Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

# -*- coding: utf-8 -*- 

r""" 

Augmented valuations on polynomial rings 

 

Implements augmentations of (inductive) valuations. 

 

AUTHORS: 

 

- Julian Rüth (2013-04-15): initial version 

 

EXAMPLES: 

 

Starting from a :mod:`Gauss valuation <sage.rings.valuation.gauss_valuation>`, we can create augmented valuations on 

polynomial rings:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, QQ.valuation(2)) 

sage: w = v.augmentation(x, 1); w 

[ Gauss valuation induced by 2-adic valuation, v(x) = 1 ] 

sage: w(x) 

1 

 

This also works for polynomial rings over base rings which are not fields. 

However, much of the functionality is only available over fields:: 

 

sage: R.<x> = ZZ[] 

sage: v = GaussValuation(R, ZZ.valuation(2)) 

sage: w = v.augmentation(x, 1); w 

[ Gauss valuation induced by 2-adic valuation, v(x) = 1 ] 

sage: w(x) 

1 

 

TESTS:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, QQ.valuation(2)) 

sage: w = v.augmentation(x, 1) 

sage: TestSuite(w).run() # long time 

 

sage: w = v.augmentation(x, 2) 

sage: TestSuite(w).run() # long time 

 

Run the test suite for a valuation with a residual extension:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, QQ.valuation(2)) 

sage: w = v.augmentation(x^2 + x + 1, 1) 

sage: TestSuite(w).run() # long time 

 

Run the test suite for an iterated residual extension starting from a 

non-prime residue field:: 

 

sage: R.<u> = Qq(4, 40) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

sage: w = v.augmentation(x^2 + x + u, 1/2) 

sage: TestSuite(w).run() # long time 

 

sage: ww = w.augmentation(x^8 + 4*x^7 + 2*x^6 + 2*x^5 + x^4 + 2*x^3 + 4*(u + 1)*x^2 + 6*(u + 1)*x + 4 + 3*u, 10) 

sage: TestSuite(ww).run() # long time 

 

Run the test suite for an augmentation of a ramified augmentation:: 

 

sage: R.<u> = Qq(4, 5) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

sage: w = v.augmentation(x, 3/4) 

sage: TestSuite(w).run() # long time 

 

sage: ww = w.augmentation(x^4 + 8, 5) 

sage: TestSuite(ww).run() # long time 

 

Run the test suite for a ramified augmentation of an unramified augmentation:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, QQ.valuation(2)) 

sage: w = v.augmentation(x^2 + x + 1, 1) 

sage: TestSuite(w).run() # long time 

 

sage: ww = w.augmentation(x^4 + 2*x^3 + 5*x^2 + 8*x + 3, 16/3) 

sage: TestSuite(ww).run() # long time 

 

Run the test suite for a ramified augmentation of a ramified augmentation:: 

 

sage: R.<u> = Qq(4, 20) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

sage: w = v.augmentation(x^2 + x + u, 1/2) 

sage: TestSuite(w).run() # long time 

 

sage: ww = w.augmentation((x^2 + x + u)^2 + 2, 5/3) 

sage: TestSuite(ww).run() # long time 

 

Run the test suite for another augmentation with iterated residue field extensions:: 

 

sage: R.<u> = Qq(4, 10) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

sage: w = v.augmentation(x^2 + x + u, 1) 

sage: TestSuite(w).run() # long time 

 

sage: ww = w.augmentation((x^2 + x + u)^2 + 2*x*(x^2 + x + u) + 4*x, 3) 

sage: TestSuite(ww).run() # long time 

 

Run the test suite for a rather trivial pseudo-valuation:: 

 

sage: R.<u> = Qq(4, 5) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

sage: w = v.augmentation(x, infinity) 

sage: TestSuite(w).run() # long time 

 

Run the test suite for an infinite valuation which extends the residue field:: 

 

sage: R.<u> = Qq(4, 5) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

sage: w = v.augmentation(x^2 + x + u, infinity) 

sage: TestSuite(w).run() # long time 

 

Run the test suite for an infinite valuation which extends a valuation which 

extends the residue field:: 

 

sage: R.<u> = Qq(4, 5) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

sage: w = v.augmentation(x^2 + x + u, 1/2) 

sage: TestSuite(w).run() # long time 

 

sage: ww = w.augmentation((x^2 + x + u)^2 + 2, infinity) 

sage: TestSuite(ww).run() # long time 

 

Run the test suite if the polynomial ring is not over a field:: 

 

sage: R.<x> = ZZ[] 

sage: v = GaussValuation(R, ZZ.valuation(2)) 

sage: w = v.augmentation(x, 1) 

sage: TestSuite(w).run() # long time 

 

REFERENCES: 

 

Augmentations are described originally in [Mac1936I]_ and [Mac1936II]_. An 

overview can also be found in Chapter 4 of [Rüt2014]_. 

 

""" 

#***************************************************************************** 

# Copyright (C) 2013-2017 Julian Rüth <julian.rueth@fsfe.org> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# as published by the Free Software Foundation; either version 2 of 

# the License, or (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from __future__ import absolute_import 

 

from .inductive_valuation import _lift_to_maximal_precision 

from .inductive_valuation import FinalInductiveValuation, NonFinalInductiveValuation, FiniteInductiveValuation, InfiniteInductiveValuation, InductiveValuation 

from .valuation import InfiniteDiscretePseudoValuation, DiscreteValuation 

 

from sage.misc.cachefunc import cached_method 

from sage.rings.all import infinity, QQ, ZZ 

from sage.structure.factory import UniqueFactory 

 

 

class AugmentedValuationFactory(UniqueFactory): 

r""" 

Factory for augmented valuations. 

 

EXAMPLES: 

 

This factory is not meant to be called directly. Instead, 

:meth:`~sage.rings.valuation.inductive_valuation.NonFinalInductiveValuation.augmentation` 

of a valuation should be called:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, QQ.valuation(2)) 

sage: w = v.augmentation(x, 1) # indirect doctest 

 

Note that trivial parts of the augmented valuation might be dropped, so you 

should not rely on ``_base_valuation`` to be the valuation you started 

with:: 

 

sage: ww = w.augmentation(x, 2) 

sage: ww._base_valuation is v 

True 

 

""" 

def create_key(self, base_valuation, phi, mu, check=True): 

r""" 

Create a key which uniquely identifies the valuation over 

``base_valuation`` which sends ``phi`` to ``mu``. 

 

.. NOTE:: 

 

The uniqueness that this factory provides is not why we chose to 

use a factory. However, it makes pickling and equality checks much 

easier. At the same time, going through a factory makes it easier 

to enforce that all instances correctly inherit methods from the 

parent Hom space. 

 

TESTS:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, QQ.valuation(2)) 

sage: w = v.augmentation(x, 1) # indirect doctest 

sage: ww = v.augmentation(x, 1) 

sage: w is ww 

True 

 

""" 

if check: 

is_key, reason = base_valuation.is_key(phi, explain=True) 

if not is_key: 

raise ValueError(reason) 

if mu <= base_valuation(phi): 

raise ValueError("the value of the key polynomial must strictly increase but `%s` does not exceed `%s`."%(mu, base_valuation(phi))) 

if not isinstance(base_valuation, InductiveValuation): 

raise TypeError("base_valuation must be inductive") 

 

phi = base_valuation.domain().coerce(phi) 

if mu is not infinity: 

mu = QQ(mu) 

 

if isinstance(base_valuation, AugmentedValuation_base): 

if phi.degree() == base_valuation.phi().degree(): 

# drop base_valuation and extend base_valuation._base_valuation instead 

return self.create_key(base_valuation._base_valuation, phi, mu, check=check) 

 

return base_valuation, phi, mu 

 

def create_object(self, version, key): 

r""" 

Create the augmented valuation represented by ``key``. 

 

TESTS:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, QQ.valuation(2)) 

sage: w = v.augmentation(x^2 + x + 1, 1) # indirect doctest 

 

""" 

base_valuation, phi, mu = key 

 

from .valuation_space import DiscretePseudoValuationSpace 

parent = DiscretePseudoValuationSpace(base_valuation.domain()) 

if mu is not infinity: 

if base_valuation.is_trivial(): 

return parent.__make_element_class__(FinalFiniteAugmentedValuation)(parent, base_valuation, phi, mu) 

else: 

return parent.__make_element_class__(NonFinalFiniteAugmentedValuation)(parent, base_valuation, phi, mu) 

else: 

return parent.__make_element_class__(InfiniteAugmentedValuation)(parent, base_valuation, phi, mu) 

 

AugmentedValuation = AugmentedValuationFactory("sage.rings.valuation.augmented_valuation.AugmentedValuation") 

 

class AugmentedValuation_base(InductiveValuation): 

r""" 

An augmented valuation is a discrete valuation on a polynomial ring. It 

extends another discrete valuation `v` by setting the valuation of a 

polynomial `f` to the minumum of `v(f_i)i\mu` when writing `f=\sum_i 

f_i\phi^i`. 

