Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

r""" 

Power Series Rings 

 

Power series rings are constructed in the standard Sage 

fashion. See also :doc:`multi_power_series_ring`. 

 

EXAMPLES: 

 

Construct rings and elements:: 

 

sage: R.<t> = PowerSeriesRing(QQ) 

sage: R.random_element(6) # random 

-4 - 1/2*t^2 - 1/95*t^3 + 1/2*t^4 - 12*t^5 + O(t^6) 

 

:: 

 

sage: R.<t,u,v> = PowerSeriesRing(QQ); R 

Multivariate Power Series Ring in t, u, v over Rational Field 

sage: p = -t + 1/2*t^3*u - 1/4*t^4*u + 2/3*v^5 + R.O(6); p 

-t + 1/2*t^3*u - 1/4*t^4*u + 2/3*v^5 + O(t, u, v)^6 

sage: p in R 

True 

 

The default precision is specified at construction, but does not 

bound the precision of created elements. 

 

:: 

 

sage: R.<t> = PowerSeriesRing(QQ, default_prec=5) 

sage: R.random_element(6) # random 

1/2 - 1/4*t + 2/3*t^2 - 5/2*t^3 + 2/3*t^5 + O(t^6) 

 

Construct univariate power series from a list of coefficients:: 

 

sage: S = R([1, 3, 5, 7]); S 

1 + 3*t + 5*t^2 + 7*t^3 

 

An iterated example:: 

 

sage: R.<t> = PowerSeriesRing(ZZ) 

sage: S.<t2> = PowerSeriesRing(R) 

sage: S 

Power Series Ring in t2 over Power Series Ring in t over Integer Ring 

sage: S.base_ring() 

Power Series Ring in t over Integer Ring 

 

Sage can compute with power series over the symbolic ring. 

 

:: 

 

sage: K.<t> = PowerSeriesRing(SR, default_prec=5) 

sage: a, b, c = var('a,b,c') 

sage: f = a + b*t + c*t^2 + O(t^3) 

sage: f*f 

a^2 + 2*a*b*t + (b^2 + 2*a*c)*t^2 + O(t^3) 

sage: f = sqrt(2) + sqrt(3)*t + O(t^3) 

sage: f^2 

2 + 2*sqrt(3)*sqrt(2)*t + 3*t^2 + O(t^3) 

 

Elements are first coerced to constants in ``base_ring``, then coerced 

into the ``PowerSeriesRing``:: 

 

sage: R.<t> = PowerSeriesRing(ZZ) 

sage: f = Mod(2, 3) * t; (f, f.parent()) 

(2*t, Power Series Ring in t over Ring of integers modulo 3) 

 

We make a sparse power series. 

 

:: 

 

sage: R.<x> = PowerSeriesRing(QQ, sparse=True); R 

Sparse Power Series Ring in x over Rational Field 

sage: f = 1 + x^1000000 

sage: g = f*f 

sage: g.degree() 

2000000 

 

We make a sparse Laurent series from a power series generator:: 

 

sage: R.<t> = PowerSeriesRing(QQ, sparse=True) 

sage: latex(-2/3*(1/t^3) + 1/t + 3/5*t^2 + O(t^5)) 

\frac{-\frac{2}{3}}{t^{3}} + \frac{1}{t} + \frac{3}{5}t^{2} + O(t^{5}) 

sage: S = parent(1/t); S 

Sparse Laurent Series Ring in t over Rational Field 

 

AUTHORS: 

 

- William Stein: the code 

- Jeremy Cho (2006-05-17): some examples (above) 

- Niles Johnson (2010-09): implement multivariate power series 

- Simon King (2012-08): use category and coercion framework, :trac:`13412` 

 

TESTS:: 

 

sage: R.<t> = PowerSeriesRing(QQ) 

sage: R is loads(dumps(R)) 

True 

sage: TestSuite(R).run() 

 

:: 

 

sage: R.<x> = PowerSeriesRing(QQ, sparse=True) 

sage: R is loads(dumps(R)) 

True 

sage: TestSuite(R).run() 

 

:: 

 

sage: M = PowerSeriesRing(QQ, 't,u,v,w', default_prec=20) 

sage: M is loads(dumps(M)) 

True 

sage: TestSuite(M).run() 

 

""" 

from __future__ import absolute_import 

from six import integer_types 

 

from . import power_series_poly 

from . import power_series_mpoly 

from .power_series_pari import PowerSeries_pari 

from . import power_series_ring_element 

 

from sage.rings.polynomial.polynomial_ring import is_PolynomialRing 

from sage.rings.polynomial.multi_polynomial_ring_generic import is_MPolynomialRing 

from .polynomial.polynomial_ring_constructor import PolynomialRing 

from . import laurent_series_ring 

from . import laurent_series_ring_element 

from . import integer 

from . import ring 

from .infinity import infinity 

import sage.misc.latex as latex 

from sage.structure.nonexact import Nonexact 

 

from sage.interfaces.magma import MagmaElement 

from sage.rings.fraction_field_element import FractionFieldElement 

from sage.misc.sage_eval import sage_eval 

 

from sage.structure.unique_representation import UniqueRepresentation 

from sage.structure.category_object import normalize_names 

import sage.categories.commutative_rings as commutative_rings 

_CommutativeRings = commutative_rings.CommutativeRings() 

import sage.categories.integral_domains as integral_domains 

_IntegralDomains = integral_domains.IntegralDomains() 

import sage.categories.fields as fields 

_Fields = fields.Fields() 

 

from sage.categories.complete_discrete_valuation import CompleteDiscreteValuationRings 

 

 

def PowerSeriesRing(base_ring, name=None, arg2=None, names=None, 

sparse=False, default_prec=None, order='negdeglex', 

num_gens=None, implementation=None): 

r""" 

Create a univariate or multivariate power series ring over a given 

(commutative) base ring. 

