementation] 

R = _get_from_cache(key) 

if R is not None: 

return R 

 

from . import polynomial_ring 

 

# Find the right constructor and **kwds for our polynomial ring 

constructor = None 

kwds = {} 

if sparse: 

kwds["sparse"] = True 

 

# Specialized implementations 

specialized = None 

if is_IntegerModRing(base_ring): 

n = base_ring.order() 

if n.is_prime(): 

specialized = polynomial_ring.PolynomialRing_dense_mod_p 

elif n > 1: # Specialized code breaks for n == 1 

specialized = polynomial_ring.PolynomialRing_dense_mod_n 

elif is_FiniteField(base_ring): 

specialized = polynomial_ring.PolynomialRing_dense_finite_field 

elif isinstance(base_ring, padic_base_leaves.pAdicFieldCappedRelative): 

specialized = polynomial_ring.PolynomialRing_dense_padic_field_capped_relative 

elif isinstance(base_ring, padic_base_leaves.pAdicRingCappedRelative): 

specialized = polynomial_ring.PolynomialRing_dense_padic_ring_capped_relative 

elif isinstance(base_ring, padic_base_leaves.pAdicRingCappedAbsolute): 

specialized = polynomial_ring.PolynomialRing_dense_padic_ring_capped_absolute 

elif isinstance(base_ring, padic_base_leaves.pAdicRingFixedMod): 

specialized = polynomial_ring.PolynomialRing_dense_padic_ring_fixed_mod 

 

# If the implementation is supported, then we are done 

if specialized is not None: 

implementation_names = specialized._implementation_names_impl(implementation, base_ring, sparse) 

if implementation_names is not NotImplemented: 

implementation = implementation_names[0] 

constructor = specialized 

 

# Generic implementations 

if constructor is None: 

if not isinstance(base_ring, ring.CommutativeRing): 

constructor = polynomial_ring.PolynomialRing_general 

elif base_ring in _CompleteDiscreteValuationRings: 

constructor = polynomial_ring.PolynomialRing_cdvr 

elif base_ring in _CompleteDiscreteValuationFields: 

constructor = polynomial_ring.PolynomialRing_cdvf 

elif base_ring.is_field(proof=False): 

constructor = polynomial_ring.PolynomialRing_field 

elif base_ring.is_integral_domain(proof=False): 

constructor = polynomial_ring.PolynomialRing_integral_domain 

else: 

constructor = polynomial_ring.PolynomialRing_commutative 

implementation_names = constructor._implementation_names(implementation, base_ring, sparse) 

implementation = implementation_names[0] 

 

# Only use names which are not supported by the specialized class. 

if specialized is not None: 

implementation_names = [n for n in implementation_names if 

specialized._implementation_names_impl(n, base_ring, sparse) is NotImplemented] 

 

if implementation is not None: 

kwds["implementation"] = implementation 

R = constructor(base_ring, name, **kwds) 

 

for impl in implementation_names: 

key[-1] = impl 

_save_in_cache(key, R) 

 

return R 

 

 

def _multi_variate(base_ring, names, sparse=None, order="degrevlex", implementation=None): 

if sparse is None: 

sparse = True 

if not sparse: 

raise NotImplementedError("a dense representation of multivariate polynomials is not supported") 

 

from sage.rings.polynomial.term_order import TermOrder 

n = len(names) 

order = TermOrder(order, n) 

 

# "implementation" must be last 

key = [base_ring, names, n, order, implementation] 

R = _get_from_cache(key) 

if R is not None: 

return R 

 

# Multiple arguments for the "implementation" keyword which actually 

# yield the same implementation. We need this for caching. 

implementation_names = set([implementation]) 

 

if implementation is None or implementation == "singular": 

from sage.rings.polynomial.multi_polynomial_libsingular import MPolynomialRing_libsingular 

try: 

R = MPolynomialRing_libsingular(base_ring, n, names, order) 

except (TypeError, NotImplementedError): 

if implementation is not None: 

raise 

else: 

implementation_names.update([None, "singular"]) 

 

if R is None and implementation is None: 

# Interpret implementation=None as implementation="generic" 

implementation = "generic" 

implementation_names.add(implementation) 

key[-1] = implementation 

R = _get_from_cache(key) 

 

if R is None and implementation == "generic": 

from . import multi_polynomial_ring 

if isinstance(base_ring, ring.IntegralDomain): 

constructor = multi_polynomial_ring.MPolynomialRing_polydict_domain 

else: 

constructor = multi_polynomial_ring.MPolynomialRing_polydict 

R = constructor(base_ring, n, names, order) 

 

if R is None: 

raise ValueError("unknown implementation %r for multivariate polynomial rings" % (implementation,)) 

 

for impl in implementation_names: 

key[-1] = impl 

_save_in_cache(key, R) 

 

return R 

 

 

######################################################### 

# Choice of a category 

from sage import categories 

from sage.categories.algebras import Algebras 

# Some fixed categories, in order to avoid the function call overhead 

_FiniteSets = categories.sets_cat.Sets().Finite() 

_InfiniteSets = categories.sets_cat.Sets().Infinite() 

_EuclideanDomains = categories.euclidean_domains.EuclideanDomains() 

_UniqueFactorizationDomains = categories.unique_factorization_domains.UniqueFactorizationDomains() 

_IntegralDomains = categories.integral_domains.IntegralDomains() 

_Rings = categories.rings.Rings() 

 

 

@weak_cached_function 

def polynomial_default_category(base_ring_category, n_variables): 

""" 

Choose an appropriate category for a polynomial ring. 