 

INPUT: 

 

- ``v`` -- a :class:`~sage.rings.valuation.inductive_valuation.InductiveValuation` on a polynomial ring 

 

- ``phi`` -- a :meth:`key polynomial <sage.rings.valuation.inductive_valuation.NonFinalInductiveValuation.is_key>` over ``v`` 

 

- ``mu`` -- a rational number such that ``mu > v(phi)`` or ``infinity`` 

 

EXAMPLES:: 

 

sage: K.<u> = CyclotomicField(5) 

sage: R.<x> = K[] 

sage: v = GaussValuation(R, K.valuation(2)) 

sage: w = v.augmentation(x, 1/2); w # indirect doctest 

[ Gauss valuation induced by 2-adic valuation, v(x) = 1/2 ] 

sage: ww = w.augmentation(x^4 + 2*x^2 + 4*u, 3); ww 

[ Gauss valuation induced by 2-adic valuation, v(x) = 1/2, v(x^4 + 2*x^2 + 4*u) = 3 ] 

 

TESTS:: 

 

sage: TestSuite(w).run() # long time 

sage: TestSuite(ww).run() # long time 

 

""" 

def __init__(self, parent, v, phi, mu): 

r""" 

TESTS:: 

 

sage: K.<u> = Qq(4, 5) 

sage: R.<x> = K[] 

sage: v = GaussValuation(R) 

sage: from sage.rings.valuation.augmented_valuation import AugmentedValuation 

sage: w = AugmentedValuation(v, x, 1/2) 

sage: from sage.rings.valuation.augmented_valuation import AugmentedValuation_base 

sage: isinstance(w, AugmentedValuation_base) 

True 

 

sage: TestSuite(w).run() # long time 

 

""" 

InductiveValuation.__init__(self, parent, phi) 

 

self._base_valuation = v 

self._mu = mu 

 

@cached_method 

def equivalence_unit(self, s, reciprocal=False): 

r""" 

Return an equivalence unit of minimal degree and valuation ``s``. 

 

INPUT: 

 

- ``s`` -- a rational number 

 

- ``reciprocal`` -- a boolean (default: ``False``); whether or not to 

return the equivalence unit as the :meth:`~sage.rings.valuation.inductive_valuation.InductiveValuation.equivalence_reciprocal` 

of the equivalence unit of valuation ``-s``. 

 

OUTPUT: 

 

A polynomial in the domain of this valuation which 

:meth:`~sage.rings.valuation.inductive_valuation.InductiveValuation.is_equivalence_unit` for this valuation. 

 

EXAMPLES:: 

 

sage: R.<u> = Qq(4, 5) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

sage: w = v.augmentation(x^2 + x + u, 1) 

 

sage: w.equivalence_unit(0) 

1 + O(2^5) 

sage: w.equivalence_unit(-4) 

2^-4 + O(2) 

 

Since an equivalence unit is of effective degree zero, `\phi` must not 

divide it. Therefore, its valuation is in the value group of the base 

valuation:: 

 

sage: w = v.augmentation(x, 1/2) 

 

sage: w.equivalence_unit(3/2) 

Traceback (most recent call last): 

... 

ValueError: 3/2 is not in the value semigroup of 2-adic valuation 

sage: w.equivalence_unit(1) 

2 + O(2^6) 

 

An equivalence unit might not be integral, even if ``s >= 0``:: 

 

sage: w = v.augmentation(x, 3/4) 

sage: ww = w.augmentation(x^4 + 8, 5) 

 

sage: ww.equivalence_unit(1/2) 

(2^-1 + O(2^4))*x^2 

 

""" 

if reciprocal: 

ret = self._base_valuation.element_with_valuation(s) 

residue = self.reduce(ret*self._base_valuation.element_with_valuation(-s), check=False) 

assert residue.is_constant() 

ret *= self.lift(~(residue[0])) 

else: 

ret = self._base_valuation.element_with_valuation(s) 

 

assert self.is_equivalence_unit(ret) 

assert self(ret) == s 

return ret 

 

@cached_method 

def element_with_valuation(self, s): 

r""" 

Create an element of minimal degree and of valuation ``s``. 

 

INPUT: 

 

- ``s`` -- a rational number in the value group of this valuation 

 

OUTPUT: 

 

An element in the domain of this valuation 

 

EXAMPLES:: 

 

sage: R.<u> = Qq(4, 5) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

sage: w = v.augmentation(x^2 + x + u, 1/2) 

sage: w.element_with_valuation(0) 

1 + O(2^5) 

sage: w.element_with_valuation(1/2) 

(1 + O(2^5))*x^2 + (1 + O(2^5))*x + u + O(2^5) 

sage: w.element_with_valuation(1) 

2 + O(2^6) 

sage: c = w.element_with_valuation(-1/2); c 

(2^-1 + O(2^4))*x^2 + (2^-1 + O(2^4))*x + u*2^-1 + O(2^4) 

sage: w(c) 

-1/2 

sage: w.element_with_valuation(1/3) 

Traceback (most recent call last): 

... 

ValueError: s must be in the value group of the valuation but 1/3 is not in Additive Abelian Group generated by 1/2. 

 

""" 

if s not in self.value_group(): 

raise ValueError("s must be in the value group of the valuation but %r is not in %r."%(s, self.value_group())) 

error = s 

 

ret = self.domain().one() 

while s not in self._base_valuation.value_group(): 

ret *= self._phi 

s -= self._mu 

ret = ret * self._base_valuation.element_with_valuation(s) 

return self.simplify(ret, error=error) 

 

def _repr_(self): 

r""" 

Return a printable representation of this valuation. 

 

EXAMPLES:: 

 

sage: R.<u> = Qq(4, 5) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

sage: w = v.augmentation(x^2 + x + u, 1/2) 

sage: w # indirect doctest 

[ Gauss valuation induced by 2-adic valuation, v((1 + O(2^5))*x^2 + (1 + O(2^5))*x + u + O(2^5)) = 1/2 ] 

 

""" 

vals = self.augmentation_chain() 

vals.reverse() 

vals = [ "v(%s) = %s"%(v._phi, v._mu) if isinstance(v, AugmentedValuation_base) else str(v) for v in vals ] 

return "[ %s ]"%", ".join(vals) 

 

def augmentation_chain(self): 

r""" 

Return a list with the chain of augmentations down to the underlying :mod:`Gauss valuation <sage.rings.valuation.gauss_valuation>`. 

 

EXAMPLES:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, QQ.valuation(2)) 

sage: w = v.augmentation(x, 1) 

sage: w.augmentation_chain() 

[[ Gauss valuation induced by 2-adic valuation, v(x) = 1 ], 

Gauss valuation induced by 2-adic valuation] 

 

For performance reasons, (and to simplify the underlying 

implementation,) trivial augmentations might get dropped. You should 

not rely on :meth:`augmentation_chain` to contain all the steps that 

you specified to create the current valuation:: 

 

sage: ww = w.augmentation(x, 2) 

sage: ww.augmentation_chain() 

[[ Gauss valuation induced by 2-adic valuation, v(x) = 2 ], 

Gauss valuation induced by 2-adic valuation] 

 

""" 

return [self] + self._base_valuation.augmentation_chain() 

 

@cached_method 

def psi(self): 

r""" 

Return the minimal polynomial of the residue field extension of this valuation. 

 

OUTPUT: 

 

A polynomial in the residue ring of the base valuation 

 

EXAMPLES:: 

 

sage: R.<u> = Qq(4, 5) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

 

sage: w = v.augmentation(x^2 + x + u, 1/2) 

sage: w.psi() 

x^2 + x + u0 

 

sage: ww = w.augmentation((x^2 + x + u)^2 + 2, 5/3) 

sage: ww.psi() 

x + 1 

 

""" 

R = self._base_valuation.equivalence_unit(-self._base_valuation(self._phi)) 

F = self._base_valuation.reduce(self._phi*R, check=False).monic() 

assert F.is_irreducible() 

return F 

 

@cached_method 

def E(self): 

r""" 

Return the ramification index of this valuation over its underlying 

Gauss valuation. 

