Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

# -*- coding: utf-8 -*- 

r""" 

Discrete valuations 

 

This file defines abstract base classes for discrete (pseudo-)valuations. 

 

AUTHORS: 

 

- Julian Rüth (2013-03-16): initial version 

 

EXAMPLES: 

 

Discrete valuations can be created on a variety of rings:: 

 

sage: ZZ.valuation(2) 

2-adic valuation 

sage: GaussianIntegers().valuation(3) 

3-adic valuation 

sage: QQ.valuation(5) 

5-adic valuation 

sage: Zp(7).valuation() 

7-adic valuation 

 

:: 

 

sage: K.<x> = FunctionField(QQ) 

sage: K.valuation(x) 

(x)-adic valuation 

sage: K.valuation(x^2 + 1) 

(x^2 + 1)-adic valuation 

sage: K.valuation(1/x) 

Valuation at the infinite place 

 

:: 

 

sage: R.<x> = QQ[] 

sage: v = QQ.valuation(2) 

sage: w = GaussValuation(R, v) 

sage: w.augmentation(x, 3) 

[ Gauss valuation induced by 2-adic valuation, v(x) = 3 ] 

 

We can also define discrete pseudo-valuations, i.e., discrete valuations that 

send more than just zero to infinity:: 

 

sage: w.augmentation(x, infinity) 

[ Gauss valuation induced by 2-adic valuation, v(x) = +Infinity ] 

 

""" 

#***************************************************************************** 

# Copyright (C) 2013-2017 Julian Rüth <julian.rueth@fsfe.org> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# as published by the Free Software Foundation; either version 2 of 

# the License, or (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from __future__ import absolute_import 

 

from sage.categories.morphism import Morphism 

from sage.structure.richcmp import op_EQ, op_NE, op_LE, op_LT, op_GE, op_GT 

 

from sage.misc.cachefunc import cached_method 

 

 

class DiscretePseudoValuation(Morphism): 

r""" 

Abstract base class for discrete pseudo-valuations, i.e., discrete 

valuations which might send more that just zero to infinity. 

 

INPUT: 

 

- ``domain`` -- an integral domain 

 

EXAMPLES:: 

 

sage: v = ZZ.valuation(2); v # indirect doctest 

2-adic valuation 

 

TESTS:: 

 

sage: TestSuite(v).run() # long time 

 

""" 

def __init__(self, parent): 

r""" 

TESTS:: 

 

sage: from sage.rings.valuation.valuation import DiscretePseudoValuation 

sage: isinstance(ZZ.valuation(2), DiscretePseudoValuation) 

True 

 

""" 

Morphism.__init__(self, parent=parent) 

 

def is_equivalent(self, f, g): 

r""" 

Return whether ``f`` and ``g`` are equivalent. 

 

EXAMPLES:: 

 

sage: v = QQ.valuation(2) 

sage: v.is_equivalent(2, 1) 

False 

sage: v.is_equivalent(2, -2) 

True 

sage: v.is_equivalent(2, 0) 

False 

sage: v.is_equivalent(0, 0) 

True 

 

""" 

from sage.rings.all import infinity 

if self(f) is infinity: 

return self(g) is infinity 

 

return self(f-g) > self(f) 

 

def __hash__(self): 

r""" 

The hash value of this valuation. 

 

We redirect to :meth:`_hash_`, so that subclasses can only override 

:meth:`_hash_` and :meth:`_eq_` if they want to provide a different 

notion of equality but they can leave the partial and total operators 

untouched. 

 

EXAMPLES:: 

 

sage: v = QQ.valuation(2) 

sage: hash(v) == hash(v) # indirect doctest 

True 

 

""" 

return self._hash_() 

 

def _hash_(self): 

r""" 

Return a hash value for this valuation. 

 

We override the strange default provided by 

:class:`sage.categories.morphism.Morphism` here and implement equality by 

``id``. This works fine for objects which use unique representation. 

 

Note that the vast majority of valuations come out of a 

:class:`sage.structure.factory.UniqueFactory` and therefore override 

our implementation of :meth:`__hash__` and :meth:`__eq__`. 

 

EXAMPLES:: 

 

sage: v = QQ.valuation(2) 

sage: hash(v) == hash(v) # indirect doctest 

True 

 

""" 

return id(self) 

 

def _richcmp_(self, other, op): 

r""" 

Compare this element to ``other``. 

 

We redirect to methods :meth:`_eq_`, :meth:`_lt_`, and :meth:`_gt_` to 

make it easier for subclasses to override only parts of this 

functionality. 

 

Note that valuations usually implement ``x == y`` as ``x`` and ``y`` 

are indistinguishable. Whereas ``x <= y`` and ``x >= y`` are 

implemented with respect to the natural partial order of valuations. 

As a result, ``x <= y and x >= y`` does not imply ``x == y``. 

 

EXAMPLES:: 

 

sage: v = QQ.valuation(2) 

sage: v == v 

True 

sage: v != v 

False 

sage: w = QQ.valuation(3) 

sage: v == w 

False 

sage: v != w 

True 

 

Note that this does not affect comparison of valuations which do not 

coerce into a common parent. This is by design in Sage, see 

:meth:`sage.structure.element.Element.__richcmp__`. When the valuations 

do not coerce into a common parent, a rather random comparison of 

``id`` happens:: 

 

sage: w = valuations.TrivialValuation(GF(2)) 

sage: w <= v # random output 

True 

sage: v <= w # random output 

False 

 

""" 

if op == op_LT: 

return self <= other and not (self >= other) 

if op == op_LE: 

return self._le_(other) 

if op == op_EQ: 

return self._eq_(other) 

if op == op_NE: 

return not self == other 

if op == op_GT: 

return self >= other and not (self <= other) 

if op == op_GE: 

return self._ge_(other) 

raise NotImplementedError("Operator not implemented for this valuation") 

 

def _eq_(self, other): 

r""" 

Return whether this valuation and ``other`` are indistinguishable. 

 

We override the strange default provided by 

:class:`sage.categories.morphism.Morphism` here and implement equality by 

``id``. This is the right behaviour in many cases. 