 

INPUT: 

 

 

- ``base_ring`` - a commutative ring 

 

- ``name``, ``names`` - name(s) of the indeterminate 

 

- ``default_prec`` - the default precision used if an exact object must 

be changed to an approximate object in order to do an arithmetic 

operation. If left as ``None``, it will be set to the global 

default (20) in the univariate case, and 12 in the multivariate case. 

 

- ``sparse`` - (default: ``False``) whether power series 

are represented as sparse objects. 

 

- ``order`` - (default: ``negdeglex``) term ordering, for multivariate case 

 

- ``num_gens`` - number of generators, for multivariate case 

 

 

There is a unique power series ring over each base ring with given 

variable name. Two power series over the same base ring with 

different variable names are not equal or isomorphic. 

 

EXAMPLES (Univariate):: 

 

sage: R = PowerSeriesRing(QQ, 'x'); R 

Power Series Ring in x over Rational Field 

 

:: 

 

sage: S = PowerSeriesRing(QQ, 'y'); S 

Power Series Ring in y over Rational Field 

 

:: 

 

sage: R = PowerSeriesRing(QQ, 10) 

Traceback (most recent call last): 

... 

ValueError: variable name '10' does not start with a letter 

 

:: 

 

sage: S = PowerSeriesRing(QQ, 'x', default_prec = 15); S 

Power Series Ring in x over Rational Field 

sage: S.default_prec() 

15 

 

EXAMPLES (Multivariate) See also :doc:`multi_power_series_ring`:: 

 

sage: R = PowerSeriesRing(QQ, 't,u,v'); R 

Multivariate Power Series Ring in t, u, v over Rational Field 

 

:: 

 

sage: N = PowerSeriesRing(QQ,'w',num_gens=5); N 

Multivariate Power Series Ring in w0, w1, w2, w3, w4 over Rational Field 

 

Number of generators can be specified before variable name without using keyword:: 

 

sage: M = PowerSeriesRing(QQ,4,'k'); M 

Multivariate Power Series Ring in k0, k1, k2, k3 over Rational Field 

 

Multivariate power series can be constructed using angle bracket or double square bracket notation:: 

 

sage: R.<t,u,v> = PowerSeriesRing(QQ, 't,u,v'); R 

Multivariate Power Series Ring in t, u, v over Rational Field 

 

sage: ZZ[['s,t,u']] 

Multivariate Power Series Ring in s, t, u over Integer Ring 

 

Sparse multivariate power series ring:: 

 

sage: M = PowerSeriesRing(QQ,4,'k',sparse=True); M 

Sparse Multivariate Power Series Ring in k0, k1, k2, k3 over 

Rational Field 

 

Power series ring over polynomial ring:: 

 

sage: H = PowerSeriesRing(PolynomialRing(ZZ,3,'z'),4,'f'); H 

Multivariate Power Series Ring in f0, f1, f2, f3 over Multivariate 

Polynomial Ring in z0, z1, z2 over Integer Ring 

 

Power series ring over finite field:: 

 

sage: S = PowerSeriesRing(GF(65537),'x,y'); S 

Multivariate Power Series Ring in x, y over Finite Field of size 

65537 

 

Power series ring with many variables:: 

 

sage: R = PowerSeriesRing(ZZ, ['x%s'%p for p in primes(100)]); R 

Multivariate Power Series Ring in x2, x3, x5, x7, x11, x13, x17, x19, 

x23, x29, x31, x37, x41, x43, x47, x53, x59, x61, x67, x71, x73, x79, 

x83, x89, x97 over Integer Ring 

 

- Use :meth:`inject_variables` to make the variables available for 

interactive use. 

 

:: 

 

sage: R.inject_variables() 

Defining x2, x3, x5, x7, x11, x13, x17, x19, x23, x29, x31, x37, 

x41, x43, x47, x53, x59, x61, x67, x71, x73, x79, x83, x89, x97 

 

sage: f = x47 + 3*x11*x29 - x19 + R.O(3) 

sage: f in R 

True 

 

 

Variable ordering determines how series are displayed:: 

 

sage: T.<a,b> = PowerSeriesRing(ZZ,order='deglex'); T 

Multivariate Power Series Ring in a, b over Integer Ring 

sage: T.term_order() 

Degree lexicographic term order 

sage: p = - 2*b^6 + a^5*b^2 + a^7 - b^2 - a*b^3 + T.O(9); p 

a^7 + a^5*b^2 - 2*b^6 - a*b^3 - b^2 + O(a, b)^9 

 

sage: U = PowerSeriesRing(ZZ,'a,b',order='negdeglex'); U 

Multivariate Power Series Ring in a, b over Integer Ring 

sage: U.term_order() 

Negative degree lexicographic term order 

sage: U(p) 

-b^2 - a*b^3 - 2*b^6 + a^7 + a^5*b^2 + O(a, b)^9 

 

 

TESTS:: 

 

sage: N = PowerSeriesRing(QQ,'k',num_gens=5); N 

Multivariate Power Series Ring in k0, k1, k2, k3, k4 over Rational Field 

 

The following behavior of univariate power series ring will eventually 

be deprecated and then changed to return a multivariate power series 

ring:: 

 

sage: N = PowerSeriesRing(QQ,'k',5); N 

Power Series Ring in k over Rational Field 

sage: N.default_prec() 