 

EXAMPLES:: 

 

sage: R.<u> = Qq(4, 5) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

 

sage: w = v.augmentation(x^2 + x + u, 1) 

sage: w.E() 

1 

 

sage: w = v.augmentation(x, 1/2) 

sage: w.E() 

2 

 

""" 

if self.augmentation_chain()[-1]._base_valuation.is_trivial(): 

raise NotImplementedError("ramification index is not defined over a trivial Gauss valuation") 

return self.value_group().index(self._base_valuation.value_group()) * self._base_valuation.E() 

 

@cached_method 

def F(self): 

r""" 

Return the degree of the residue field extension of this valuation 

over the underlying Gauss valuation. 

 

EXAMPLES:: 

 

sage: R.<u> = Qq(4, 5) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

 

sage: w = v.augmentation(x^2 + x + u, 1) 

sage: w.F() 

2 

 

sage: w = v.augmentation(x, 1/2) 

sage: w.F() 

1 

 

""" 

return self.phi().degree() // self._base_valuation.E() 

 

def extensions(self, ring): 

r""" 

Return the extensions of this valuation to ``ring``. 

 

EXAMPLES:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, QQ.valuation(2)) 

sage: w = v.augmentation(x^2 + x + 1, 1) 

 

sage: w.extensions(GaussianIntegers().fraction_field()['x']) 

[[ Gauss valuation induced by 2-adic valuation, v(x^2 + x + 1) = 1 ]] 

 

""" 

if ring is self.domain(): 

return [self] 

 

from sage.rings.polynomial.polynomial_ring import is_PolynomialRing 

if is_PolynomialRing(ring): # univariate 

base_valuations = self._base_valuation.extensions(ring) 

phi = self.phi().change_ring(ring.base_ring()) 

 

ret = [] 

for v in base_valuations: 

if v.is_key(phi): 

ret.append(AugmentedValuation(v, phi, self._mu)) 

else: 

F = v.equivalence_decomposition(phi) 

mu0 = v(phi) 

for f,e in F: 

# We construct a valuation with [v, w(phi) = mu] which should be such that 

# self(phi) = self._mu, i.e., w(phi) = w(unit) + sum e_i * w(f_i) where 

# the sum runs over all the factors in the equivalence decomposition of phi 

# Solving for mu gives 

mu = (self._mu - v(F.unit()) - sum([ee*v(ff) for ff,ee in F if ff != f])) / e 

ret.append(AugmentedValuation(v, f, mu)) 

return ret 

 

return super(AugmentedValuation_base, self).extensions(ring) 

 

def restriction(self, ring): 

r""" 

Return the restriction of this valuation to ``ring``. 

 

EXAMPLES:: 

 

sage: K = GaussianIntegers().fraction_field() 

sage: R.<x> = K[] 

sage: v = GaussValuation(R, K.valuation(2)) 

sage: w = v.augmentation(x^2 + x + 1, 1) 

 

sage: w.restriction(QQ['x']) 

[ Gauss valuation induced by 2-adic valuation, v(x^2 + x + 1) = 1 ] 

 

""" 

if ring.is_subring(self.domain()): 

base = self._base_valuation.restriction(ring) 

if ring.is_subring(self.domain().base_ring()): 

return base 

from sage.rings.polynomial.polynomial_ring import is_PolynomialRing 

if is_PolynomialRing(ring): # univariate 

return base.augmentation(self.phi().change_ring(ring.base_ring()), self._mu) 

return super(AugmentedValuation_base, self).restriction(ring) 

 

def uniformizer(self): 

r""" 

Return a uniformizing element for this valuation. 

 

EXAMPLES:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, QQ.valuation(2)) 

sage: w = v.augmentation(x^2 + x + 1, 1) 

 

sage: w.uniformizer() 

2 

 

""" 

return self.element_with_valuation(self.value_group()._generator) 

 

def is_gauss_valuation(self): 

r""" 

Return whether this valuation is a Gauss valuation. 

 

EXAMPLES:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, QQ.valuation(2)) 

sage: w = v.augmentation(x^2 + x + 1, 1) 

 

sage: w.is_gauss_valuation() 

False 

 

""" 

assert(self._mu > 0) 

return False 

 

def monic_integral_model(self, G): 

r""" 

Return a monic integral irreducible polynomial which defines the same 

extension of the base ring of the domain as the irreducible polynomial 

``G`` together with maps between the old and the new polynomial. 

 

EXAMPLES:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, QQ.valuation(2)) 

sage: w = v.augmentation(x^2 + x + 1, 1) 

 

sage: w.monic_integral_model(5*x^2 + 1/2*x + 1/4) 

(Ring endomorphism of Univariate Polynomial Ring in x over Rational Field 

Defn: x |--> 1/2*x, 

Ring endomorphism of Univariate Polynomial Ring in x over Rational Field 

Defn: x |--> 2*x, 

x^2 + 1/5*x + 1/5) 

 

""" 

return self._base_valuation.monic_integral_model(G) 

 

def _ge_(self, other): 

r""" 

Return whether this valuation is greater or equal than ``other`` 

everywhere. 

 

EXAMPLES:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, QQ.valuation(2)) 

sage: w = v.augmentation(x^2 + x + 1, 1) 

sage: w >= v 

True 

sage: ww = v.augmentation(x^2 + x + 1, 2) 

sage: ww >= w 

True 

sage: www = w.augmentation(x^4 + 2*x^3 + 5*x^2 + 8*x + 3, 16/3) 

sage: www >= w 

True 

sage: www >= ww 

False 

 

""" 

from .gauss_valuation import GaussValuation_generic 

if other.is_trivial(): 

return other.is_discrete_valuation() 

if isinstance(other, GaussValuation_generic): 

return self._base_valuation >= other 

if isinstance(other, AugmentedValuation_base): 

if self(other._phi) >= other._mu: 

return self >= other._base_valuation 

else: 

return False 

 

return super(AugmentedValuation_base, self)._ge_(other) 

 

def is_trivial(self): 

r""" 

Return whether this valuation is trivial, i.e., zero outside of zero. 

 

EXAMPLES:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, QQ.valuation(2)) 

sage: w = v.augmentation(x^2 + x + 1, 1) 

sage: w.is_trivial() 

False 

 

""" 

# We need to override the default implementation from valuation_space 

# because that one uses uniformizer() which might not be implemented if 

# the base ring is not a field. 

return False 

 

def scale(self, scalar): 

r""" 

Return this valuation scaled by ``scalar``. 

 

EXAMPLES:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, QQ.valuation(2)) 

sage: w = v.augmentation(x^2 + x + 1, 1) 

sage: 3*w # indirect doctest 

[ Gauss valuation induced by 3 * 2-adic valuation, v(x^2 + x + 1) = 3 ] 

 

""" 

if scalar in QQ and scalar > 0 and scalar != 1: 

return self._base_valuation.scale(scalar).augmentation(self.phi(), scalar*self._mu) 

return super(AugmentedValuation_base, self).scale(scalar) 

 

def _residue_ring_generator_name(self): 

r""" 

Return a name for a generator of the residue ring. 

 

This method is used by :meth:`residue_ring` to work around name clashes 

with names in subrings of the residue ring. 

 

EXAMPLES:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, QQ.valuation(2)) 

sage: w = v.augmentation(x^2 + x + 1, 1) 

sage: w._residue_ring_generator_name() 

'u1' 

 

""" 

base = self._base_valuation.residue_ring().base() 

# we need a name for a generator that is not present already in base 

generator = 'u' + str(len(self.augmentation_chain()) - 1) 

while True: 

try: 

base(generator) 

generator = 'u' + generator 

except NameError: 

# use this name, it has no meaning in base 

return generator 

except TypeError: 

# use this name, base can not handle strings, so hopefully, 

# there are no variable names (such as in QQ or GF(p)) 

return generator 

 

def _relative_size(self, f): 

r""" 

Return an estimate on the coefficient size of ``f``. 

 

The number returned is an estimate on the factor between the number of 

bits used by ``f`` and the minimal number of bits used by an element 

congruent to ``f``. 

 

This is used by :meth:`simplify` to decide whether simplification of 

coefficients is going to lead to a significant shrinking of the 

coefficients of ``f``. 

 

EXAMPLES::  

 

sage: R.<u> = QQ[] 

sage: K.<u> = QQ.extension(u^2 + u+ 1) 

sage: S.<x> = K[] 

sage: v = GaussValuation(S, K.valuation(2)) 

sage: w = v.augmentation(x^2 + x + u, 1/2) 

sage: w._relative_size(x^2 + x + 1) 

1 

sage: w._relative_size(1048576*x^2 + 1048576*x + 1048576) 

11 

 

""" 

return self._base_valuation._relative_size(f) 

 

def is_negative_pseudo_valuation(self): 

r""" 

Return whether this valuation attains `-\infty`. 