 

Note that the vast majority of valuations come out of a 

:class:`sage.structure.factory.UniqueFactory` and therefore override 

our implementation of :meth:`__hash__` and :meth:`__eq__`. 

 

When overriding this method, you can assume that ``other`` is a 

(pseudo-)valuation on the same domain. 

 

EXAMPLES:: 

 

sage: v = valuations.TrivialValuation(QQ) 

sage: v == v 

True 

 

""" 

return self is other 

 

def _le_(self, other): 

r""" 

Return whether this valuation is less than or equal to ``other`` 

pointwise. 

 

When overriding this method, you can assume that ``other`` is a 

(pseudo-)valuation on the same domain. 

 

EXAMPLES:: 

 

sage: v = valuations.TrivialValuation(QQ) 

sage: w = QQ.valuation(2) 

sage: v <= w 

True 

 

Note that this does not affect comparison of valuations which do not 

coerce into a common parent. This is by design in Sage, see 

:meth:`sage.structure.element.Element.__richcmp__`. When the valuations 

do not coerce into a common parent, a rather random comparison of 

``id`` happens:: 

 

sage: w = valuations.TrivialValuation(GF(2)) 

sage: w <= v # random output 

True 

sage: v <= w # random output 

False 

 

""" 

return other >= self 

 

def _ge_(self, other): 

r""" 

Return whether this valuation is greater than or equal to ``other`` 

pointwise. 

 

When overriding this method, you can assume that ``other`` is a 

(pseudo-)valuation on the same domain. 

 

EXAMPLES:: 

 

sage: v = valuations.TrivialValuation(QQ) 

sage: w = QQ.valuation(2) 

sage: v >= w 

False 

 

Note that this does not affect comparison of valuations which do not 

coerce into a common parent. This is by design in Sage, see 

:meth:`sage.structure.element.Element.__richcmp__`. When the valuations 

do not coerce into a common parent, a rather random comparison of 

``id`` happens:: 

 

sage: w = valuations.TrivialValuation(GF(2)) 

sage: w <= v # random output 

True 

sage: v <= w # random output 

False 

 

""" 

if self == other: return True 

from .scaled_valuation import ScaledValuation_generic 

if isinstance(other, ScaledValuation_generic): 

return other <= self 

raise NotImplementedError("Operator not implemented for this valuation") 

 

# Remove the default implementation of Map.__reduce__ that does not play 

# nice with factories (a factory, does not override Map.__reduce__ because 

# it is not the generic reduce of object) and that does not match equality 

# by id. 

__reduce__ = object.__reduce__ 

 

def _test_valuation_inheritance(self, **options): 

r""" 

Test that every instance of this class is either a 

:class:`InfiniteDiscretePseudoValuation` or a 

:class:`DiscreteValuation`. 

 

EXAMPLES:: 

 

sage: QQ.valuation(2)._test_valuation_inheritance() 

 

""" 

tester = self._tester(**options) 

tester.assertTrue(isinstance(self, InfiniteDiscretePseudoValuation) != isinstance(self, DiscreteValuation)) 

 

class InfiniteDiscretePseudoValuation(DiscretePseudoValuation): 

r""" 

Abstract base class for infinite discrete pseudo-valuations, i.e., discrete 

pseudo-valuations which are not discrete valuations. 

 

EXAMPLES:: 

 

sage: v = QQ.valuation(2) 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, v) 

sage: w = v.augmentation(x, infinity); w # indirect doctest 

[ Gauss valuation induced by 2-adic valuation, v(x) = +Infinity ] 

 

TESTS:: 

 

sage: from sage.rings.valuation.valuation import InfiniteDiscretePseudoValuation 

sage: isinstance(w, InfiniteDiscretePseudoValuation) 

True 

sage: TestSuite(w).run() # long time 

 

""" 

def is_discrete_valuation(self): 

r""" 

Return whether this valuation is a discrete valuation. 

 

EXAMPLES:: 

 

sage: v = QQ.valuation(2) 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, v) 

sage: v.is_discrete_valuation() 

True 

sage: w = v.augmentation(x, infinity) 

sage: w.is_discrete_valuation() 

False 

 

""" 

return False 

 

class NegativeInfiniteDiscretePseudoValuation(InfiniteDiscretePseudoValuation): 

r""" 

Abstract base class for pseudo-valuations which attain the value `\infty` 

and `-\infty`, i.e., whose domain contains an element of valuation `\infty` 

and its inverse. 

 

EXAMPLES:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, valuations.TrivialValuation(QQ)).augmentation(x, infinity) 

sage: K.<x> = FunctionField(QQ) 

sage: w = K.valuation(v) 

 

TESTS:: 

 

sage: TestSuite(w).run() # long time 

 

""" 

def is_negative_pseudo_valuation(self): 

r""" 

Return whether this valuation attains the value `-\infty`. 

 

EXAMPLES:: 

 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, valuations.TrivialValuation(QQ)).augmentation(x, infinity) 

sage: v.is_negative_pseudo_valuation() 

False 

sage: K.<x> = FunctionField(QQ) 

sage: w = K.valuation(v) 

sage: w.is_negative_pseudo_valuation() 

True 

 

""" 

return True 

 

 

class DiscreteValuation(DiscretePseudoValuation): 

r""" 

Abstract base class for discrete valuations. 

 

EXAMPLES:: 

 

sage: v = QQ.valuation(2) 

sage: R.<x> = QQ[] 

sage: v = GaussValuation(R, v) 

sage: w = v.augmentation(x, 1337); w # indirect doctest 

[ Gauss valuation induced by 2-adic valuation, v(x) = 1337 ] 

 

TESTS:: 

 

sage: from sage.rings.valuation.valuation import DiscreteValuation 

sage: isinstance(w, DiscreteValuation) 

True 

sage: TestSuite(w).run() # long time 

 

""" 

def is_discrete_valuation(self): 

r""" 

Return whether this valuation is a discrete valuation. 