5 

sage: L.<m> = PowerSeriesRing(QQ,5); L 

Power Series Ring in m over Rational Field 

sage: L.default_prec() 

5 

 

By :trac:`14084`, a power series ring belongs to the category of integral 

domains, if the base ring does:: 

 

sage: P = ZZ[['x']] 

sage: P.category() 

Category of integral domains 

sage: TestSuite(P).run() 

sage: M = ZZ[['x','y']] 

sage: M.category() 

Category of integral domains 

sage: TestSuite(M).run() 

 

Otherwise, it belongs to the category of commutative rings:: 

 

sage: P = Integers(15)[['x']] 

sage: P.category() 

Category of commutative rings 

sage: TestSuite(P).run() 

sage: M = Integers(15)[['x','y']] 

sage: M.category() 

Category of commutative rings 

sage: TestSuite(M).run() 

 

.. SEEALSO:: 

 

* :func:`sage.misc.defaults.set_series_precision` 

""" 

#multivariate case: 

# examples for first case: 

# PowerSeriesRing(QQ,'x,y,z') 

# PowerSeriesRing(QQ,['x','y','z']) 

# PowerSeriesRing(QQ,['x','y','z'], 3) 

if names is None and name is not None: 

names = name 

if isinstance(names, (tuple, list)) and len(names) > 1 or (isinstance(names, str) and ',' in names): 

return _multi_variate(base_ring, num_gens=arg2, names=names, 

order=order, default_prec=default_prec, sparse=sparse) 

# examples for second case: 

# PowerSeriesRing(QQ,3,'t') 

if arg2 is None and num_gens is not None: 

arg2 = names 

names = num_gens 

if (isinstance(arg2, str) and 

isinstance(names, integer_types + (integer.Integer,))): 

return _multi_variate(base_ring, num_gens=names, names=arg2, 

order=order, default_prec=default_prec, sparse=sparse) 

 

 

# univariate case: the arguments to PowerSeriesRing used to be 

# (base_ring, name=None, default_prec=20, names=None, sparse=False), 

# and thus that is what the code below expects; this behavior is being 

# deprecated, and will eventually be removed. 

if default_prec is None and arg2 is None: 

from sage.misc.defaults import series_precision 

default_prec = series_precision() 

elif arg2 is not None: 

default_prec = arg2 

 

## too many things (padics, elliptic curves) depend on this behavior, 

## so no warning for now. 

## 

# from sage.misc.superseded import deprecation 

# if isinstance(name, (int,integer.Integer)) or isinstance(arg2,(int,integer.Integer)): 

# deprecation(trac_number, "This behavior of PowerSeriesRing is being deprecated in favor of constructing multivariate power series rings. (See Trac ticket #1956.)") 

 

 

# the following is the original, univariate-only code 

 

if isinstance(name, integer_types + (integer.Integer,)): 

default_prec = name 

if not names is None: 

name = names 

name = normalize_names(1, name) 

 

if name is None: 

raise TypeError("You must specify the name of the indeterminate of the Power series ring.") 

 

key = (base_ring, name, default_prec, sparse, implementation) 

if PowerSeriesRing_generic.__classcall__.is_in_cache(key): 

return PowerSeriesRing_generic(*key) 

 

if isinstance(name, (tuple, list)): 

assert len(name) == 1 

name = name[0] 

 

if not (name is None or isinstance(name, str)): 

raise TypeError("variable name must be a string or None") 

 

if base_ring in _Fields: 

R = PowerSeriesRing_over_field(base_ring, name, default_prec, 

sparse=sparse, implementation=implementation) 

elif base_ring in _IntegralDomains: 

R = PowerSeriesRing_domain(base_ring, name, default_prec, 

sparse=sparse, implementation=implementation) 

elif base_ring in _CommutativeRings: 

R = PowerSeriesRing_generic(base_ring, name, default_prec, 

sparse=sparse, implementation=implementation) 

else: 

raise TypeError("base_ring must be a commutative ring") 

return R 

 

def _multi_variate(base_ring, num_gens=None, names=None, 

order='negdeglex', default_prec=None, sparse=False): 

""" 

Construct multivariate power series ring. 

""" 

if names is None: 

raise TypeError("you must specify a variable name or names") 

 

if num_gens is None: 

if isinstance(names,str): 

num_gens = len(names.split(',')) 

elif isinstance(names, (list, tuple)): 

num_gens = len(names) 

else: 

raise TypeError("variable names must be a string, tuple or list") 

names = normalize_names(num_gens, names) 

num_gens = len(names) 

if default_prec is None: 

default_prec = 12 

 

if base_ring not in commutative_rings.CommutativeRings(): 

raise TypeError("base_ring must be a commutative ring") 

from sage.rings.multi_power_series_ring import MPowerSeriesRing_generic 

R = MPowerSeriesRing_generic(base_ring, num_gens, names, 

order=order, default_prec=default_prec, sparse=sparse) 

return R 

 

 

def _single_variate(): 

pass 

 

def is_PowerSeriesRing(R): 

""" 

Return True if this is a *univariate* power series ring. This is in 

keeping with the behavior of ``is_PolynomialRing`` 

versus ``is_MPolynomialRing``. 

 

EXAMPLES:: 

 

sage: from sage.rings.power_series_ring import is_PowerSeriesRing 

sage: is_PowerSeriesRing(10) 

False 

sage: is_PowerSeriesRing(QQ[['x']]) 

True 

""" 

if isinstance(R, PowerSeriesRing_generic): 

return R.ngens() == 1 

else: 

return False 

 

class PowerSeriesRing_generic(UniqueRepresentation, ring.CommutativeRing, Nonexact): 

""" 

A power series ring. 