 

EXAMPLES: 

 

No element in the domain of an augmented valuation can have valuation 

`-\infty`, so this method always returns ``False``:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, valuations.TrivialValuation(QQ)) 

sage: w = v.augmentation(x, infinity) 

sage: w.is_negative_pseudo_valuation() 

False 

 

""" 

return False 

 

def change_domain(self, ring): 

r""" 

Return this valuation over ``ring``. 

 

EXAMPLES: 

 

We can change the domain of an augmented valuation even if there is no coercion between rings:: 

 

sage: R.<x> = GaussianIntegers()[] 

sage: v = GaussValuation(R, GaussianIntegers().valuation(2)) 

sage: v = v.augmentation(x, 1) 

sage: v.change_domain(QQ['x']) 

[ Gauss valuation induced by 2-adic valuation, v(x) = 1 ] 

 

""" 

from sage.rings.polynomial.polynomial_ring import is_PolynomialRing 

if is_PolynomialRing(ring) and ring.variable_name() == self.domain().variable_name(): 

return self._base_valuation.change_domain(ring).augmentation(self.phi().change_ring(ring.base_ring()), self._mu, check=False) 

return super(AugmentedValuation_base, self).change_domain(ring) 

 

 

class FinalAugmentedValuation(AugmentedValuation_base, FinalInductiveValuation): 

r""" 

An augmented valuation which can not be augmented anymore, either because 

it augments a trivial valuation or because it is infinite. 

 

EXAMPLES:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, valuations.TrivialValuation(QQ)) 

sage: w = v.augmentation(x, 1) 

 

""" 

def __init__(self, parent, v, phi, mu): 

r""" 

TESTS:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, valuations.TrivialValuation(QQ)) 

sage: w = v.augmentation(x, 1) 

sage: from sage.rings.valuation.augmented_valuation import FinalAugmentedValuation 

sage: isinstance(w, FinalAugmentedValuation) 

True 

 

""" 

AugmentedValuation_base.__init__(self, parent, v, phi, mu) 

FinalInductiveValuation.__init__(self, parent, phi) 

 

@cached_method 

def residue_ring(self): 

r""" 

Return the residue ring of this valuation, i.e., the elements of 

non-negative valuation modulo the elements of positive valuation. 

 

EXAMPLES:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, valuations.TrivialValuation(QQ)) 

 

sage: w = v.augmentation(x, 1) 

sage: w.residue_ring() 

Rational Field 

 

sage: w = v.augmentation(x^2 + x + 1, infinity) 

sage: w.residue_ring() 

Number Field in u1 with defining polynomial x^2 + x + 1 

 

An example with a non-trivial base valuation:: 

 

sage: v = GaussValuation(R, QQ.valuation(2)) 

sage: w = v.augmentation(x^2 + x + 1, infinity) 

sage: w.residue_ring() 

Finite Field in u1 of size 2^2 

 

Since trivial extensions of finite fields are not implemented, the 

resulting ring might be identical to the residue ring of the underlying 

valuation:: 

 

sage: w = v.augmentation(x, infinity) 

sage: w.residue_ring() 

Finite Field of size 2 

 

TESTS: 

 

We avoid clashes in generator names:: 

 

sage: K.<x> = FunctionField(QQ) 

sage: v = K.valuation(x^2 + 2) 

sage: R.<y> = K[] 

sage: L.<y> = K.extension(y^2 + x^2) 

sage: w = v.extension(L) 

sage: w.residue_field() 

Number Field in uu1 with defining polynomial y^2 - 2 over its base field 

sage: w.residue_field().base_field() 

Number Field in u1 with defining polynomial x^2 + 2 

 

""" 

# the following is correct, even if the polynomial ring is not over a field 

 

base = self._base_valuation.residue_ring().base() 

if self.psi().degree() > 1: 

generator = self._residue_ring_generator_name() 

return base.extension(self.psi(), names=generator) 

else: 

# Do not call extension() if self.psi().degree() == 1: 

# In that case the resulting field appears to be the same as the original field, 

# however, it is not == to the original field (for finite fields at 

# least) but a distinct copy (this is a bug in finite field's 

# extension() implementation.) 

return base 

 

def reduce(self, f, check=True, degree_bound=None, coefficients=None, valuations=None): 

r""" 

Reduce ``f`` module this valuation. 

 

INPUT: 

 

- ``f`` -- an element in the domain of this valuation 

 

- ``check`` -- whether or not to check whether ``f`` has non-negative 

valuation (default: ``True``) 

 

- ``degree_bound`` -- an a-priori known bound on the degree of the 

result which can speed up the computation (default: not set) 

 

- ``coefficients`` -- the coefficients of ``f`` as produced by 

:meth:`~sage.rings.valuation.developing_valuation.DevelopingValuation.coefficients` 

or ``None`` (default: ``None``); this can be used to speed up the 

computation when the expansion of ``f`` is already known from a 

previous computation. 

 

- ``valuations`` -- the valuations of ``coefficients`` or ``None`` 

(default: ``None``); ignored 

 

OUTPUT: 

 

an element of the :meth:`residue_ring` of this valuation, the reduction 

modulo the ideal of elements of positive valuation 

 

EXAMPLES:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, valuations.TrivialValuation(QQ)) 

 

sage: w = v.augmentation(x, 1) 

sage: w.reduce(x^2 + x + 1) 

1 

 

sage: w = v.augmentation(x^2 + x + 1, infinity) 

sage: w.reduce(x) 

u1 

 

TESTS: 

 

Cases with non-trivial base valuation:: 

 

sage: R.<u> = Qq(4, 10) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

sage: v.reduce(x) 

x 

sage: v.reduce(S(u)) 

u0 

 

sage: w = v.augmentation(x^2 + x + u, 1/2) 

sage: w.reduce(S.one()) 

1 

sage: w.reduce(S(2)) 

0 

sage: w.reduce(S(u)) 

u0 

sage: w.reduce(x) # this gives the generator of the residue field extension of w over v 

u1 

sage: f = (x^2 + x + u)^2 / 2 

sage: w.reduce(f) 

x 

sage: w.reduce(f + x + 1) 

x + u1 + 1 

 

sage: ww = w.augmentation((x^2 + x + u)^2 + 2, 5/3) 

sage: g = ((x^2 + x + u)^2 + 2)^3 / 2^5 

sage: ww.reduce(g) 

x 

sage: ww.reduce(f) 

1 

sage: ww.is_equivalent(f, 1) 

True 

sage: ww.reduce(f * g) 

x 

sage: ww.reduce(f + g) 

x + 1 

 

""" 

f = self.domain().coerce(f) 

 

if check: 

v = self(f) 

if v < 0: 

raise ValueError("f must have non-negative valuation") 

elif v > 0: 

return self.residue_ring().zero() 

 

if coefficients is None: 

constant_term = next(self.coefficients(f)) 

else: 

constant_term = coefficients[0] 

constant_term_reduced = self._base_valuation.reduce(constant_term) 

return constant_term_reduced(self._residue_field_generator()) 

 

@cached_method 

def _residue_field_generator(self): 

r""" 

Return a root of :meth:`psi` in :meth:`residue_ring`. 

 

EXAMPLES:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, valuations.TrivialValuation(QQ)) 

 

sage: w = v.augmentation(x, 1) 

sage: w._residue_field_generator() 

0 

 

sage: w = v.augmentation(x^2 + x + 1, infinity) 

sage: w._residue_field_generator() 

u1 

 

A case with non-trivial base valuation:: 

 

sage: R.<u> = Qq(4, 10) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

sage: w = v.augmentation(x^2 + x + u, infinity) 

sage: w._residue_field_generator() 

u1 

 

""" 

if self.psi().degree() == 1: 

ret = self.residue_ring()(-self.psi()[0]) 

else: 

ret = self.residue_ring().gen() 

 

assert self.psi()(ret).is_zero() 

return ret 

 

def lift(self, F): 

r""" 

Return a polynomial which reduces to ``F``. 

 

INPUT: 

 

- ``F`` -- an element of the :meth:`residue_ring` 

 

ALGORITHM: 

 

We simply undo the steps performed in :meth:`reduce`. 