 

EXAMPLES:: 

 

sage: v = valuations.TrivialValuation(ZZ) 

sage: v.is_discrete_valuation() 

True 

 

""" 

return True 

 

def mac_lane_approximants(self, G, assume_squarefree=False, require_final_EF=True, required_precision=-1, require_incomparability=False, require_maximal_degree=False, algorithm="serial"): 

r""" 

Return approximants on `K[x]` for the extensions of this valuation to 

`L=K[x]/(G)`. 

 

If `G` is an irreducible polynomial, then this corresponds to 

extensions of this valuation to the completion of `L`. 

 

INPUT: 

 

- ``G`` -- a monic squarefree integral polynomial in a 

univariate polynomial ring over the domain of this valuation 

 

- ``assume_squarefree`` -- a boolean (default: ``False``), whether to 

assume that ``G`` is squarefree. If ``True``, the squafreeness of 

``G`` is not verified though it is necessary when 

``require_final_EF`` is set for the algorithm to terminate. 

 

- ``require_final_EF`` -- a boolean (default: ``True``); whether to 

require the returned key polynomials to be in one-to-one 

correspondance to the extensions of this valuation to ``L`` and 

require them to have the ramification index and residue degree of the 

valuations they correspond to. 

 

- ``required_precision`` -- a number or infinity (default: -1); whether 

to require the last key polynomial of the returned valuations to have 

at least that valuation. 

 

- ``require_incomparability`` -- a boolean (default: ``False``); 

whether to require require the returned valuations to be incomparable 

(with respect to the partial order on valuations defined by comparing 

them pointwise.) 

 

- ``require_maximal_degree`` -- a boolean (deault: ``False``); whether 

to require the last key polynomial of the returned valuation to have 

maximal degree. This is most relevant when using this algorithm to 

compute approximate factorizations of ``G``, when set to ``True``, 

the last key polynomial has the same degree as the corresponding 

factor. 

 

- ``algorithm`` -- one of ``"serial"`` or ``"parallel"`` (default: 

``"serial"``); whether or not to parallelize the algorithm 

 

EXAMPLES:: 

 

sage: v = QQ.valuation(2) 

sage: R.<x> = QQ[] 

sage: v.mac_lane_approximants(x^2 + 1) 

[[ Gauss valuation induced by 2-adic valuation, v(x + 1) = 1/2 ]] 

sage: v.mac_lane_approximants(x^2 + 1, required_precision=infinity) 

[[ Gauss valuation induced by 2-adic valuation, v(x + 1) = 1/2, v(x^2 + 1) = +Infinity ]] 

sage: v.mac_lane_approximants(x^2 + x + 1) 

[[ Gauss valuation induced by 2-adic valuation, v(x^2 + x + 1) = +Infinity ]] 

 

Note that ``G`` does not need to be irreducible. Here, we detect a 

factor `x + 1` and an approximate factor `x + 1` (which is an 

approximation to `x - 1`):: 

 

sage: v.mac_lane_approximants(x^2 - 1) 

[[ Gauss valuation induced by 2-adic valuation, v(x + 1) = +Infinity ], 

[ Gauss valuation induced by 2-adic valuation, v(x + 1) = 1 ]] 

 

However, it needs to be squarefree:: 

 

sage: v.mac_lane_approximants(x^2) 

Traceback (most recent call last): 

... 

ValueError: G must be squarefree 

 

TESTS: 

 

Some difficult cases provided by Mark van Hoeij:: 

 

sage: k = GF(2) 

sage: K.<x> = FunctionField(k) 

sage: R.<y> = K[] 

sage: F = y^21 + x*y^20 + (x^3 + x + 1)*y^18 + (x^3 + 1)*y^17 + (x^4 + x)*y^16 + (x^7 + x^6 + x^3 + x + 1)*y^15 + x^7*y^14 + (x^8 + x^7 + x^6 + x^4 + x^3 + 1)*y^13 + (x^9 + x^8 + x^4 + 1)*y^12 + (x^11 + x^9 + x^8 + x^5 + x^4 + x^3 + x^2)*y^11 + (x^12 + x^9 + x^8 + x^7 + x^5 + x^3 + x + 1)*y^10 + (x^14 + x^13 + x^10 + x^9 + x^8 + x^7 + x^6 + x^3 + x^2 + 1)*y^9 + (x^13 + x^9 + x^8 + x^6 + x^4 + x^3 + x)*y^8 + (x^16 + x^15 + x^13 + x^12 + x^11 + x^7 + x^3 + x)*y^7 + (x^17 + x^16 + x^13 + x^9 + x^8 + x)*y^6 + (x^17 + x^16 + x^12 + x^7 + x^5 + x^2 + x + 1)*y^5 + (x^19 + x^16 + x^15 + x^12 + x^6 + x^5 + x^3 + 1)*y^4 + (x^18 + x^15 + x^12 + x^10 + x^9 + x^7 + x^4 + x)*y^3 + (x^22 + x^21 + x^20 + x^18 + x^13 + x^12 + x^9 + x^8 + x^7 + x^5 + x^4 + x^3)*y^2 + (x^23 + x^22 + x^20 + x^17 + x^15 + x^14 + x^12 + x^9)*y + x^25 + x^23 + x^19 + x^17 + x^15 + x^13 + x^11 + x^5 

sage: x = K._ring.gen() 

sage: v0 = K.valuation(GaussValuation(K._ring, valuations.TrivialValuation(k)).augmentation(x,1)) 

sage: v0.mac_lane_approximants(F, assume_squarefree=True) # assumes squarefree for speed 

[[ Gauss valuation induced by (x)-adic valuation, v(y + x + 1) = 3/2 ], 

[ Gauss valuation induced by (x)-adic valuation, v(y) = 1 ], 

[ Gauss valuation induced by (x)-adic valuation, v(y) = 4/3 ], 

[ Gauss valuation induced by (x)-adic valuation, v(y^15 + y^13 + y^12 + y^10 + y^9 + y^8 + y^4 + y^3 + y^2 + y + 1) = 1 ]] 

sage: v0 = K.valuation(GaussValuation(K._ring, valuations.TrivialValuation(k)).augmentation(x+1,1)) 

sage: v0.mac_lane_approximants(F, assume_squarefree=True) # assumes squarefree for speed 

