Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

# -*- coding: utf-8 -*- 

r""" 

Trivial valuations 

 

AUTHORS: 

 

- Julian Rüth (2016-10-14): initial version 

 

EXAMPLES:: 

 

sage: v = valuations.TrivialValuation(QQ); v 

Trivial valuation on Rational Field 

sage: v(1) 

0 

 

""" 

#***************************************************************************** 

# Copyright (C) 2016-2017 Julian Rüth <julian.rueth@fsfe.org> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# as published by the Free Software Foundation; either version 2 of 

# the License, or (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from __future__ import absolute_import 

 

from .valuation import DiscretePseudoValuation, DiscreteValuation, InfiniteDiscretePseudoValuation 

from .valuation_space import DiscretePseudoValuationSpace 

from sage.structure.factory import UniqueFactory 

 

 

class TrivialValuationFactory(UniqueFactory): 

r""" 

Create a trivial valuation on ``domain``. 

 

EXAMPLES:: 

 

sage: v = valuations.TrivialValuation(QQ); v 

Trivial valuation on Rational Field 

sage: v(1) 

0 

 

""" 

def __init__(self, clazz, parent, *args, **kwargs): 

r""" 

TESTS:: 

 

sage: from sage.rings.valuation.trivial_valuation import TrivialValuationFactory 

sage: isinstance(valuations.TrivialValuation, TrivialValuationFactory) 

True 

 

""" 

UniqueFactory.__init__(self, *args, **kwargs) 

self._class = clazz 

self._parent = parent 

 

def create_key(self, domain): 

r""" 

Create a key that identifies this valuation. 

 

EXAMPLES:: 

 

sage: valuations.TrivialValuation(QQ) is valuations.TrivialValuation(QQ) # indirect doctest 

True 

 

""" 

return domain, 

 

def create_object(self, version, key, **extra_args): 

r""" 

Create a trivial valuation from ``key``. 

 

EXAMPLES:: 

 

sage: valuations.TrivialValuation(QQ) # indirect doctest 

Trivial valuation on Rational Field 

 

""" 

domain, = key 

parent = self._parent(domain) 

return parent.__make_element_class__(self._class)(parent) 

 

class TrivialDiscretePseudoValuation_base(DiscretePseudoValuation): 

r""" 

Base class for code shared by trivial valuations. 

 

EXAMPLES:: 

 

sage: v = valuations.TrivialPseudoValuation(ZZ); v 

Trivial pseudo-valuation on Integer Ring 

 

TESTS:: 

 

sage: TestSuite(v).run() # long time 

 

""" 

def uniformizer(self): 

r""" 

Return a uniformizing element for this valuation. 

 

EXAMPLES:: 

 

sage: v = valuations.TrivialPseudoValuation(ZZ) 

sage: v.uniformizer() 

Traceback (most recent call last): 

... 

ValueError: Trivial valuations do not define a uniformizing element 

 

""" 

raise ValueError("Trivial valuations do not define a uniformizing element") 

 

def is_trivial(self): 

r""" 

Return whether this valuation is trivial. 

 

EXAMPLES:: 

 

sage: v = valuations.TrivialPseudoValuation(QQ) 

sage: v.is_trivial() 

True 

 

""" 

return True 

 

def is_negative_pseudo_valuation(self): 

r""" 

Return whether this valuatios attains the value `-\infty`. 

 

EXAMPLES:: 

 

sage: v = valuations.TrivialPseudoValuation(QQ) 

sage: v.is_negative_pseudo_valuation() 

False 

 

""" 

return False 

 

class TrivialDiscretePseudoValuation(TrivialDiscretePseudoValuation_base, InfiniteDiscretePseudoValuation): 

r""" 

The trivial pseudo-valuation that is `\infty` everywhere. 

 

EXAMPLES:: 

 

sage: v = valuations.TrivialPseudoValuation(QQ); v 

Trivial pseudo-valuation on Rational Field 

 

TESTS:: 

 

sage: TestSuite(v).run() # long time 

 

""" 

def __init__(self, parent): 

r""" 

TESTS:: 

 

sage: from sage.rings.valuation.trivial_valuation import TrivialDiscretePseudoValuation 

sage: v = valuations.TrivialPseudoValuation(QQ) 

sage: isinstance(v, TrivialDiscretePseudoValuation) 

True 

 

""" 

TrivialDiscretePseudoValuation_base.__init__(self, parent) 

InfiniteDiscretePseudoValuation.__init__(self, parent) 

 

def _call_(self, x): 

r""" 

Evaluate this valuation at ``x``. 

 

EXAMPLES:: 

 

sage: v = valuations.TrivialPseudoValuation(QQ) 

sage: v(0) 

+Infinity 

sage: v(1) 

+Infinity 

 

""" 

from sage.rings.all import infinity 

return infinity 

 

def _repr_(self): 

r""" 

Return a printable representation of this valuation. 

 

EXAMPLES:: 

 

sage: valuations.TrivialPseudoValuation(QQ) # indirect doctest 

Trivial pseudo-valuation on Rational Field 

 

""" 

return "Trivial pseudo-valuation on %r"%(self.domain(),) 

 

def value_group(self): 

r""" 

Return the value group of this valuation. 

 

EXAMPLES: 

 

A trivial discrete pseudo-valuation has no value group:: 

 

sage: v = valuations.TrivialPseudoValuation(QQ) 

sage: v.value_group() 

Traceback (most recent call last): 

... 

ValueError: The trivial pseudo-valuation that is infinity everywhere does not have a value group. 