""" 

 

def __init__(self, base_ring, name=None, default_prec=None, sparse=False, 

use_lazy_mpoly_ring=None, implementation=None, 

category=None): 

""" 

Initializes a power series ring. 

 

INPUT: 

 

 

- ``base_ring`` - a commutative ring 

 

- ``name`` - name of the indeterminate 

 

- ``default_prec`` - the default precision 

 

- ``sparse`` - whether or not power series are 

sparse 

 

- ``implementation`` -- either ``'poly'``, ``'mpoly'``, or 

``'pari'``. The default is ``'pari'`` if the base field is 

a PARI finite field, and ``'poly'`` otherwise. 

 

- ``use_lazy_mpoly_ring`` -- This option is deprecated; use 

``implementation='mpoly'`` instead. 

 

If the base ring is a polynomial ring, then the option 

``implementation='mpoly'`` causes computations to be done with 

multivariate polynomials instead of a univariate polynomial 

ring over the base ring. Only use this for dense power series 

where you won't do too much arithmetic, but the arithmetic you 

do must be fast. You must explicitly call 

``f.do_truncation()`` on an element for it to truncate away 

higher order terms (this is called automatically before 

printing). 

 

EXAMPLES: 

 

This base class inherits from :class:`~sage.rings.ring.CommutativeRing`. 

Since :trac:`11900`, it is also initialised as such, and since :trac:`14084` 

it is actually initialised as an integral domain:: 

 

sage: R.<x> = ZZ[[]] 

sage: R.category() 

Category of integral domains 

sage: TestSuite(R).run() 

 

When the base ring `k` is a field, the ring `k[[x]]` is not only a 

commutative ring, but also a complete discrete valuation ring (CDVR). 

The appropriate (sub)category is automatically set in this case:: 

 

sage: k = GF(11) 

sage: R.<x> = k[[]] 

sage: R.category() 

Category of complete discrete valuation rings 

sage: TestSuite(R).run() 

 

It is checked that the default precision is non-negative 

(see :trac:`19409`):: 

 

sage: PowerSeriesRing(ZZ, 'x', default_prec=-5) 

Traceback (most recent call last): 

... 

ValueError: default_prec (= -5) must be non-negative 

 

""" 

if use_lazy_mpoly_ring is not None: 

deprecation(15601, 'The option use_lazy_mpoly_ring is deprecated; use implementation="mpoly" instead') 

 

from sage.rings.finite_rings.finite_field_pari_ffelt import FiniteField_pari_ffelt 

 

if implementation is None: 

if isinstance(base_ring, FiniteField_pari_ffelt): 

implementation = 'pari' 

elif use_lazy_mpoly_ring and (is_MPolynomialRing(base_ring) or 

is_PolynomialRing(base_ring)): 

implementation = 'mpoly' 

else: 

implementation = 'poly' 

 

R = PolynomialRing(base_ring, name, sparse=sparse) 

self.__poly_ring = R 

self.__is_sparse = sparse 

if default_prec is None: 

from sage.misc.defaults import series_precision 

default_prec = series_precision() 

elif default_prec < 0: 

raise ValueError("default_prec (= %s) must be non-negative" 

% default_prec) 

 

if implementation == 'poly': 

self.Element = power_series_poly.PowerSeries_poly 

elif implementation == 'mpoly': 

K = base_ring 

names = K.variable_names() + (name,) 

self.__mpoly_ring = PolynomialRing(K.base_ring(), names=names) 

assert is_MPolynomialRing(self.__mpoly_ring) 

self.Element = power_series_mpoly.PowerSeries_mpoly 

elif implementation == 'pari': 

self.Element = PowerSeries_pari 

else: 

raise ValueError('unknown power series implementation: %r' % implementation) 

 

ring.CommutativeRing.__init__(self, base_ring, names=name, 

category=getattr(self, '_default_category', 

_CommutativeRings)) 

Nonexact.__init__(self, default_prec) 

if self.Element is PowerSeries_pari: 

self.__generator = self.element_class(self, R.gen().__pari__()) 

else: 

self.__generator = self.element_class(self, R.gen(), is_gen=True) 

 

def variable_names_recursive(self, depth=None): 

r""" 

Return the list of variable names of this and its base rings. 

 

EXAMPLES:: 

 

sage: R = QQ[['x']][['y']][['z']] 

sage: R.variable_names_recursive() 

('x', 'y', 'z') 

sage: R.variable_names_recursive(2) 

('y', 'z') 

""" 

if depth is None: 

from sage.rings.infinity import infinity 

depth = infinity 

 

if depth <= 0: 

all = () 

elif depth == 1: 

all = self.variable_names() 

else: 

my_vars = self.variable_names() 

try: 

all = self.base_ring().variable_names_recursive(depth - len(my_vars)) + my_vars 

except AttributeError: 

all = my_vars 

if len(all) > depth: 

all = all[-depth:] 

return all 

 

def _repr_(self): 

""" 

Print out a power series ring. 