[[ Gauss valuation induced by (x + 1)-adic valuation, v(y + x^2 + 1) = 7/2 ], 

[ Gauss valuation induced by (x + 1)-adic valuation, v(y) = 3/4 ], 

[ Gauss valuation induced by (x + 1)-adic valuation, v(y) = 7/2 ], 

[ Gauss valuation induced by (x + 1)-adic valuation, v(y^13 + y^12 + y^10 + y^7 + y^6 + y^3 + 1) = 1 ]] 

sage: v0 = valuations.FunctionFieldValuation(K, GaussValuation(K._ring, valuations.TrivialValuation(k)).augmentation(x^3+x^2+1,1)) 

sage: v0.mac_lane_approximants(F, assume_squarefree=True) # assumes squarefree for speed 

[[ Gauss valuation induced by (x^3 + x^2 + 1)-adic valuation, v(y + x^3 + x^2 + x) = 2, v(y^2 + (x^6 + x^4 + 1)*y + x^14 + x^10 + x^9 + x^8 + x^5 + x^4 + x^3 + x^2 + x) = 5 ], 

[ Gauss valuation induced by (x^3 + x^2 + 1)-adic valuation, v(y^2 + (x^2 + x)*y + 1) = 1 ], 

[ Gauss valuation induced by (x^3 + x^2 + 1)-adic valuation, v(y^3 + (x + 1)*y^2 + (x + 1)*y + x^2 + x + 1) = 1 ], 

[ Gauss valuation induced by (x^3 + x^2 + 1)-adic valuation, v(y^3 + x^2*y + x) = 1 ], 

[ Gauss valuation induced by (x^3 + x^2 + 1)-adic valuation, v(y^4 + (x + 1)*y^3 + x^2*y^2 + (x^2 + x)*y + x) = 1 ],  

[ Gauss valuation induced by (x^3 + x^2 + 1)-adic valuation, v(y^7 + x^2*y^6 + (x + 1)*y^4 + x^2*y^3 + (x^2 + x + 1)*y^2 + x^2*y + x) = 1 ]] 

 

Cases with trivial residue field extensions:: 

 

sage: K.<x> = FunctionField(QQ) 

sage: S.<y> = K[] 

sage: F = y^2 - x^2 - x^3 - 3 

sage: v0 = GaussValuation(K._ring, QQ.valuation(3)) 

sage: v1 = v0.augmentation(K._ring.gen(),1/3) 

sage: mu0 = valuations.FunctionFieldValuation(K, v1) 

sage: mu0.mac_lane_approximants(F) 

[[ Gauss valuation induced by Valuation on rational function field induced by [ Gauss valuation induced by 3-adic valuation, v(x) = 1/3 ], v(y + 2*x) = 2/3 ], 

[ Gauss valuation induced by Valuation on rational function field induced by [ Gauss valuation induced by 3-adic valuation, v(x) = 1/3 ], v(y + x) = 2/3 ]] 

 

Over a complete base field:: 

 

sage: k=Qp(2,10) 

sage: v = k.valuation() 

 

sage: R.<x>=k[] 

sage: G = x 

sage: v.mac_lane_approximants(G) 

[Gauss valuation induced by 2-adic valuation] 

sage: v.mac_lane_approximants(G, required_precision = infinity) 

[[ Gauss valuation induced by 2-adic valuation, v((1 + O(2^10))*x) = +Infinity ]] 

 

sage: G = x^2 + 1 

sage: v.mac_lane_approximants(G) 

[[ Gauss valuation induced by 2-adic valuation, v((1 + O(2^10))*x + (1 + O(2^10))) = 1/2 ]] 

sage: v.mac_lane_approximants(G, required_precision = infinity) 

[[ Gauss valuation induced by 2-adic valuation, v((1 + O(2^10))*x + (1 + O(2^10))) = 1/2, v((1 + O(2^10))*x^2 + (1 + O(2^10))) = +Infinity ]] 

 

sage: G = x^4 + 2*x^3 + 2*x^2 - 2*x + 2 

sage: v.mac_lane_approximants(G) 

[[ Gauss valuation induced by 2-adic valuation, v((1 + O(2^10))*x) = 1/4 ]] 

sage: v.mac_lane_approximants(G, required_precision=infinity) 

[[ Gauss valuation induced by 2-adic valuation, v((1 + O(2^10))*x) = 1/4, v((1 + O(2^10))*x^4 + (2 + O(2^11))*x^3 + (2 + O(2^11))*x^2 + (2 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + 2^9 + 2^10 + O(2^11))*x + (2 + O(2^11))) = +Infinity ]] 

 

The factorization of primes in the Gaussian integers can be read off 

the Mac Lane approximants:: 

 

sage: v0 = QQ.valuation(2) 

sage: R.<x> = QQ[] 

sage: G = x^2 + 1 

sage: v0.mac_lane_approximants(G) 

[[ Gauss valuation induced by 2-adic valuation, v(x + 1) = 1/2 ]] 

 

sage: v0 = QQ.valuation(3) 

sage: v0.mac_lane_approximants(G) 

[[ Gauss valuation induced by 3-adic valuation, v(x^2 + 1) = +Infinity ]] 

 

sage: v0 = QQ.valuation(5) 

sage: v0.mac_lane_approximants(G) 

[[ Gauss valuation induced by 5-adic valuation, v(x + 2) = 1 ], 

[ Gauss valuation induced by 5-adic valuation, v(x + 3) = 1 ]] 

sage: v0.mac_lane_approximants(G, required_precision = 10) 

[[ Gauss valuation induced by 5-adic valuation, v(x + 3626068) = 10 ], 

[ Gauss valuation induced by 5-adic valuation, v(x + 6139557) = 10 ]] 

 

The same example over the 5-adic numbers. In the quadratic extension 

`\QQ[x]/(x^2+1)`, 5 factors `-(x - 2)(x + 2)`, this behaviour can be 

read off the Mac Lane approximants:: 