 

OUTPUT: 

 

A polynomial in the domain of the valuation with reduction ``F`` 

 

EXAMPLES:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, valuations.TrivialValuation(QQ)) 

 

sage: w = v.augmentation(x, 1) 

sage: w.lift(1/2) 

1/2 

 

sage: w = v.augmentation(x^2 + x + 1, infinity) 

sage: w.lift(w.residue_ring().gen()) 

x 

 

A case with non-trivial base valuation:: 

 

sage: R.<u> = Qq(4, 10) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

sage: w = v.augmentation(x^2 + x + u, infinity) 

sage: w.lift(w.residue_ring().gen()) 

(1 + O(2^10))*x 

 

""" 

F = self.residue_ring().coerce(F) 

 

if F.is_zero(): 

return self.domain().zero() 

if F.is_one(): 

return self.domain().one() 

 

# Write F as a polynomial in self._residue_field_generator() 

# We only have to do that if psi is non-trivial 

if self.psi().degree() > 1: 

from sage.rings.polynomial.polynomial_quotient_ring_element import PolynomialQuotientRingElement 

from sage.rings.function_field.function_field_element import FunctionFieldElement_polymod 

if isinstance(F, PolynomialQuotientRingElement): 

G = F.lift() 

elif isinstance(F, FunctionFieldElement_polymod): 

G = F.element() 

else: 

G = F.polynomial() 

assert(G(self._residue_field_generator()) == F) 

F = G.change_variable_name(self._base_valuation.residue_ring().variable_name()) 

 

H = self._base_valuation.lift(F) 

return self.domain()(H) 

 

 

class NonFinalAugmentedValuation(AugmentedValuation_base, NonFinalInductiveValuation): 

r""" 

An augmented valuation which can be augmented further. 

 

EXAMPLES:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, QQ.valuation(2)) 

sage: w = v.augmentation(x^2 + x + 1, 1) 

 

""" 

def __init__(self, parent, v, phi, mu): 

r""" 

TESTS:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, QQ.valuation(2)) 

sage: w = v.augmentation(x^2 + x + 1, 1) 

sage: from sage.rings.valuation.augmented_valuation import NonFinalAugmentedValuation 

sage: isinstance(w, NonFinalAugmentedValuation) 

True 

 

""" 

AugmentedValuation_base.__init__(self, parent, v, phi, mu) 

NonFinalInductiveValuation.__init__(self, parent, phi) 

 

@cached_method 

def residue_ring(self): 

r""" 

Return the residue ring of this valuation, i.e., the elements of 

non-negative valuation modulo the elements of positive valuation. 

 

EXAMPLES:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, QQ.valuation(2)) 

 

sage: w = v.augmentation(x^2 + x + 1, 1) 

sage: w.residue_ring() 

Univariate Polynomial Ring in x over Finite Field in u1 of size 2^2 

 

Since trivial valuations of finite fields are not implemented, the 

resulting ring might be identical to the residue ring of the underlying 

valuation:: 

 

sage: w = v.augmentation(x, 1) 

sage: w.residue_ring() 

Univariate Polynomial Ring in x over Finite Field of size 2 (using ...) 

 

""" 

from sage.categories.fields import Fields 

if self.domain().base() not in Fields(): 

raise NotImplementedError("only implemented for polynomial rings over fields") 

 

base = self._base_valuation.residue_ring().base() 

if self.psi().degree() > 1: 

generator = self._residue_ring_generator_name() 

base = base.extension(self.psi(), names=generator) 

else: 

# Do not call extension() if self.psi().degree() == 1: 

# In that case the resulting field appears to be the same as the original field, 

# however, it is not == to the original field (for finite fields at 

# least) but a distinct copy (this is a bug in finite field's 

# extension() implementation.) 

pass 

return base[self.domain().variable_name()] 

 

def reduce(self, f, check=True, degree_bound=None, coefficients=None, valuations=None): 

r""" 

Reduce ``f`` module this valuation. 

 

INPUT: 

 

- ``f`` -- an element in the domain of this valuation 

 

- ``check`` -- whether or not to check whether ``f`` has non-negative 

valuation (default: ``True``) 

 

- ``degree_bound`` -- an a-priori known bound on the degree of the 

result which can speed up the computation (default: not set) 

 

- ``coefficients`` -- the coefficients of ``f`` as produced by 

:meth:`~sage.rings.valuation.developing_valuation.DevelopingValuation.coefficients` 

or ``None`` (default: ``None``); this can be used to speed up the 

computation when the expansion of ``f`` is already known from a 

previous computation. 

 

- ``valuations`` -- the valuations of ``coefficients`` or ``None`` 

(default: ``None``) 

 

OUTPUT: 

 

an element of the :meth:`residue_ring` of this valuation, the reduction 

modulo the ideal of elements of positive valuation 

 

ALGORITHM: 

 

We follow the algorithm given in the proof of Theorem 12.1 of [Mac1936I]_: 

If ``f`` has positive valuation, the reduction is simply zero. 

Otherwise, let `f=\sum f_i\phi^i` be the expansion of `f`, as computed 

by 

:meth:`~sage.rings.valuation.developing_valuation.DevelopingValuation.coefficients`. 

Since the valuation is zero, the exponents `i` must all be multiples of 

`\tau`, the index the value group of the base valuation in the value 

group of this valuation. Hence, there is an 

:meth:`~sage.rings.valuation.inductive_valuation.InductiveValuation.equivalence_unit` 

`Q` with the same valuation as `\phi^\tau`. Let `Q'` be its 

:meth:`~sage.rings.valuation.inductive_valuation.InductiveValuation.equivalence_reciprocal`. 

Now, rewrite each term `f_i\phi^{i\tau}=(f_iQ^i)(\phi^\tau Q^{-1})^i`; 

it turns out that the second factor in this expression is a lift of the 

generator of the :meth:`~sage.rings.valuation.valuation_space.DiscretePseudoValuationSpace.ElementMethods.residue_field`. 

The reduction of the first factor can be computed recursively. 

 

EXAMPLES:: 

 

sage: R.<u> = Qq(4, 10) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

sage: v.reduce(x) 

x 

sage: v.reduce(S(u)) 

u0 

 

sage: w = v.augmentation(x^2 + x + u, 1/2) 

sage: w.reduce(S.one()) 

1 

sage: w.reduce(S(2)) 

0 

sage: w.reduce(S(u)) 

u0 

sage: w.reduce(x) # this gives the generator of the residue field extension of w over v 

u1 

sage: f = (x^2 + x + u)^2 / 2 

sage: w.reduce(f) 

x 

sage: w.reduce(f + x + 1) 

x + u1 + 1 

 

sage: ww = w.augmentation((x^2 + x + u)^2 + 2, 5/3) 

sage: g = ((x^2 + x + u)^2 + 2)^3 / 2^5 

sage: ww.reduce(g) 

x 

sage: ww.reduce(f) 

1 

sage: ww.is_equivalent(f, 1) 

True 

sage: ww.reduce(f * g) 

x 

sage: ww.reduce(f + g) 

x + 1 

 

""" 

f = self.domain().coerce(f) 

 

if self.lower_bound(f) > 0: 

return self.residue_ring().zero() 

 

tau = self.value_group().index(self._base_valuation.value_group()) 

 

if coefficients is None: 

coefficients = self.coefficients(f) 

if degree_bound is not None: 

from itertools import islice 

coefficients = islice(coefficients, 0, tau*degree_bound + 1, 1) 

coefficients = list(coefficients) 

 

if valuations is None: 

valuations = [] 

valuations = valuations[::tau] 

 

# rewrite as sum of f_i phi^{i tau}, i.e., drop the coefficients that 

# can have no influence on the reduction 

for i,c in enumerate(coefficients): 

if i % tau != 0: 

if check: 

v = self._base_valuation(c) + i*self._mu 

assert v != 0 # this can not happen for an augmented valuation 

if v < 0: 

raise ValueError("f must not have negative valuation") 

else: 

# the validity of the coefficients with i % tau == 0 is checked by 

# the recursive call to reduce below 

# replace f_i by f_i Q^{i tau} 

if i//tau >= len(valuations): 

# we do not know the correct valuation of the coefficient, but 

# the computation is faster if we know that the coefficient 

# has positive valuation 

valuations.append(self._base_valuation.lower_bound(c) + i*self._mu) 

v = valuations[i//tau] 

if v is infinity or v > 0: 

coefficients[i] = self.domain().zero() 

valuations[i//tau] = infinity 

else: 

coefficients[i] = c * self._Q(i//tau) 

valuations[i//tau] -= i*self._mu 

 

coefficients = coefficients[::tau] 

 

# recursively reduce the f_i Q^{i tau} 

C = [self._base_valuation.reduce(c, check=False)(self._residue_field_generator()) 

if valuations[i] is not infinity 

else self._base_valuation.residue_ring().zero() 

for i,c in enumerate(coefficients)] 

 

# reduce the Q'^i phi^i 

return self.residue_ring()(C) 

 

@cached_method 

def _residue_field_generator(self): 

r""" 

Return a root of :meth:`psi` in :meth:`residue_ring`. 