 

EXAMPLES:: 

 

sage: R = GF(17)[['y']] 

sage: R 

Power Series Ring in y over Finite Field of size 17 

sage: R.__repr__() 

'Power Series Ring in y over Finite Field of size 17' 

sage: R.rename('my power series ring') 

sage: R 

my power series ring 

""" 

s = "Power Series Ring in %s over %s"%(self.variable_name(), self.base_ring()) 

if self.is_sparse(): 

s = 'Sparse ' + s 

return s 

 

def is_sparse(self): 

""" 

EXAMPLES:: 

 

sage: R.<t> = PowerSeriesRing(ZZ) 

sage: t.is_sparse() 

False 

sage: R.<t> = PowerSeriesRing(ZZ, sparse=True) 

sage: t.is_sparse() 

True 

""" 

return self.__is_sparse 

 

def is_dense(self): 

""" 

EXAMPLES:: 

 

sage: R.<t> = PowerSeriesRing(ZZ) 

sage: t.is_dense() 

True 

sage: R.<t> = PowerSeriesRing(ZZ, sparse=True) 

sage: t.is_dense() 

False 

""" 

return not self.__is_sparse 

 

def _latex_(self): 

r""" 

Display latex representation of this power series ring. 

 

EXAMPLES:: 

 

sage: R = GF(17)[['y']] 

sage: latex(R) # indirect doctest 

\Bold{F}_{17}[[y]] 

sage: R = GF(17)[['y12']] 

sage: latex(R) 

\Bold{F}_{17}[[y_{12}]] 

""" 

return "%s[[%s]]"%(latex.latex(self.base_ring()), self.latex_variable_names()[0]) 

 

def _coerce_map_from_(self, S): 

""" 

A coercion from `S` exists, if `S` coerces into ``self``'s base ring, 

or if `S` is a univariate polynomial or power series ring with the 

same variable name as self, defined over a base ring that coerces into 

``self``'s base ring. 

 

EXAMPLES:: 

 

sage: A = GF(17)[['x']] 

sage: A.has_coerce_map_from(ZZ) # indirect doctest 

True 

sage: A.has_coerce_map_from(ZZ['x']) 

True 

sage: A.has_coerce_map_from(ZZ['y']) 

False 

sage: A.has_coerce_map_from(ZZ[['x']]) 

True 

 

""" 

if self.base_ring().has_coerce_map_from(S): 

return True 

if (is_PolynomialRing(S) or is_PowerSeriesRing(S)) and self.base_ring().has_coerce_map_from(S.base_ring()) \ 

and self.variable_names()==S.variable_names(): 

return True 

 

def _element_constructor_(self, f, prec=infinity, check=True): 

""" 

Coerce object to this power series ring. 

 

Returns a new instance unless the parent of f is self, in which 

case f is returned (since f is immutable). 

 

INPUT: 

 

 

- ``f`` - object, e.g., a power series ring element 

 

- ``prec`` - (default: infinity); truncation precision 

for coercion 

 

- ``check`` - bool (default: True), whether to verify 

that the coefficients, etc., coerce in correctly. 

 

 

EXAMPLES:: 

 

sage: R.<t> = PowerSeriesRing(ZZ) 

sage: R(t+O(t^5)) # indirect doctest 

t + O(t^5) 

sage: R(13) 

13 

sage: R(2/3) 

Traceback (most recent call last): 

... 

TypeError: no conversion of this rational to integer 

sage: R([1,2,3]) 

1 + 2*t + 3*t^2 

sage: S.<w> = PowerSeriesRing(QQ) 

sage: R(w + 3*w^2 + O(w^3)) 

t + 3*t^2 + O(t^3) 

sage: x = polygen(QQ,'x') 

sage: R(x + x^2 + x^3 + x^5, 3) 

t + t^2 + O(t^3) 

sage: R(1/(1-x), prec=5) 

1 + t + t^2 + t^3 + t^4 + O(t^5) 

sage: R(1/x, 5) 

Traceback (most recent call last): 

... 

TypeError: no canonical coercion from Laurent Series Ring in t over Integer Ring to Power Series Ring in t over Integer Ring 

 

sage: PowerSeriesRing(PowerSeriesRing(QQ,'x'),'y')(x) 

x 

sage: PowerSeriesRing(PowerSeriesRing(QQ,'y'),'x')(x) 

x 

sage: PowerSeriesRing(PowerSeriesRing(QQ,'t'),'y')(x) 

y 

sage: PowerSeriesRing(PowerSeriesRing(QQ,'t'),'y')(1/(1+x), 5) 

1 - y + y^2 - y^3 + y^4 + O(y^5) 

sage: PowerSeriesRing(PowerSeriesRing(QQ,'x',5),'y')(1/(1+x)) 

1 - x + x^2 - x^3 + x^4 + O(x^5) 

sage: PowerSeriesRing(PowerSeriesRing(QQ,'y'),'x')(1/(1+x), 5) 

1 - x + x^2 - x^3 + x^4 + O(x^5) 

sage: PowerSeriesRing(PowerSeriesRing(QQ,'x'),'x')(x).coefficients() 

[x] 

 

Conversion from symbolic series:: 

 

sage: x,y = var('x,y') 

sage: s=(1/(1-x)).series(x,3); s 

1 + 1*x + 1*x^2 + Order(x^3) 

sage: R.<x> = PowerSeriesRing(QQ) 

sage: R(s) 

1 + x + x^2 + O(x^3) 

sage: ex=(gamma(1-y)).series(y,3) 

sage: R.<y> = PowerSeriesRing(SR) 

sage: R(ex) 

1 + euler_gamma*y + (1/2*euler_gamma^2 + 1/12*pi^2)*y^2 + O(y^3) 

 

Laurent series with non-negative valuation are accepted (see 

:trac:`6431`):: 

 

sage: L.<q> = LaurentSeriesRing(QQ) 

sage: P = L.power_series_ring() 

sage: P(q) 

q 

sage: P(1/q) 

Traceback (most recent call last): 

... 

TypeError: self is not a power series 

 

It is checked that the precision is non-negative 

(see :trac:`19409`):: 

 

sage: PowerSeriesRing(ZZ, 'x')(1, prec=-5) 

Traceback (most recent call last): 

... 