 

sage: k=Qp(5,4) 

sage: v = k.valuation() 

sage: R.<x>=k[] 

sage: G = x^2 + 1 

sage: v1,v2 = v.mac_lane_approximants(G); v1,v2 

([ Gauss valuation induced by 5-adic valuation, v((1 + O(5^4))*x + (2 + O(5^4))) = 1 ], 

[ Gauss valuation induced by 5-adic valuation, v((1 + O(5^4))*x + (3 + O(5^4))) = 1 ]) 

sage: w1, w2 = v.mac_lane_approximants(G, required_precision = 2); w1,w2 

([ Gauss valuation induced by 5-adic valuation, v((1 + O(5^4))*x + (2 + 5 + O(5^4))) = 2 ], 

[ Gauss valuation induced by 5-adic valuation, v((1 + O(5^4))*x + (3 + 3*5 + O(5^4))) = 2 ]) 

 

Note how the latter give a better approximation to the factors of `x^2 + 1`:: 

 

sage: v1.phi() * v2.phi() - G 

(O(5^4))*x^2 + (5 + O(5^4))*x + (5 + O(5^4)) 

sage: w1.phi() * w2.phi() - G 

(O(5^4))*x^2 + (5^2 + O(5^4))*x + (5^3 + O(5^4)) 

 

In this example, the process stops with a factorization of `x^2 + 1`:: 

 

sage: v.mac_lane_approximants(G, required_precision=infinity) 

[[ Gauss valuation induced by 5-adic valuation, v((1 + O(5^4))*x + (2 + 5 + 2*5^2 + 5^3 + O(5^4))) = +Infinity ], 

[ Gauss valuation induced by 5-adic valuation, v((1 + O(5^4))*x + (3 + 3*5 + 2*5^2 + 3*5^3 + O(5^4))) = +Infinity ]] 

 

This obviously cannot happen over the rationals where we only get an 

approximate factorization:: 

 

sage: v = QQ.valuation(5) 

sage: R.<x>=QQ[] 

sage: G = x^2 + 1 

sage: v.mac_lane_approximants(G) 

[[ Gauss valuation induced by 5-adic valuation, v(x + 2) = 1 ], [ Gauss valuation induced by 5-adic valuation, v(x + 3) = 1 ]] 

sage: v.mac_lane_approximants(G, required_precision=5) 

[[ Gauss valuation induced by 5-adic valuation, v(x + 1068) = 6 ], 

[ Gauss valuation induced by 5-adic valuation, v(x + 2057) = 5 ]] 

 

Initial versions ran into problems with the trivial residue field 

extensions in this case:: 

 

sage: K = Qp(3, 20, print_mode='digits') 

sage: R.<T> = K[] 

 

sage: alpha = T^3/4 

sage: G = 3^3*T^3*(alpha^4 - alpha)^2 - (4*alpha^3 - 1)^3 

sage: G = G/G.leading_coefficient() 

sage: K.valuation().mac_lane_approximants(G) 

[[ Gauss valuation induced by 3-adic valuation, v((...1)*T + (...2)) = 1/9, v((...1)*T^9 + (...20)*T^8 + (...210)*T^7 + (...20)*T^6 + (...20)*T^5 + (...10)*T^4 + (...220)*T^3 + (...20)*T^2 + (...110)*T + (...122)) = 55/27 ]] 

 

A similar example:: 

 

sage: R.<x> = QQ[] 

sage: v = QQ.valuation(3) 

sage: G = (x^3 + 3)^3 - 81 

sage: v.mac_lane_approximants(G) 

[[ Gauss valuation induced by 3-adic valuation, v(x) = 1/3, v(x^3 + 3*x + 3) = 13/9 ]] 

 

Another problematic case:: 

 

sage: R.<x> = QQ[]  

sage: Delta = x^12 + 20*x^11 + 154*x^10 + 664*x^9 + 1873*x^8 + 3808*x^7 + 5980*x^6 + 7560*x^5 + 7799*x^4 + 6508*x^3 + 4290*x^2 + 2224*x + 887  

sage: K.<theta> = NumberField(x^6 + 108)  

sage: K.is_galois() 

True 

sage: vK = QQ.valuation(2).extension(K) 

sage: vK(2)  

1  

sage: vK(theta)  

1/3 

sage: G=Delta.change_ring(K)  

sage: vK.mac_lane_approximants(G) 

[[ Gauss valuation induced by 2-adic valuation, v(x + 1) = 1/4, v(x^4 + 2*x^2 + 1/2*theta^4 + theta^3 + 5*theta + 1) = 5/3 ], 

[ Gauss valuation induced by 2-adic valuation, v(x + 1) = 1/4, v(x^4 + 2*x^2 + 3/2*theta^4 + theta^3 + 5*theta + 1) = 5/3 ], 

[ Gauss valuation induced by 2-adic valuation, v(x + 1) = 1/4, v(x^4 + 2*x^2 + theta^4 + theta^3 + 1) = 5/3 ]] 

 

An easy case that produced the wrong error at some point:: 

 

sage: R.<x> = QQ[] 

sage: v = QQ.valuation(2) 

sage: v.mac_lane_approximants(x^2 - 1/2) 

Traceback (most recent call last): 

... 

ValueError: G must be integral 

 

Some examples that Sebastian Pauli used in a talk at Sage Days 87. 