 

EXAMPLES:: 

 

sage: R.<u> = Qq(4, 10) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

sage: w = v.augmentation(x^2 + x + u, 1/2) 

sage: w._residue_field_generator() 

u1 

 

""" 

if self.residue_ring() == self._base_valuation.residue_ring(): 

assert self.psi().degree() == 1 

ret = self.residue_ring().base()(-self.psi()[0]) 

else: 

ret = self.residue_ring().base().gen() 

 

assert ret.parent() is self.residue_ring().base() 

assert self.psi()(ret).is_zero() 

return ret 

 

def lift(self, F, report_coefficients=False): 

r""" 

Return a polynomial which reduces to ``F``. 

 

INPUT: 

 

- ``F`` -- an element of the :meth:`residue_ring` 

 

- ``report_coefficients`` -- whether to return the coefficients of the 

:meth:`~sage.rings.valuation.developing_valuation.DevelopingValuation.phi`-adic 

expansion or the actual polynomial (default: ``False``, i.e., return 

the polynomial) 

 

OUTPUT: 

 

A polynomial in the domain of the valuation with reduction ``F``, monic 

if ``F`` is monic. 

 

ALGORITHM: 

 

Since this is the inverse of :meth:`reduce`, we only have to go backwards 

through the algorithm described there. 

 

EXAMPLES:: 

 

sage: R.<u> = Qq(4, 10) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

 

sage: w = v.augmentation(x^2 + x + u, 1/2) 

sage: y = w.residue_ring().gen() 

sage: u1 = w.residue_ring().base().gen() 

 

sage: w.lift(1) 

1 + O(2^10) 

sage: w.lift(0) 

0 

sage: w.lift(u1) 

(1 + O(2^10))*x 

sage: w.reduce(w.lift(y)) == y 

True 

sage: w.reduce(w.lift(y + u1 + 1)) == y + u1 + 1 

True 

 

sage: ww = w.augmentation((x^2 + x + u)^2 + 2, 5/3) 

sage: y = ww.residue_ring().gen() 

sage: u2 = ww.residue_ring().base().gen() 

 

sage: ww.reduce(ww.lift(y)) == y 

True 

sage: ww.reduce(ww.lift(1)) == 1 

True 

sage: ww.reduce(ww.lift(y + 1)) == y + 1 

True 

 

A more complicated example:: 

 

sage: v = GaussValuation(S) 

sage: w = v.augmentation(x^2 + x + u, 1) 

sage: ww = w.augmentation((x^2 + x + u)^2 + 2*x*(x^2 + x + u) + 4*x, 3) 

sage: u = ww.residue_ring().base().gen() 

 

sage: F = ww.residue_ring()(u); F 

u2 

sage: f = ww.lift(F); f 

(2^-1 + O(2^9))*x^2 + (2^-1 + O(2^9))*x + u*2^-1 + O(2^9) 

sage: F == ww.reduce(f) 

True 

 

""" 

F = self.residue_ring().coerce(F) 

 

from sage.categories.fields import Fields 

if not self.domain().base_ring() in Fields(): 

raise NotImplementedError("only implemented for polynomial rings over fields") 

 

if F.is_constant(): 

if F.is_zero(): 

return self.domain().zero() 

if F.is_one(): 

return self.domain().one() 

 

R0 = self._base_valuation.residue_ring() 

 

# in the last step of reduce, the f_iQ^i are reduced, and evaluated at 

# the generator of the residue field 

# here, we undo this: 

coeffs = [ R0(c if self.psi().degree()==1 else list(c._vector_() if hasattr(c, '_vector_') else c.list())) 

for c in F.coefficients(sparse=False) ] 

coeffs = [ self._base_valuation.lift(c) for c in coeffs ] 

# now the coefficients correspond to the expansion with (f_iQ^i)(Q^{-1} phi)^i 

 

# now we undo the factors of Q^i (the if else is necessary to handle the case when mu is infinity, i.e., when _Q_reciprocal() is undefined) 

coeffs = [ (c if i == 0 else c*self._Q_reciprocal(i)).map_coefficients(_lift_to_maximal_precision) 

for i,c in enumerate(coeffs) ] 

# reduce the coefficients mod phi; the part that exceeds phi has no effect on the reduction of the coefficient 

coeffs = [ next(self.coefficients(c)) for c in coeffs ] 

 

if report_coefficients: 

return coeffs 

 

RR = self.domain().change_ring(self.domain()) 

 

tau = self.value_group().index(self._base_valuation.value_group()) 

ret = RR(coeffs)(self.phi()**tau) 

ret = ret.map_coefficients(_lift_to_maximal_precision) 

return ret 

 

def lift_to_key(self, F, check=True): 

r""" 

Lift the irreducible polynomial ``F`` to a key polynomial. 

 

INPUT: 

 

- ``F`` -- an irreducible non-constant polynomial in the 

:meth:`residue_ring` of this valuation 

 

- ``check`` -- whether or not to check correctness of ``F`` (default: 

``True``) 

 

OUTPUT: 

 

A polynomial `f` in the domain of this valuation which is a key 

polynomial for this valuation and which, for a suitable equivalence 

unit `R`, satifies that the reduction of `Rf` is ``F`` 

 

ALGORITHM: 

 

We follow the algorithm described in Theorem 13.1 [Mac1936I]_ which, after 

a :meth:`lift` of ``F``, essentially shifts the valuations of all terms 

in the `\phi`-adic expansion up and then kills the leading coefficient. 

 

EXAMPLES:: 

 

sage: R.<u> = Qq(4, 10) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

 

sage: w = v.augmentation(x^2 + x + u, 1/2) 

sage: y = w.residue_ring().gen() 

sage: f = w.lift_to_key(y + 1); f 

(1 + O(2^10))*x^4 + (2 + O(2^11))*x^3 + (1 + u*2 + O(2^10))*x^2 + (u*2 + O(2^11))*x + (u + 1) + u*2 + O(2^10) 

sage: w.is_key(f) 

True 

 

A more complicated example:: 

 

sage: v = GaussValuation(S) 

sage: w = v.augmentation(x^2 + x + u, 1) 

sage: ww = w.augmentation((x^2 + x + u)^2 + 2*x*(x^2 + x + u) + 4*x, 3) 

 

sage: u = ww.residue_ring().base().gen() 

sage: y = ww.residue_ring().gen() 

sage: f = ww.lift_to_key(y^3+y+u) 

sage: f.degree() 

12 

sage: ww.is_key(f) 

True 

 

""" 

F = self.residue_ring().coerce(F) 

 

from sage.categories.fields import Fields 

if not self.domain().base_ring() in Fields(): 

raise NotImplementedError("only implemented for polynomial rings over fields") 

 

if check: 

if self._base_valuation.is_gauss_valuation() and self._mu is infinity: 

raise TypeError("there are no keys over this valuation") 

if F.is_constant(): 

raise ValueError("F must not be constant") 

if not F.is_monic(): 

raise ValueError("F must be monic") 

if not F.is_irreducible(): 

raise ValueError("F must be irreducible") 

 

if F == F.parent().gen(): 

return self.phi() 

 

coefficients = self.lift(F, report_coefficients=True)[:-1] 

coefficients = [c*self._Q(F.degree()) for i,c in enumerate(coefficients)] + [self.domain().one()] 

if len(coefficients) >= 2: 

# In the phi-adic development, the second-highest coefficient could 

# spill over into the highest coefficient (which is a constant one) 

# so we need to mod it away. 

# This can not happen for other coefficients because self._Q() has 

# degree at most the degree of phi. 

coefficients[-2] %= self.phi() 

tau = self.value_group().index(self._base_valuation.value_group()) 

vf = self._mu * tau * F.degree() 

ret = self.domain().change_ring(self.domain())([c for c in coefficients])(self.phi()**tau) 

ret = self.simplify(ret, error=vf, force=True) 

ret = ret.map_coefficients(_lift_to_maximal_precision) 

assert (ret == self.phi()) == (F == F.parent().gen()) 

assert self.is_key(ret) 

return ret 

 

@cached_method 

def _Q(self, e): 

r""" 

Return the polynomial `Q^e` used in the construction to :meth:`reduce` an 

element to the :meth:`residue_ring`. 

 

EXAMPLES:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, QQ.valuation(2)) 

sage: w = v.augmentation(x^2 + x + 1, 1) 

 

sage: w._Q(1) 

2 

 

""" 

tau = self.value_group().index(self._base_valuation.value_group()) 

v = self._mu * tau 

return self._pow(self.equivalence_unit(v), e, error=v*e, effective_degree=0) 

 

@cached_method 

def _Q_reciprocal(self, e=1): 

r""" 

Return the :meth:`equivalence_reciprocal` of the ``e``-th power of 

:meth:`_Q`. 