 

It is assumed that the corresponding base ring is nonzero. 

 

INPUT: 

 

- ``base_ring_category`` -- The category of ring over which the polynomial 

ring shall be defined 

- ``n_variables`` -- number of variables 

 

EXAMPLES:: 

 

sage: from sage.rings.polynomial.polynomial_ring_constructor import polynomial_default_category 

sage: polynomial_default_category(Rings(),1) is Algebras(Rings()).Infinite() 

True 

sage: polynomial_default_category(Rings().Commutative(),1) is Algebras(Rings().Commutative()).Commutative().Infinite() 

True 

sage: polynomial_default_category(Fields(),1) is EuclideanDomains() & Algebras(Fields()).Infinite() 

True 

sage: polynomial_default_category(Fields(),2) is UniqueFactorizationDomains() & CommutativeAlgebras(Fields()).Infinite() 

True 

 

sage: QQ['t'].category() is EuclideanDomains() & CommutativeAlgebras(QQ.category()).Infinite() 

True 

sage: QQ['s','t'].category() is UniqueFactorizationDomains() & CommutativeAlgebras(QQ.category()).Infinite() 

True 

sage: QQ['s']['t'].category() is UniqueFactorizationDomains() & CommutativeAlgebras(QQ['s'].category()).Infinite() 

True 

""" 

category = Algebras(base_ring_category) 

 

if n_variables: 

# here we assume the base ring to be nonzero 

category = category.Infinite() 

else: 

if base_ring_category.is_subcategory(_Fields): 

category = category & _Fields 

 

if base_ring_category.is_subcategory(_FiniteSets): 

category = category.Finite() 

elif base_ring_category.is_subcategory(_InfiniteSets): 

category = category.Infinite() 

 

if base_ring_category.is_subcategory(_Fields) and n_variables == 1: 

return category & _EuclideanDomains 

elif base_ring_category.is_subcategory(_UniqueFactorizationDomains): 

return category & _UniqueFactorizationDomains 

elif base_ring_category.is_subcategory(_IntegralDomains): 

return category & _IntegralDomains 

elif base_ring_category.is_subcategory(_CommutativeRings): 

return category & _CommutativeRings 

return category 

 

 

def BooleanPolynomialRing_constructor(n=None, names=None, order="lex"): 

""" 

Construct a boolean polynomial ring with the following 

parameters: 

 

INPUT: 

 

- ``n`` -- number of variables (an integer > 1) 

- ``names`` -- names of ring variables, may be a string or list/tuple of strings 

- ``order`` -- term order (default: lex) 

 

EXAMPLES:: 

 

sage: R.<x, y, z> = BooleanPolynomialRing() # indirect doctest 

sage: R 

Boolean PolynomialRing in x, y, z 

 

sage: p = x*y + x*z + y*z 

sage: x*p 

x*y*z + x*y + x*z 

 

sage: R.term_order() 

Lexicographic term order 

 

sage: R = BooleanPolynomialRing(5,'x',order='deglex(3),deglex(2)') 

sage: R.term_order() 

Block term order with blocks: 

(Degree lexicographic term order of length 3, 

Degree lexicographic term order of length 2) 

 

sage: R = BooleanPolynomialRing(3,'x',order='degneglex') 

sage: R.term_order() 

Degree negative lexicographic term order 

 

sage: BooleanPolynomialRing(names=('x','y')) 

Boolean PolynomialRing in x, y 

 

sage: BooleanPolynomialRing(names='x,y') 

Boolean PolynomialRing in x, y 

 

TESTS:: 

 

sage: P.<x,y> = BooleanPolynomialRing(2,order='deglex') 

sage: x > y 

True 

 

sage: P.<x0, x1, x2, x3> = BooleanPolynomialRing(4,order='deglex(2),deglex(2)') 

sage: x0 > x1 

True 

sage: x2 > x3 

True 

""" 

 

if isinstance(n, str): 

names = n 

n = -1 

elif n is None: 

n = -1 

 

names = normalize_names(n, names) 

n = len(names) 

 

from sage.rings.polynomial.term_order import TermOrder 

 

order = TermOrder(order, n) 

 

key = ("pbori", names, n, order) 

R = _get_from_cache(key) 

if not R is None: 

return R 

 

from sage.rings.polynomial.pbori import BooleanPolynomialRing 

R = BooleanPolynomialRing(n, names, order) 

 

_save_in_cache(key, R) 

return R 

 

######################################################################################### 

# END (Factory function for making polynomial rings) 

#########################################################################################