ValueError: prec (= -5) must be non-negative 

 

""" 

if prec is not infinity: 

prec = integer.Integer(prec) 

if prec < 0: 

raise ValueError("prec (= %s) must be non-negative" % prec) 

from sage.symbolic.series import SymbolicSeries 

if isinstance(f, power_series_ring_element.PowerSeries) and f.parent() is self: 

if prec >= f.prec(): 

return f 

f = f.truncate(prec) 

elif isinstance(f, laurent_series_ring_element.LaurentSeries) and f.parent().power_series_ring() is self: 

return self(f.power_series(), prec, check=check) 

elif isinstance(f, MagmaElement) and str(f.Type()) == 'RngSerPowElt': 

v = sage_eval(f.Eltseq()) 

return self(v) * (self.gen(0)**f.Valuation()) 

elif isinstance(f, FractionFieldElement): 

if self.base_ring().has_coerce_map_from(f.parent()): 

return self.element_class(self, [f], prec, check=check) 

else: 

num = self.element_class(self, f.numerator(), prec, check=check) 

den = self.element_class(self, f.denominator(), prec, check=check) 

return self.coerce(num/den) 

elif isinstance(f, SymbolicSeries): 

if str(f.default_variable()) == self.variable_name(): 

return self.element_class(self, f.list(), 

f.degree(f.default_variable()), check=check) 

else: 

raise TypeError("Can only convert series into ring with same variable name.") 

return self.element_class(self, f, prec, check=check) 

 

def construction(self): 

""" 

Return the functorial construction of self, namely, completion of 

the univariate polynomial ring with respect to the indeterminate 

(to a given precision). 

 

EXAMPLES:: 

 

sage: R = PowerSeriesRing(ZZ, 'x') 

sage: c, S = R.construction(); S 

Univariate Polynomial Ring in x over Integer Ring 

sage: R == c(S) 

True 

""" 

from sage.categories.pushout import CompletionFunctor 

return CompletionFunctor(self._names[0], self.default_prec()), self._poly_ring() 

 

def _coerce_impl(self, x): 

""" 

Return canonical coercion of x into self. 

 

Rings that canonically coerce to this power series ring R: 

 

- R itself 

 

- Any power series ring in the same variable whose base ring 

canonically coerces to the base ring of R. 

 

- Any ring that canonically coerces to the polynomial ring 

over the base ring of R. 

 

- Any ring that canonically coerces to the base ring of R 

 

EXAMPLES:: 

 

sage: R.<t> = PowerSeriesRing(ZZ) 

sage: R._coerce_(t + t^2) # indirect doctest 

t + t^2 

sage: R._coerce_(1/t) 

Traceback (most recent call last): 

... 

TypeError: no canonical coercion from Laurent Series Ring in t over Integer Ring to Power Series Ring in t over Integer Ring 

sage: R._coerce_(5) 

5 

sage: tt = PolynomialRing(ZZ,'t').gen() 

sage: R._coerce_(tt^2 + tt - 1) 

-1 + t + t^2 

sage: R._coerce_(1/2) 

Traceback (most recent call last): 

... 

TypeError: no canonical coercion from Rational Field to Power Series Ring in t over Integer Ring 

sage: S.<s> = PowerSeriesRing(ZZ) 

sage: R._coerce_(s) 

Traceback (most recent call last): 

... 

TypeError: no canonical coercion from Power Series Ring in s over Integer Ring to Power Series Ring in t over Integer Ring 

 

We illustrate canonical coercion between power series rings with 

compatible base rings:: 

 

sage: R.<t> = PowerSeriesRing(GF(7)['w']) 

sage: S = PowerSeriesRing(ZZ, 't') 

sage: f = S([1,2,3,4]); f 

1 + 2*t + 3*t^2 + 4*t^3 

sage: g = R._coerce_(f); g 

1 + 2*t + 3*t^2 + 4*t^3 

sage: parent(g) 

Power Series Ring in t over Univariate Polynomial Ring in w over Finite Field of size 7 

sage: S._coerce_(g) 

Traceback (most recent call last): 

... 

TypeError: no canonical coercion from Power Series Ring in t over Univariate Polynomial Ring in w over Finite Field of size 7 to Power Series Ring in t over Integer Ring 

""" 

try: 

P = x.parent() 

if is_PowerSeriesRing(P): 

if P.variable_name() == self.variable_name(): 

if self.has_coerce_map_from(P.base_ring()): 

return self(x) 

else: 

raise TypeError("no natural map between bases of power series rings") 

 

except AttributeError: 

pass 

return self._coerce_try(x, [self.base_ring(), self.__poly_ring]) 

 

 

 

def _is_valid_homomorphism_(self, codomain, im_gens): 

r""" 

This gets called implicitly when one constructs a ring homomorphism 

from a power series ring. 

 

EXAMPLES:: 

 

sage: S = RationalField(); R.<t>=PowerSeriesRing(S) 

sage: f = R.hom([0]) 

sage: f(3) 

3 

sage: g = R.hom([t^2]) 

sage: g(-1 + 3/5 * t) 

-1 + 3/5*t^2 

 

.. note:: 

 

There are no ring homomorphisms from the ring of all formal 

power series to most rings, e.g, the p-adic field, since 

you can always (mathematically!) construct some power 

series that doesn't converge. Note that 0 is not a *ring* 

homomorphism. 