 

:: 

 

sage: R = ZpFM(3, 7, print_mode='terse') 

sage: S.<x> = R[] 

sage: v = R.valuation() 

sage: f = x^4 + 234 

sage: len(v.mac_lane_approximants(f, assume_squarefree=True)) # is_squarefree() is not properly implemented yet 

2 

 

:: 

 

sage: R = ZpFM(2, 50, print_mode='terse') 

sage: S.<x> = R[] 

sage: f = (x^32 + 16)*(x^32 + 16 + 2^16*x^2) + 2^34 

sage: v = R.valuation() 

sage: len(v.mac_lane_approximants(f, assume_squarefree=True)) # is_squarefree() is not properly implemented yet 

2 

 

A case that triggered an assertion at some point:: 

 

sage: v = QQ.valuation(3) 

sage: R.<x> = QQ[] 

sage: f = x^36 + 60552000*x^33 + 268157412*x^30 + 173881701*x^27 + 266324841*x^24 + 83125683*x^21 + 111803814*x^18 + 31925826*x^15 + 205726716*x^12 +17990262*x^9 + 351459648*x^6 + 127014399*x^3 + 359254116 

sage: v.mac_lane_approximants(f) 

[[ Gauss valuation induced by 3-adic valuation, v(x) = 1/3, v(x^3 + 6) = 3/2, v(x^12 + 24*x^9 + 216*x^6 + 864*x^3 + 2025) = 13/2, v(x^36 + 60552000*x^33 + 268157412*x^30 + 173881701*x^27 + 266324841*x^24 + 83125683*x^21 + 111803814*x^18 + 31925826*x^15 + 205726716*x^12 + 17990262*x^9 + 351459648*x^6 + 127014399*x^3 + 359254116) = +Infinity ]] 

 

""" 

R = G.parent() 

if R.base_ring() is not self.domain(): 

raise ValueError("G must be defined over the domain of this valuation") 

 

from sage.misc.misc import verbose 

verbose("Approximants of %r on %r towards %r"%(self, self.domain(), G), level=3) 

 

from sage.rings.all import infinity 

from sage.rings.valuation.gauss_valuation import GaussValuation 

 

if not all([self(c) >= 0 for c in G.coefficients()]): 

raise ValueError("G must be integral") 

 

if require_maximal_degree: 

# we can only assert maximality of degrees when E and F are final 

require_final_EF = True 

 

if not assume_squarefree: 

if require_final_EF and not G.is_squarefree(): 

raise ValueError("G must be squarefree") 

else: 

# if only required_precision is set, we do not need to check 

# whether G is squarefree. If G is not squarefree, we compute 

# valuations corresponding to approximants for all the 

# squarefree factors of G (up to required_precision.) 

pass 

 

def is_sufficient(leaf, others): 

if leaf.valuation.mu() < required_precision: 

return False 

if require_final_EF and not leaf.ef: 

return False 

if require_maximal_degree and leaf.valuation.phi().degree() != leaf.valuation.E()*leaf.valuation.F(): 

return False 

if require_incomparability: 

if any(leaf.valuation <= o.valuation for o in others): 

return False 

return True 

 

seed = MacLaneApproximantNode(GaussValuation(R,self), None, G.degree() == 1, G.degree(), None, None) 

seed.forced_leaf = is_sufficient(seed, []) 

 

def create_children(node): 

new_leafs = [] 

if node.forced_leaf: 

return new_leafs 

augmentations = node.valuation.mac_lane_step(G, 

report_degree_bounds_and_caches=True, 

coefficients=node.coefficients, 

valuations=node.valuations, 

check=False, 

principal_part_bound=node.principal_part_bound) 

for w, bound, principal_part_bound, coefficients, valuations in augmentations: 

ef = bound == w.E()*w.F() 

new_leafs.append(MacLaneApproximantNode(w, node, ef, principal_part_bound, coefficients, valuations)) 

for leaf in new_leafs: 

if is_sufficient(leaf, [l for l in new_leafs if l is not leaf]): 

leaf.forced_leaf = True 

return new_leafs 

 

def reduce_tree(v, w): 

return v + w 

 

from sage.all import RecursivelyEnumeratedSet 

tree = RecursivelyEnumeratedSet([seed], 

successors = create_children, 

structure = 'forest', 

enumeration = 'breadth') 

# this is a tad faster but annoying for profiling / debugging 

if algorithm == 'parallel': 

nodes = tree.map_reduce( 

map_function = lambda x: [x], 

reduce_init = []) 

elif algorithm == 'serial': 

from sage.parallel.map_reduce import RESetMapReduce 

nodes = RESetMapReduce( 

forest = tree, 

map_function = lambda x: [x], 

reduce_init = []).run_serial() 

else: 

raise NotImplementedError(algorithm) 

leafs = set([node.valuation for node in nodes]) 

for node in nodes: 

if node.parent is None: 

continue 

v = node.parent.valuation 

if v in leafs: 

leafs.remove(v) 

 

# The order of the leafs is not predictable in parallel mode and in 

# serial mode it depends on the hash functions and so on the underlying 

# archictecture (32/64 bit). There is no natural ordering on these 

# valuations but it is very convenient for doctesting to return them in 

# some stable order, so we just order them by their string 

# representation which should be very fast. 

try: 

ret = sorted(leafs, key=str) 

except Exception: 

# if for some reason the valuation can not be printed, we leave them unsorted 

ret = list(leafs) 

 

return ret 

 

@cached_method 

def _pow(self, x, e, error): 

r""" 

Return `x^e`. 

 

This method does not compute the exact value of `x^e` but only an 

element that differs from the correct result by an error with valuation 

at least ``error``. 

 

EXAMPLES:: 

 

sage: v = QQ.valuation(2) 

sage: v._pow(2, 2, error=4) 

4 

sage: v._pow(2, 1000, error=4) 

0 

 

""" 

if e == 0: 

return self.domain().one() 

if e == 1: 

return self.simplify(x, error=error) 

if e % 2 == 0: 

return self._pow(self.simplify(x*x, error=error*2/e), e//2, error=error) 

else: 

return self.simplify(x*self._pow(x, e-1, error=error*(e-1)/e), error=error) 

 

def mac_lane_approximant(self, G, valuation, approximants = None): 

r""" 

Return the approximant from :meth:`mac_lane_approximants` for ``G`` 

which is approximated by or approximates ``valuation``. 

 

INPUT: 

 

- ``G`` -- a monic squarefree integral polynomial in a univariate 

polynomial ring over the domain of this valuation 

 

- ``valuation`` -- a valuation on the parent of ``G`` 

 

- ``approximants`` -- the output of :meth:`mac_lane_approximants`. 

If not given, it is computed. 

