Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

r""" 

Points on affine varieties 

 

Scheme morphism for points on affine varieties. 

 

 

AUTHORS: 

 

- David Kohel, William Stein 

 

- Volker Braun (2011-08-08): Renamed classes, more documentation, misc 

cleanups. 

 

- Ben Hutz (2013) 

""" 

 

# Historical note: in trac #11599, V.B. renamed 

# * _point_morphism_class -> _morphism 

# * _homset_class -> _point_homset 

 

#***************************************************************************** 

# Copyright (C) 2011 Volker Braun <vbraun.name@gmail.com> 

# Copyright (C) 2006 David Kohel <kohel@maths.usyd.edu.au> 

# Copyright (C) 2006 William Stein <wstein@gmail.com> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# as published by the Free Software Foundation; either version 2 of 

# the License, or (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

 

from sage.categories.number_fields import NumberFields 

_NumberFields = NumberFields() 

from sage.rings.integer_ring import ZZ 

from sage.rings.number_field.order import is_NumberFieldOrder 

from sage.rings.real_mpfr import RealField 

from sage.schemes.generic.morphism import (SchemeMorphism_point, SchemeMorphism, is_SchemeMorphism) 

from sage.structure.sequence import Sequence 

 

############################################################################ 

# Rational points on schemes, which we view as morphisms determined 

# by coordinates. 

############################################################################ 

 

class SchemeMorphism_point_affine(SchemeMorphism_point): 

""" 

A rational point on an affine scheme. 

 

INPUT: 

 

- ``X`` -- a subscheme of an ambient affine space over a ring `R`. 

 

- ``v`` -- a list/tuple/iterable of coordinates in `R`. 

 

- ``check`` -- boolean (optional, default:``True``). Whether to 

check the input for consistency. 

 

EXAMPLES:: 

 

sage: A = AffineSpace(2, QQ) 

sage: A(1, 2) 

(1, 2) 

""" 

def __init__(self, X, v, check=True): 

""" 

The Python constructor. 

 

See :class:`SchemeMorphism_point_affine` for details. 

 

TESTS:: 

 

sage: from sage.schemes.affine.affine_point import SchemeMorphism_point_affine 

sage: A3.<x,y,z> = AffineSpace(QQ, 3) 

sage: SchemeMorphism_point_affine(A3(QQ), [1, 2, 3]) 

(1, 2, 3) 

""" 

SchemeMorphism.__init__(self, X) 

if check: 

from sage.rings.ring import CommutativeRing 

if is_SchemeMorphism(v): 

v = list(v) 

else: 

try: 

if isinstance(v.parent(), CommutativeRing): 

v = [v] 

except AttributeError: 

pass 

# Verify that there are the right number of coords 

d = self.codomain().ambient_space().ngens() 

if len(v) != d: 

raise TypeError("argument v (=%s) must have %s coordinates"%(v, d)) 

if not isinstance(v, (list, tuple)): 

raise TypeError("argument v (= %s) must be a scheme point, list, or tuple"%str(v)) 

# Make sure the coordinates all lie in the appropriate ring 

v = Sequence(v, X.value_ring()) 

# Verify that the point satisfies the equations of X. 

X.extended_codomain()._check_satisfies_equations(v) 

self._coords = tuple(v) 

 

def nth_iterate(self, f, n): 

r""" 

Returns the point `f^n(self)` 

 

INPUT: 

 

- ``f`` -- a :class:`SchemeMorphism_polynomial` with ``self`` if ``f.domain()``. 

 

- ``n`` -- a positive integer. 

 

OUTPUT: 

 

- a point in ``f.codomain()``. 

 

EXAMPLES:: 

 

sage: A.<x,y> = AffineSpace(QQ, 2) 

sage: H = Hom(A, A) 

sage: f = H([(x-2*y^2)/x,3*x*y]) 

sage: A(9,3).nth_iterate(f, 3) 

doctest:warning 

... 

(-104975/13123, -9566667) 

""" 

from sage.misc.superseded import deprecation 

deprecation(23479, "use f.nth_iterate(P, n) instead") 

if self.codomain() != f.domain(): 

raise TypeError("point is not defined over domain of function") 

if f.domain() != f.codomain(): 

raise TypeError("domain and codomain of function not equal") 

if n == 0: 

return(self) 

else: 

Q = f(self) 

for i in range(2, n+1): 

Q = f(Q) 

return(Q) 

 

def orbit(self, f, N): 

r""" 

Returns the orbit of the point by `f`. 

 

If `n` is an integer it returns `[self,f(self), \ldots, f^{n}(self)]`. 

 

If `n` is a list or tuple `n=[m, k]` it returns `[f^{m}(self), \ldots, f^{k}(self)]`. 

 

INPUT: 

 

- ``f`` -- a :class:`SchemeMorphism_polynomial` with the point in ``f.domain()``. 

 

- ``N`` -- a non-negative integer or list or tuple of two non-negative integers. 

 

OUTPUT: 

 

- a list of points in ``f.codomain()``. 