""" 

if im_gens[0] == 0: 

return True # this is allowed. 

from .laurent_series_ring import is_LaurentSeriesRing 

if is_PowerSeriesRing(codomain) or is_LaurentSeriesRing(codomain): 

return im_gens[0].valuation() > 0 

return False 

 

def _poly_ring(self): 

""" 

Return the underlying polynomial ring used to represent elements of 

this power series ring. 

 

EXAMPLES:: 

 

sage: R.<t> = PowerSeriesRing(ZZ) 

sage: R._poly_ring() 

Univariate Polynomial Ring in t over Integer Ring 

""" 

return self.__poly_ring 

 

def _mpoly_ring(self): 

""" 

Return the polynomial ring that we use if ``use_lazy_mpoly_ring`` 

was set. 

""" 

return self.__mpoly_ring 

 

def base_extend(self, R): 

""" 

Return the power series ring over R in the same variable as self, 

assuming there is a canonical coerce map from the base ring of self 

to R. 

 

EXAMPLES:: 

 

sage: R.<T> = GF(7)[[]]; R 

Power Series Ring in T over Finite Field of size 7 

sage: R.change_ring(ZZ) 

Power Series Ring in T over Integer Ring 

sage: R.base_extend(ZZ) 

Traceback (most recent call last): 

... 

TypeError: no base extension defined 

""" 

if R.has_coerce_map_from(self.base_ring()): 

return self.change_ring(R) 

else: 

raise TypeError("no base extension defined") 

 

def change_ring(self, R): 

""" 

Return the power series ring over R in the same variable as self. 

 

EXAMPLES:: 

 

sage: R.<T> = QQ[[]]; R 

Power Series Ring in T over Rational Field 

sage: R.change_ring(GF(7)) 

Power Series Ring in T over Finite Field of size 7 

sage: R.base_extend(GF(7)) 

Traceback (most recent call last): 

... 

TypeError: no base extension defined 

sage: R.base_extend(QuadraticField(3,'a')) 

Power Series Ring in T over Number Field in a with defining polynomial x^2 - 3 

""" 

return PowerSeriesRing(R, name = self.variable_name(), default_prec = self.default_prec()) 

 

def change_var(self, var): 

""" 

Return the power series ring in variable ``var`` over the same base ring. 

 

EXAMPLES:: 

 

sage: R.<T> = QQ[[]]; R 

Power Series Ring in T over Rational Field 

sage: R.change_var('D') 

Power Series Ring in D over Rational Field 

""" 

return PowerSeriesRing(self.base_ring(), names = var, sparse=self.is_sparse()) 

 

def is_exact(self): 

""" 

Return False since the ring of power series over any ring is not 

exact. 

 

EXAMPLES:: 

 

sage: R.<t> = PowerSeriesRing(ZZ) 

sage: R.is_exact() 

False 

""" 

return False 

 

def gen(self, n=0): 

""" 

Return the generator of this power series ring. 

 

EXAMPLES:: 

 

sage: R.<t> = PowerSeriesRing(ZZ) 

sage: R.gen() 

t 

sage: R.gen(3) 

Traceback (most recent call last): 

... 

IndexError: generator n>0 not defined 

""" 

if n != 0: 

raise IndexError("generator n>0 not defined") 

return self.__generator 

 

def uniformizer(self): 

""" 

Return a uniformizer of this power series ring if it is 

a discrete valuation ring (i.e., if the base ring is actually 

a field). Otherwise, an error is raised. 

 

EXAMPLES:: 

 

sage: R.<t> = PowerSeriesRing(QQ) 

sage: R.uniformizer() 

t 

 

sage: R.<t> = PowerSeriesRing(ZZ) 

sage: R.uniformizer() 

Traceback (most recent call last): 

... 

TypeError: The base ring is not a field 

""" 

if self.base_ring().is_field(): 

return self.gen() 

else: 

raise TypeError("The base ring is not a field") 

 

def ngens(self): 

""" 

Return the number of generators of this power series ring. 

 

This is always 1. 

 

EXAMPLES:: 

 

sage: R.<t> = ZZ[[]] 

sage: R.ngens() 

1 

""" 

return 1 

 

def random_element(self, prec=None, *args, **kwds): 

r""" 

Return a random power series. 

 

 

INPUT: 

 

- ``prec`` - Integer specifying precision of output (default: 

default precision of self) 

 

- ``*args, **kwds`` - Passed on to the ``random_element`` method for 

the base ring 

 

OUTPUT: 

 

- Power series with precision ``prec`` whose coefficients are 

random elements from the base ring, randomized subject to the 

arguments ``*args`` and ``**kwds`` 

 

 

ALGORITHM: 

 

Call the ``random_element`` method on the underlying polynomial 

ring. 

 

EXAMPLES:: 

 

sage: R.<t> = PowerSeriesRing(QQ) 

sage: R.random_element(5) # random 

-4 - 1/2*t^2 - 1/95*t^3 + 1/2*t^4 + O(t^5) 

sage: R.random_element(10) # random 

-1/2 + 2*t - 2/7*t^2 - 25*t^3 - t^4 + 2*t^5 - 4*t^7 - 1/3*t^8 - t^9 + O(t^10) 

 

If given no argument, ``random_element`` uses default precision of self:: 

 

sage: T = PowerSeriesRing(ZZ,'t') 

sage: T.default_prec() 

20 

sage: T.random_element() # random 

4 + 2*t - t^2 - t^3 + 2*t^4 + t^5 + t^6 - 2*t^7 - t^8 - t^9 + t^11 - 6*t^12 + 2*t^14 + 2*t^16 - t^17 - 3*t^18 + O(t^20) 

sage: S = PowerSeriesRing(ZZ,'t', default_prec=4) 

sage: S.random_element() # random 

2 - t - 5*t^2 + t^3 + O(t^4) 