 

EXAMPLES:: 

 

sage: v = QQ.valuation(2) 

sage: R.<x> = QQ[] 

sage: G = x^2 + 1 

 

We can select an approximant by approximating it:: 

 

sage: w = GaussValuation(R, v).augmentation(x + 1, 1/2) 

sage: v.mac_lane_approximant(G, w) 

[ Gauss valuation induced by 2-adic valuation, v(x + 1) = 1/2 ] 

 

As long as this is the only matching approximant, the approximation can 

be very coarse:: 

 

sage: w = GaussValuation(R, v) 

sage: v.mac_lane_approximant(G, w) 

[ Gauss valuation induced by 2-adic valuation, v(x + 1) = 1/2 ] 

 

Or it can be very specific:: 

 

sage: w = GaussValuation(R, v).augmentation(x + 1, 1/2).augmentation(G, infinity) 

sage: v.mac_lane_approximant(G, w) 

[ Gauss valuation induced by 2-adic valuation, v(x + 1) = 1/2 ] 

 

But it must be an approximation of an approximant:: 

 

sage: w = GaussValuation(R, v).augmentation(x, 1/2) 

sage: v.mac_lane_approximant(G, w) 

Traceback (most recent call last): 

... 

ValueError: The valuation [ Gauss valuation induced by 2-adic valuation, v(x) = 1/2 ] is not an approximant for a valuation which extends 2-adic valuation with respect to x^2 + 1 since the valuation of x^2 + 1 does not increase in every step 

 

The ``valuation`` must single out one approximant:: 

 

sage: G = x^2 - 1 

sage: w = GaussValuation(R, v) 

sage: v.mac_lane_approximant(G, w) 

Traceback (most recent call last): 

... 

ValueError: The valuation Gauss valuation induced by 2-adic valuation does not approximate a unique extension of 2-adic valuation with respect to x^2 - 1 

 

sage: w = GaussValuation(R, v).augmentation(x + 1, 1) 

sage: v.mac_lane_approximant(G, w) 

Traceback (most recent call last): 

... 

ValueError: The valuation [ Gauss valuation induced by 2-adic valuation, v(x + 1) = 1 ] does not approximate a unique extension of 2-adic valuation with respect to x^2 - 1 

 

sage: w = GaussValuation(R, v).augmentation(x + 1, 2) 

sage: v.mac_lane_approximant(G, w) 

[ Gauss valuation induced by 2-adic valuation, v(x + 1) = +Infinity ] 

 

sage: w = GaussValuation(R, v).augmentation(x + 3, 2) 

sage: v.mac_lane_approximant(G, w) 

[ Gauss valuation induced by 2-adic valuation, v(x + 1) = 1 ] 

 

""" 

if valuation.restriction(valuation.domain().base_ring()) is not self: 

raise ValueError 

 

# Check that valuation is an approximant for a valuation 

# on domain that extends its restriction to the base field. 

from sage.rings.all import infinity 

if valuation(G) is not infinity: 

v = valuation 

while not v.is_gauss_valuation(): 

if v(G) <= v._base_valuation(G): 

raise ValueError("The valuation %r is not an approximant for a valuation which extends %r with respect to %r since the valuation of %r does not increase in every step"%(valuation, self, G, G)) 

v = v._base_valuation 

 

if approximants is None: 

approximants = self.mac_lane_approximants(G) 

 

assert all(approximant.domain() is valuation.domain() for approximant in approximants) 

 

greater_approximants = [w for w in approximants if w >= valuation] 

if len(greater_approximants) > 1: 

raise ValueError("The valuation %r does not approximate a unique extension of %r with respect to %r"%(valuation, self, G)) 

if len(greater_approximants) == 1: 

return greater_approximants[0] 

 

smaller_approximants = [w for w in approximants if w <= valuation] 

if len(smaller_approximants) > 1: 

raise ValueError("The valuation %r is not approximated by a unique extension of %r with respect to %r"%(valuation, self, G)) 

if len(smaller_approximants) == 0: 

raise ValueError("The valuation %r is not related to an extension of %r with respect to %r"%(valuation, self, G)) 

return smaller_approximants[0] 

 

def montes_factorization(self, G, assume_squarefree=False, required_precision=None): 

""" 

Factor ``G`` over the completion of the domain of this valuation. 

 

INPUT: 

 

- ``G`` -- a monic polynomial over the domain of this valuation 

 

- ``assume_squarefree`` -- a boolean (default: ``False``), whether to 

assume ``G`` to be squarefree 

 

- ``required_precision`` -- a number or infinity (default: 

infinity); if ``infinity``, the returned polynomials are actual factors of 

``G``, otherwise they are only factors with precision at least 

``required_precision``. 

 

ALGORITHM: 

 

We compute :meth:`mac_lane_approximants` with ``required_precision``. 

The key polynomials approximate factors of ``G``. This can be very 

slow unless ``required_precision`` is set to zero. Single factor 

lifting could improve this significantly. 

 

EXAMPLES:: 

 

sage: k=Qp(5,4) 

sage: v = k.valuation() 

sage: R.<x>=k[] 

sage: G = x^2 + 1 

sage: v.montes_factorization(G) 

((1 + O(5^4))*x + (2 + 5 + 2*5^2 + 5^3 + O(5^4))) * ((1 + O(5^4))*x + (3 + 3*5 + 2*5^2 + 3*5^3 + O(5^4))) 

 

The computation might not terminate over incomplete fields (in 

particular because the factors can not be represented there):: 

 

sage: R.<x> = QQ[] 

sage: v = QQ.valuation(2) 

sage: v.montes_factorization(x^2 + 1) 

x^2 + 1 

 

sage: v.montes_factorization(x^2 - 1) 

(x - 1) * (x + 1) 

 

sage: v.montes_factorization(x^2 - 1, required_precision=5) 

(x + 1) * (x + 31) 

 

TESTS: 

 

Some examples that Sebastian Pauli used in a talk at Sage Days 87. 