 

""" 

raise ValueError("The trivial pseudo-valuation that is infinity everywhere does not have a value group.") 

 

def residue_ring(self): 

r""" 

Return the residue ring of this valuation. 

 

EXAMPLES:: 

 

sage: valuations.TrivialPseudoValuation(QQ).residue_ring() 

Quotient of Rational Field by the ideal (1) 

 

""" 

return self.domain().quo(self.domain().one()) 

 

def reduce(self, x): 

r""" 

Reduce ``x`` modulo the positive elements of this valuation. 

 

EXAMPLES:: 

 

sage: v = valuations.TrivialPseudoValuation(QQ) 

sage: v.reduce(1) 

0 

 

""" 

self.domain().coerce(x) 

return self.residue_ring().zero() 

 

def lift(self, X): 

r""" 

Return a lift of ``X`` to the domain of this valuation. 

 

EXAMPLES:: 

 

sage: v = valuations.TrivialPseudoValuation(QQ) 

sage: v.lift(v.residue_ring().zero()) 

0 

 

""" 

self.residue_ring().coerce(X) # ignore the output 

return self.domain().zero() 

 

def _ge_(self, other): 

r""" 

Return whether this valuation is bigger or equal than ``other`` 

everywhere. 

 

EXAMPLES:: 

 

sage: v = valuations.TrivialPseudoValuation(QQ) 

sage: w = valuations.TrivialValuation(QQ) 

sage: v >= w 

True 

 

""" 

# the trivial discrete valuation is the biggest valuation 

return True 

 

class TrivialDiscreteValuation(TrivialDiscretePseudoValuation_base, DiscreteValuation): 

r""" 

The trivial valuation that is zero on non-zero elements. 

 

EXAMPLES:: 

 

sage: v = valuations.TrivialValuation(QQ); v 

Trivial valuation on Rational Field 

 

TESTS:: 

 

sage: TestSuite(v).run() # long time 

 

""" 

def __init__(self, parent): 

r""" 

TESTS:: 

 

sage: from sage.rings.valuation.trivial_valuation import TrivialDiscreteValuation 

sage: v = valuations.TrivialValuation(QQ) 

sage: isinstance(v, TrivialDiscreteValuation) 

True 

 

""" 

TrivialDiscretePseudoValuation_base.__init__(self, parent) 

DiscreteValuation.__init__(self, parent) 

 

def _call_(self, x): 

r""" 

Evaluate this valuation at ``x``. 

 

EXAMPLES:: 

 

sage: v = valuations.TrivialValuation(QQ) 

sage: v(0) 

+Infinity 

sage: v(1) 

0 

 

""" 

from sage.rings.all import infinity 

return infinity if x == 0 else self.codomain().zero() 

 

def _repr_(self): 

r""" 

Return a printable representation of this valuation. 

 

EXAMPLES:: 

 

sage: valuations.TrivialValuation(QQ) # indirect doctest 

Trivial valuation on Rational Field 

 

""" 

return "Trivial valuation on %r"%(self.domain(),) 

 

def value_group(self): 

r""" 

Return the value group of this valuation. 

 

EXAMPLES: 

 

A trivial discrete valuation has a trivial value group:: 

 

sage: v = valuations.TrivialValuation(QQ) 

sage: v.value_group() 

Trivial Additive Abelian Group 

 

""" 

from .value_group import DiscreteValueGroup 

return DiscreteValueGroup(0) 

 

def residue_ring(self): 

r""" 

Return the residue ring of this valuation. 

 

EXAMPLES:: 

 

sage: valuations.TrivialValuation(QQ).residue_ring() 

Rational Field 

 

""" 

return self.domain() 

 

def reduce(self, x): 

r""" 

Reduce ``x`` modulo the positive elements of this valuation. 

 

EXAMPLES:: 

 

sage: v = valuations.TrivialValuation(QQ) 

sage: v.reduce(1) 

1 

 

""" 

return self.domain().coerce(x) 

 

def lift(self, X): 

r""" 

Return a lift of ``X`` to the domain of this valuation. 

 

EXAMPLES:: 

 

sage: v = valuations.TrivialValuation(QQ) 

sage: v.lift(v.residue_ring().zero()) 

0 

 

""" 

return self.residue_ring().coerce(X) 

 

def extensions(self, ring): 

r""" 

Return the unique extension of this valuation to ``ring``. 

 

EXAMPLES:: 

 

sage: v = valuations.TrivialValuation(ZZ) 

sage: v.extensions(QQ) 

[Trivial valuation on Rational Field] 

 

""" 

if self.domain().is_subring(ring): 

from sage.rings.valuation.trivial_valuation import TrivialValuation 

return [TrivialValuation(ring)] 

return super(DiscretePseudoValuation, self).extensions(ring) 

 

def _ge_(self, other): 

r""" 

Return whether this valuation is bigger or equal than ``other`` 

everywhere. 

 

EXAMPLES:: 

 

sage: v = valuations.TrivialPseudoValuation(QQ) 

sage: w = valuations.TrivialValuation(QQ) 

sage: w >= v 

False 

 

""" 

# the trivial discrete valuation is the smallest valuation 

if self is other: 

return True 

return False 

 

TrivialValuation = TrivialValuationFactory(TrivialDiscreteValuation, DiscretePseudoValuationSpace, "sage.rings.valuation.trivial_valuation.TrivialValuation") 

TrivialPseudoValuation = TrivialValuationFactory(TrivialDiscretePseudoValuation, DiscretePseudoValuationSpace, "sage.rings.valuation.trivial_valuation.TrivialPseudoValuation")