 

EXAMPLES:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, QQ.valuation(2)) 

sage: w = v.augmentation(x^2 + x + 1, 1) 

 

sage: w._Q_reciprocal() 

1/2 

 

""" 

if e == 1: 

return self.equivalence_reciprocal(self._Q(1), check=False) 

 

tau = self.value_group().index(self._base_valuation.value_group()) 

v = -self._mu * tau 

ret = self._pow(self._Q_reciprocal(1), e, error=v*e, effective_degree=0) 

 

assert self.is_equivalence_unit(ret) 

# esentially this checks that the reduction of Q'*phi^tau is the 

# generator of the residue field 

assert self._base_valuation.reduce(self._Q(e)*ret)(self._residue_field_generator()).is_one() 

 

return ret 

 

 

class FiniteAugmentedValuation(AugmentedValuation_base, FiniteInductiveValuation): 

r""" 

A finite augmented valuation, i.e., an augmented valuation which is 

discrete, or equivalently an augmented valuation which assigns to its last 

key polynomial a finite valuation. 

 

EXAMPLES:: 

 

sage: R.<u> = Qq(4, 5) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

sage: w = v.augmentation(x^2 + x + u, 1/2) 

 

""" 

def __init__(self, parent, v, phi, mu): 

r""" 

EXAMPLES:: 

 

sage: R.<u> = Qq(4, 5) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

sage: w = v.augmentation(x^2 + x + u, 1/2) 

sage: from sage.rings.valuation.augmented_valuation import FiniteAugmentedValuation 

sage: isinstance(w, FiniteAugmentedValuation) 

True 

 

""" 

AugmentedValuation_base.__init__(self, parent, v, phi, mu) 

FiniteInductiveValuation.__init__(self, parent, phi) 

 

@cached_method 

def value_group(self): 

r""" 

Return the value group of this valuation. 

 

EXAMPLES:: 

 

sage: R.<u> = Qq(4, 5) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

 

sage: w = v.augmentation(x^2 + x + u, 1/2) 

sage: w.value_group() 

Additive Abelian Group generated by 1/2 

 

sage: ww = w.augmentation((x^2 + x + u)^2 + 2, 5/3) 

sage: ww.value_group() 

Additive Abelian Group generated by 1/6 

 

""" 

return self._base_valuation.value_group() + self._mu 

 

def value_semigroup(self): 

r""" 

Return the value semigroup of this valuation. 

 

EXAMPLES:: 

 

sage: R.<u> = Zq(4, 5) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

 

sage: w = v.augmentation(x^2 + x + u, 1/2) 

sage: w.value_semigroup() 

Additive Abelian Semigroup generated by 1/2 

 

sage: ww = w.augmentation((x^2 + x + u)^2 + 2, 5/3) 

sage: ww.value_semigroup() 

Additive Abelian Semigroup generated by 1/2, 5/3 

 

""" 

return self._base_valuation.value_semigroup() + self._mu 

 

def valuations(self, f, coefficients=None, call_error=False): 

r""" 

Return the valuations of the `f_i\phi^i` in the expansion `f=\sum_i 

f_i\phi^i`. 

 

INPUT: 

 

- ``f`` -- a polynomial in the domain of this valuation 

 

- ``coefficients`` -- the coefficients of ``f`` as produced by 

:meth:`~sage.rings.valuation.developing_valuation.DevelopingValuation.coefficients` 

or ``None`` (default: ``None``); this can be used to speed up the 

computation when the expansion of ``f`` is already known from a 

previous computation. 

 

- ``call_error`` -- whether or not to speed up the computation by 

assuming that the result is only used to compute the valuation of 

``f`` (default: ``False``) 

 

OUTPUT: 

 

An iterator over rational numbers (or infinity) `[v(f_0), v(f_1\phi), \dots]` 

 

EXAMPLES:: 

 

sage: R.<u> = Qq(4, 5) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

 

sage: w = v.augmentation(x^2 + x + u, 1/2) 

sage: list(w.valuations( x^2 + 1 )) 

[0, 1/2] 

 

sage: ww = w.augmentation((x^2 + x + u)^2 + 2, 5/3) 

sage: list(ww.valuations( ((x^2 + x + u)^2 + 2)^3 )) 

[+Infinity, +Infinity, +Infinity, 5] 

 

""" 

f = self.domain().coerce(f) 

 

if call_error: 

lowest_valuation = infinity 

for i,c in enumerate(coefficients or self.coefficients(f)): 

if call_error: 

if lowest_valuation is not infinity: 

v = self._base_valuation.lower_bound(c) 

if v is infinity or v >= lowest_valuation: 

yield infinity 

continue 

v = self._base_valuation(c) 

if v is infinity: 

yield v 

else: 

ret = v + i*self._mu 

if call_error: 

if lowest_valuation is infinity or ret < lowest_valuation: 

lowest_valuation = ret 

yield ret 

 

def simplify(self, f, error=None, force=False, effective_degree=None, size_heuristic_bound=32, phiadic=False): 

r""" 

Return a simplified version of ``f``. 

 

Produce an element which differs from ``f`` by an element of valuation 

strictly greater than the valuation of ``f`` (or strictly greater than 

``error`` if set.) 

 

INPUT: 

 

- ``f`` -- an element in the domain of this valuation 

 

- ``error`` -- a rational, infinity, or ``None`` (default: ``None``), 

the error allowed to introduce through the simplification 

 

- ``force`` -- whether or not to simplify ``f`` even if there is 

heuristically no change in the coefficient size of ``f`` expected 

(default: ``False``) 

 

- ``effective_degree`` -- when set, assume that coefficients beyond 

``effective_degree`` in the :meth:`~sage.rings.valuation.developing_valuation.DevelopingValuation.phi`-adic development can be 

safely dropped (default: ``None``) 

 

- ``size_heuristic_bound`` -- when ``force`` is not set, the expected 

factor by which the coefficients need to shrink to perform an actual 

simplification (default: 32) 

 

- ``phiadic`` -- whether to simplify the coefficients in the 

`\phi`-adic expansion recursively. This tends to be slower and 

sometimes leads to very huge coefficients in the `x`-adic 

expansion (default: ``False``.) 

 

EXAMPLES:: 

 

sage: R.<u> = Qq(4, 5) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

sage: w = v.augmentation(x^2 + x + u, 1/2) 

sage: w.simplify(x^10/2 + 1, force=True) # not tested - error is incorrect 

(u + 1)*2^-1 + O(2^4) 

 

""" 

f = self.domain().coerce(f) 

 

if effective_degree is not None: 

if (QQ(f.degree())/self.phi().degree()).ceil() > effective_degree: 

from itertools import islice 

f = self.domain().change_ring(self.domain())(list(islice(self.coefficients(f), 0, effective_degree + 1, 1)))(self.phi()) 

 

if not force and self._relative_size(f) < size_heuristic_bound: 

return f 

 

if error is None: 

# if the caller was sure that we should simplify, then we should try to do the best simplification possible 

error = self(f) if force else self.upper_bound(f) 

 

if phiadic: 

coefficients = list(self.coefficients(f)) 

valuations = list(self.valuations(f, coefficients=coefficients)) 

return self.domain().change_ring(self.domain())([ 

0 if valuations[i] > error 

else self._base_valuation.simplify(c, error=error-i*self._mu, force=force, phiadic=True) 

for (i,c) in enumerate(coefficients)])(self.phi()) 

else: 

return self._base_valuation.simplify(f, error=error, force=force) 

 

def lower_bound(self, f): 

r""" 

Return a lower bound of this valuation at ``f``. 

 

Use this method to get an approximation of the valuation of ``f`` 

when speed is more important than accuracy. 

 

ALGORITHM: 

 

The main cost of evaluation is the computation of the 

:meth:`~sage.rings.valuation.developing_valuation.DevelopingValuation.coefficients` 

of the :meth:`~sage.rings.valuation.developing_valuation.DevelopingValuation.phi`-adic 

expansion of ``f`` (which often leads to coefficient bloat.) So unless 

:meth:`~sage.rings.valuation.developing_valuation.DevelopingValuation.phi` 

is trivial, we fall back to valuation which this valuation augments 

since it is guaranteed to be smaller everywhere. 

 

EXAMPLES:: 

 

sage: R.<u> = Qq(4, 5) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

sage: w = v.augmentation(x^2 + x + u, 1/2) 

sage: w.lower_bound(x^2 + x + u) 

0 

 

""" 

f = self.domain().coerce(f) 

 

if self.phi() == self.domain().gen(): 

constant_valuation = self.restriction(f.base_ring()) 

ret = infinity 

for i,c in enumerate(f.coefficients(sparse=False)): 

v = constant_valuation.lower_bound(c) 

if v is infinity: 

continue 

v += i*self._mu 

if ret is infinity or v < ret: 

ret = v 

return ret 

else: 

return self._base_valuation.lower_bound(f) 

 

def upper_bound(self, f): 

r""" 

Return an upper bound of this valuation at ``f``. 