 

In this example, ``f`` factors as three factors of degree 50 over an 

unramified extension:: 

 

sage: R.<u> = ZqFM(125) 

sage: S.<x> = R[] 

sage: f = (x^6+2)^25 + 5 

sage: v = R.valuation() 

sage: v.montes_factorization(f, assume_squarefree=True, required_precision=0) 

((1 + O(5^20))*x^50 + (2*5 + O(5^20))*x^45 + (5 + O(5^20))*x^40 + (5 + O(5^20))*x^30 + (2 + O(5^20))*x^25 + (3*5 + O(5^20))*x^20 + (2*5 + O(5^20))*x^10 + (2*5 + O(5^20))*x^5 + (5 + O(5^20))*x + 3 + 5 + O(5^20)) * ((1 + O(5^20))*x^50 + (3*5 + O(5^20))*x^45 + (5 + O(5^20))*x^40 + (5 + O(5^20))*x^30 + (3 + 4*5 + O(5^20))*x^25 + (3*5 + O(5^20))*x^20 + (2*5 + O(5^20))*x^10 + (3*5 + O(5^20))*x^5 + (4*5 + O(5^20))*x + 3 + 5 + O(5^20)) * ((1 + O(5^20))*x^50 + (3*5 + O(5^20))*x^40 + (3*5 + O(5^20))*x^30 + (4*5 + O(5^20))*x^20 + (5 + O(5^20))*x^10 + 3 + 5 + O(5^20)) 

 

In this case, ``f`` factors into degrees 1, 2, and 5 over a totally ramified extension:: 

 

sage: R = Zp(5) 

sage: S.<w> = R[] 

sage: R.<w> = R.extension(w^3 + 5) 

sage: S.<x> = R[] 

sage: f = (x^3 + 5)*(x^5 + w) + 625 

sage: v = R.valuation() 

sage: v.montes_factorization(f, assume_squarefree=True, required_precision=0) 

((1 + O(w^60))*x + 4*w + O(w^60)) * ((1 + O(w^60))*x^2 + (w + O(w^60))*x + w^2 + O(w^60)) * ((1 + O(w^60))*x^5 + w + O(w^60)) 

 

REFERENCES: 

 

The underlying algorithm is described in [Mac1936II]_ and thoroughly 

analyzed in [GMN2008]_. 

 

""" 

if required_precision is None: 

from sage.rings.all import infinity 

required_precision = infinity 

 

R = G.parent() 

if R.base_ring() is not self.domain(): 

raise ValueError("G must be defined over the domain of this valuation") 

if not G.is_monic(): 

raise ValueError("G must be monic") 

if not all([self(c)>=0 for c in G.coefficients()]): 

raise ValueError("G must be integral") 

 

# W contains approximate factors of G 

W = self.mac_lane_approximants(G, required_precision=required_precision, require_maximal_degree=True, assume_squarefree=assume_squarefree) 

ret = [w.phi() for w in W] 

 

from sage.structure.factorization import Factorization 

return Factorization([ (g,1) for g in ret ], simplify=False) 

 

def _ge_(self, other): 

r""" 

Return whether this valuation is greater than or equal to ``other`` 

pointwise. 

 

EXAMPLES:: 

 

sage: v = valuations.TrivialValuation(QQ) 

sage: w = QQ.valuation(2) 

sage: v >= w 

False 

 

""" 

if other.is_trivial(): 

return other.is_discrete_valuation() 

return super(DiscreteValuation, self)._ge_(other) 

 

 

class MacLaneApproximantNode(object): 

r""" 

A node in the tree computed by :meth:`DiscreteValuation.mac_lane_approximants` 

 

Leaves in the computation of the tree of approximants 

:meth:`~DiscreteValuation.mac_lane_approximants`. Each vertex consists of a 

tuple ``(v,ef,p,coeffs,vals)`` where ``v`` is an approximant, i.e., a 

valuation, ef is a boolean, ``p`` is the parent of this vertex, and 

``coeffs`` and ``vals`` are cached values. (Only ``v`` and ``ef`` are 

relevant, everything else are caches/debug info.) The boolean ``ef`` 

denotes whether ``v`` already has the final ramification index E and 

residue degree F of this approximant. An edge V -- P represents the 

relation ``P.v`` `≤` ``V.v`` (pointwise on the polynomial ring K[x]) between the 

valuations. 

 

TESTS:: 

 

sage: v = ZZ.valuation(3) 

sage: v.extension(GaussianIntegers()) # indirect doctest 

3-adic valuation 

 

""" 

def __init__(self, valuation, parent, ef, principal_part_bound, coefficients, valuations): 

r""" 

TESTS:: 

 

sage: from sage.rings.valuation.valuation import MacLaneApproximantNode 

sage: node = MacLaneApproximantNode(QQ.valuation(2), None, 1, None, None, None) 

sage: TestSuite(node).run() 

 

""" 

self.valuation = valuation 

self.parent = parent 

self.ef = ef 

self.principal_part_bound = principal_part_bound 

self.coefficients = coefficients 

self.valuations = valuations 

self.forced_leaf = False 

 

def __eq__(self, other): 

r""" 

Return whether this node is equal to ``other``. 

 

EXAMPLES:: 

 

sage: from sage.rings.valuation.valuation import MacLaneApproximantNode 

sage: n = MacLaneApproximantNode(QQ.valuation(2), None, 1, None, None, None) 

sage: m = MacLaneApproximantNode(QQ.valuation(3), None, 1, None, None, None) 

sage: n == m 

False 

sage: n == n 

True 

 

""" 

if type(self) != type(other): 

return False 

return (self.valuation, self.parent, self.ef, self.principal_part_bound, self.coefficients, self.valuations, self.forced_leaf) == (other.valuation, other.parent, other.ef, other.principal_part_bound, other.coefficients, other.valuations, other.forced_leaf) 

 

def __ne__(self, other): 

r""" 

Return whether this node is not equal to ``other``. 

 

EXAMPLES:: 

 

sage: from sage.rings.valuation.valuation import MacLaneApproximantNode 

sage: n = MacLaneApproximantNode(QQ.valuation(2), None, 1, None, None, None) 

sage: m = MacLaneApproximantNode(QQ.valuation(3), None, 1, None, None, None) 

sage: n != m 

True 

sage: n != n 

False 

 

""" 

return not (self == other) 

 

# mutable object - not hashable 

__hash__ = None