 

 

Further arguments are passed to the underlying base ring (:trac:`9481`):: 

 

sage: SZ = PowerSeriesRing(ZZ,'v') 

sage: SQ = PowerSeriesRing(QQ,'v') 

sage: SR = PowerSeriesRing(RR,'v') 

 

sage: SZ.random_element(x=4, y=6) # random 

4 + 5*v + 5*v^2 + 5*v^3 + 4*v^4 + 5*v^5 + 5*v^6 + 5*v^7 + 4*v^8 + 5*v^9 + 4*v^10 + 4*v^11 + 5*v^12 + 5*v^13 + 5*v^14 + 5*v^15 + 5*v^16 + 5*v^17 + 4*v^18 + 5*v^19 + O(v^20) 

sage: SZ.random_element(3, x=4, y=6) # random 

5 + 4*v + 5*v^2 + O(v^3) 

sage: SQ.random_element(3, num_bound=3, den_bound=100) # random 

1/87 - 3/70*v - 3/44*v^2 + O(v^3) 

sage: SR.random_element(3, max=10, min=-10) # random 

2.85948321262904 - 9.73071330911226*v - 6.60414378519265*v^2 + O(v^3) 

 

""" 

if prec is None: 

prec = self.default_prec() 

return self(self.__poly_ring.random_element(prec-1, *args, **kwds), prec) 

 

def __contains__(self, x): 

""" 

Return True if x is an element of this power series ring or 

canonically coerces to this ring. 

 

EXAMPLES:: 

 

sage: R.<t> = PowerSeriesRing(ZZ) 

sage: t + t^2 in R 

True 

sage: 1/t in R 

False 

sage: 5 in R 

True 

sage: 1/3 in R 

False 

sage: S.<s> = PowerSeriesRing(ZZ) 

sage: s in R 

False 

""" 

if x.parent() == self: 

return True 

try: 

self._coerce_(x) 

except TypeError: 

return False 

return True 

 

def is_field(self, proof = True): 

""" 

Return False since the ring of power series over any ring is never 

a field. 

 

EXAMPLES:: 

 

sage: R.<t> = PowerSeriesRing(ZZ) 

sage: R.is_field() 

False 

""" 

return False 

 

def is_finite(self): 

""" 

Return False since the ring of power series over any ring is never 

finite. 

 

EXAMPLES:: 

 

sage: R.<t> = PowerSeriesRing(ZZ) 

sage: R.is_finite() 

False 

""" 

return False 

 

def characteristic(self): 

""" 

Return the characteristic of this power series ring, which is the 

same as the characteristic of the base ring of the power series 

ring. 

 

EXAMPLES:: 

 

sage: R.<t> = PowerSeriesRing(ZZ) 

sage: R.characteristic() 

0 

sage: R.<w> = Integers(2^50)[[]]; R 

Power Series Ring in w over Ring of integers modulo 1125899906842624 

sage: R.characteristic() 

1125899906842624 

""" 

return self.base_ring().characteristic() 

 

def residue_field(self): 

""" 

Return the residue field of this power series ring. 

 

EXAMPLES:: 

 

sage: R.<x> = PowerSeriesRing(GF(17)) 

sage: R.residue_field() 

Finite Field of size 17 

sage: R.<x> = PowerSeriesRing(Zp(5)) 

sage: R.residue_field() 

Finite Field of size 5 

""" 

if self.base_ring().is_field(): 

return self.base_ring() 

else: 

return self.base_ring().residue_field() 

 

def laurent_series_ring(self): 

""" 

If this is the power series ring `R[[t]]`, return the 

Laurent series ring `R((t))`. 

 

EXAMPLES:: 

 

sage: R.<t> = PowerSeriesRing(ZZ,default_prec=5) 

sage: S = R.laurent_series_ring(); S 

Laurent Series Ring in t over Integer Ring 

sage: S.default_prec() 

5 

sage: f = 1+t; g=1/f; g 

1 - t + t^2 - t^3 + t^4 + O(t^5) 

""" 

try: 

return self.__laurent_series_ring 

except AttributeError: 

self.__laurent_series_ring = laurent_series_ring.LaurentSeriesRing( 

self.base_ring(), self.variable_name(), default_prec=self.default_prec(), sparse=self.is_sparse()) 

return self.__laurent_series_ring 

 

class PowerSeriesRing_domain(PowerSeriesRing_generic, ring.IntegralDomain): 

pass 

 

class PowerSeriesRing_over_field(PowerSeriesRing_domain): 

_default_category = CompleteDiscreteValuationRings() 

 

def fraction_field(self): 

""" 

Return the fraction field of this power series ring, which is 

defined since this is over a field. 

 

This fraction field is just the Laurent series ring over the base 

field. 

 

EXAMPLES:: 

 

sage: R.<t> = PowerSeriesRing(GF(7)) 

sage: R.fraction_field() 

Laurent Series Ring in t over Finite Field of size 7 

sage: Frac(R) 

Laurent Series Ring in t over Finite Field of size 7 

""" 

return self.laurent_series_ring() 

 

def unpickle_power_series_ring_v0(base_ring, name, default_prec, sparse): 

""" 

Unpickle (deserialize) a univariate power series ring according to 

the given inputs. 

 

EXAMPLES:: 

 

sage: P.<x> = PowerSeriesRing(QQ) 

sage: loads(dumps(P)) == P # indirect doctest 

True 

""" 

return PowerSeriesRing(base_ring, name=name, default_prec = default_prec, sparse=sparse)