 

Use this method to get an approximation of the valuation of ``f`` 

when speed is more important than accuracy. 

 

ALGORITHM: 

 

Any entry of :meth:`valuations` serves as an upper bound. However, 

computation of the :meth:`~sage.rings.valuation.developing_valuation.DevelopingValuation.phi`-adic 

expansion of ``f`` is quite costly. 

Therefore, we produce an upper bound on the last entry of 

:meth:`valuations`, namely the valuation of the leading coefficient of 

``f`` plus the valuation of the appropriate power of :meth:`~sage.rings.valuation.developing_valuation.DevelopingValuation.phi`. 

 

EXAMPLES:: 

 

sage: R.<u> = Qq(4, 5) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

sage: w = v.augmentation(x^2 + x + u, 1/2) 

sage: w.upper_bound(x^2 + x + u) 

1/2 

 

""" 

f = self.domain().coerce(f) 

 

len_coefficients_bound = (QQ(f.degree()) / self.phi().degree()).ceil() 

return self.restriction(f.base_ring())(f.leading_coefficient()) + len_coefficients_bound * self._mu 

 

 

class FinalFiniteAugmentedValuation(FiniteAugmentedValuation, FinalAugmentedValuation): 

r""" 

An augmented valuation which is discrete, i.e., which assigns a finite 

valuation to its last key polynomial, but which can not be further 

augmented. 

 

EXAMPLES:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, valuations.TrivialValuation(QQ)) 

sage: w = v.augmentation(x, 1) 

 

""" 

def __init__(self, parent, v, phi, mu): 

r""" 

TESTS:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, valuations.TrivialValuation(QQ)) 

sage: w = v.augmentation(x, 1) 

sage: from sage.rings.valuation.augmented_valuation import FinalFiniteAugmentedValuation 

sage: isinstance(w, FinalFiniteAugmentedValuation) 

True 

 

""" 

FiniteAugmentedValuation.__init__(self, parent, v, phi, mu) 

FinalAugmentedValuation.__init__(self, parent, v, phi, mu) 

 

 

class NonFinalFiniteAugmentedValuation(FiniteAugmentedValuation, NonFinalAugmentedValuation): 

r""" 

An augmented valuation which is discrete, i.e., which assigns a finite 

valuation to its last key polynomial, and which can be augmented furter. 

 

EXAMPLES:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, QQ.valuation(2)) 

sage: w = v.augmentation(x, 1) 

 

""" 

def __init__(self, parent, v, phi, mu): 

r""" 

TESTS:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, QQ.valuation(2)) 

sage: w = v.augmentation(x, 1) 

sage: from sage.rings.valuation.augmented_valuation import NonFinalFiniteAugmentedValuation 

sage: isinstance(w, NonFinalFiniteAugmentedValuation) 

True 

 

""" 

FiniteAugmentedValuation.__init__(self, parent, v, phi, mu) 

NonFinalAugmentedValuation.__init__(self, parent, v, phi, mu) 

 

 

class InfiniteAugmentedValuation(FinalAugmentedValuation, InfiniteInductiveValuation): 

r""" 

An augmented valuation which is infinite, i.e., which assigns valuation 

infinity to its last key polynomial (and which can therefore not be 

augmented further.) 

 

EXAMPLES:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, QQ.valuation(2)) 

sage: w = v.augmentation(x, infinity) 

 

""" 

def __init__(self, parent, v, phi, mu): 

r""" 

TESTS:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, QQ.valuation(2)) 

sage: w = v.augmentation(x, infinity) 

sage: from sage.rings.valuation.augmented_valuation import InfiniteAugmentedValuation 

sage: isinstance(w, InfiniteAugmentedValuation) 

True 

 

""" 

FinalAugmentedValuation.__init__(self, parent, v, phi, mu) 

InfiniteInductiveValuation.__init__(self, parent, phi) 

 

@cached_method 

def value_group(self): 

r""" 

Return the value group of this valuation. 

 

EXAMPLES:: 

 

sage: R.<u> = Qq(4, 5) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

sage: w = v.augmentation(x, infinity) 

sage: w.value_group() 

Additive Abelian Group generated by 1 

 

""" 

return self._base_valuation.value_group() 

 

@cached_method 

def value_semigroup(self): 

r""" 

Return the value semigroup of this valuation. 

 

EXAMPLES:: 

 

sage: R.<u> = Zq(4, 5) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

sage: w = v.augmentation(x, infinity) 

sage: w.value_semigroup() 

Additive Abelian Semigroup generated by 1 

 

""" 

return self._base_valuation.value_semigroup() 

 

def valuations(self, f, coefficients=None, call_error=False): 

r""" 

Return the valuations of the `f_i\phi^i` in the expansion `f=\sum_i 

f_i\phi^i`. 

 

INPUT: 

 

- ``f`` -- a polynomial in the domain of this valuation 

 

- ``coefficients`` -- the coefficients of ``f`` as produced by 

:meth:`~sage.rings.valuation.developing_valuation.DevelopingValuation.coefficients` 

or ``None`` (default: ``None``); this can be used to speed up the 

computation when the expansion of ``f`` is already known from a 

previous computation. 

 

- ``call_error`` -- whether or not to speed up the computation by 

assuming that the result is only used to compute the valuation of 

``f`` (default: ``False``) 

 

OUTPUT: 

 

An iterator over rational numbers (or infinity) `[v(f_0), v(f_1\phi), \dots]` 

 

EXAMPLES:: 

 

sage: R.<u> = Qq(4, 5) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

sage: w = v.augmentation(x, infinity) 

sage: list(w.valuations(x^2 + 1)) 

[0, +Infinity, +Infinity] 

 

""" 

f = self.domain().coerce(f) 

 

num_infty_coefficients = f.degree() // self.phi().degree() 

if coefficients is not None: 

constant_coefficient = coefficients[0] 

else: 

constant_coefficient = next(self.coefficients(f)) 

yield self._base_valuation(constant_coefficient) 

for i in range(num_infty_coefficients): 

yield infinity 

 

def simplify(self, f, error=None, force=False, effective_degree=None): 

r""" 

Return a simplified version of ``f``. 

 

Produce an element which differs from ``f`` by an element of valuation 

strictly greater than the valuation of ``f`` (or strictly greater than 

``error`` if set.) 

 

INPUT: 

 

- ``f`` -- an element in the domain of this valuation 

 

- ``error`` -- a rational, infinity, or ``None`` (default: ``None``), 

the error allowed to introduce through the simplification 

 

- ``force`` -- whether or not to simplify ``f`` even if there is 

heuristically no change in the coefficient size of ``f`` expected 

(default: ``False``) 

 

- ``effective_degree`` -- ignored; for compatibility with other 

``simplify`` methods 

 

EXAMPLES:: 

 

sage: R.<u> = Qq(4, 5) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

sage: w = v.augmentation(x^2 + x + u, infinity) 

sage: w.simplify(x^10/2 + 1, force=True) # not tested - error incorrect 

(u + 1)*2^-1 + O(2^4) 

 

""" 

f = self.domain().coerce(f) 

 

if error is None: 

error = self.upper_bound(f) 

 

if error is infinity: 

return f 

 

return self.domain()(self._base_valuation.simplify(next(self.coefficients(f)), error, force=force)) 

 

def lower_bound(self, f): 

r""" 

Return a lower bound of this valuation at ``f``. 

 

Use this method to get an approximation of the valuation of ``f`` 

when speed is more important than accuracy. 

 

EXAMPLES:: 

 

sage: R.<u> = Qq(4, 5) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

sage: w = v.augmentation(x^2 + x + u, infinity) 

sage: w.lower_bound(x^2 + x + u) 

+Infinity 

 

""" 

return self._base_valuation.lower_bound(next(self.coefficients(f))) 

 

def upper_bound(self, f): 

r""" 

Return an upper bound of this valuation at ``f``. 

 

Use this method to get an approximation of the valuation of ``f`` 

when speed is more important than accuracy. 

 

EXAMPLES:: 

 

sage: R.<u> = Qq(4, 5) 

sage: S.<x> = R[] 

sage: v = GaussValuation(S) 

sage: w = v.augmentation(x^2 + x + u, infinity) 

sage: w.upper_bound(x^2 + x + u) 

+Infinity 

 

""" 

return self._base_valuation.upper_bound(next(self.coefficients(f)))