 

EXAMPLES:: 

 

sage: A.<x,y>=AffineSpace(QQ, 2) 

sage: H = Hom(A, A) 

sage: f = H([(x-2*y^2)/x, 3*x*y]) 

sage: A(9, 3).orbit(f, 3) 

doctest:warning 

... 

[(9, 3), (-1, 81), (13123, -243), (-104975/13123, -9566667)] 

""" 

from sage.misc.superseded import deprecation 

deprecation(23479, "use f.orbit(P, n) instead") 

Q = self 

if isinstance(N, list) or isinstance(N, tuple): 

Bounds = list(N) 

else: 

Bounds = [0,N] 

for i in range(1, Bounds[0]+1): 

Q = f(Q) 

Orb = [Q] 

for i in range(Bounds[0]+1, Bounds[1]+1): 

Q = f(Q) 

Orb.append(Q) 

return(Orb) 

 

def global_height(self, prec=None): 

r""" 

Returns the logarithmic height of the point. 

 

INPUT: 

 

- ``prec`` -- desired floating point precision (default: 

default RealField precision). 

 

OUTPUT: 

 

- a real number. 

 

EXAMPLES:: 

 

sage: P.<x,y> = AffineSpace(QQ, 2) 

sage: Q = P(41, 1/12) 

sage: Q.global_height() 

3.71357206670431 

 

:: 

 

sage: P = AffineSpace(ZZ, 4, 'x') 

sage: Q = P(3, 17, -51, 5) 

sage: Q.global_height() 

3.93182563272433 

 

:: 

 

sage: R.<x> = PolynomialRing(QQ) 

sage: k.<w> = NumberField(x^2+5) 

sage: A = AffineSpace(k, 2, 'z') 

sage: A([3, 5*w+1]).global_height(prec=100) 

2.4181409534757389986565376694 

 

.. TODO:: 

 

P-adic heights. 

""" 

if self.domain().base_ring() == ZZ: 

if prec is None: 

R = RealField() 

else: 

R = RealField(prec) 

H = max([self[i].abs() for i in range(self.codomain().ambient_space().dimension_relative())]) 

return(R(max(H,1)).log()) 

if self.domain().base_ring() in _NumberFields or is_NumberFieldOrder(self.domain().base_ring()): 

return(max([self[i].global_height(prec) for i in range(self.codomain().ambient_space().dimension_relative())])) 

else: 

raise NotImplementedError("must be over a number field or a number field Order") 

 

def homogenize(self, n): 

r""" 

Return the homogenization of the point at the ``nth`` coordinate. 

 

INPUT: 

 

- ``n`` -- integer between 0 and dimension of the map, inclusive. 

 

OUTPUT: 

 

- A point in the projectivization of the codomain of the map . 

 

EXAMPLES:: 

 

sage: A.<x,y> = AffineSpace(ZZ, 2) 

sage: Q = A(2, 3) 

sage: Q.homogenize(2).dehomogenize(2) == Q 

True 

 

:: 

 

sage: A.<x,y> = AffineSpace(QQ, 2) 

sage: Q = A(2, 3) 

sage: P = A(0, 1) 

sage: Q.homogenize(2).codomain() == P.homogenize(2).codomain() 

True 

""" 

phi = self.codomain().projective_embedding(n) 

return(phi(self)) 

 

class SchemeMorphism_point_affine_field(SchemeMorphism_point_affine): 

 

def weil_restriction(self): 

r""" 

Compute the Weil restriction of this point over some extension 

field. 

 

If the field is a finite field, then this computes 

the Weil restriction to the prime subfield. 

 

A Weil restriction of scalars - denoted `Res_{L/k}` - is a 

functor which, for any finite extension of fields `L/k` and 

any algebraic variety `X` over `L`, produces another 

corresponding variety `Res_{L/k}(X)`, defined over `k`. It is 

useful for reducing questions about varieties over large 

fields to questions about more complicated varieties over 

smaller fields. This functor applied to a point gives 

the equivalent point on the Weil restriction of its 

codomain. 

 

OUTPUT: Scheme point on the Weil restriction of the codomain of this point. 

 

EXAMPLES:: 

 

sage: A.<x,y,z> = AffineSpace(GF(5^3, 't'), 3) 

sage: X = A.subscheme([y^2-x*z, z^2+y]) 

sage: Y = X.weil_restriction() 

sage: P = X([1, -1, 1]) 

sage: Q = P.weil_restriction();Q 

(1, 0, 0, 4, 0, 0, 1, 0, 0) 

sage: Q.codomain() == Y 

True 

 

:: 

 

sage: R.<x> = QQ[] 

sage: K.<w> = NumberField(x^5-2) 

sage: R.<x> = K[] 

sage: L.<v> = K.extension(x^2+w) 

sage: A.<x,y> = AffineSpace(L, 2) 

sage: P = A([w^3-v,1+w+w*v]) 

sage: P.weil_restriction() 

(w^3, -1, w + 1, w) 

""" 

L = self.codomain().base_ring() 

WR = self.codomain().weil_restriction() 

if L.is_finite(): 

d = L.degree() 

if d == 1: 

return(self) 

newP = [] 

for t in self: 

c = t.polynomial().coefficients(sparse=False) 

c = c + (d-len(c))*[0] 

newP += c 

else: 

d = L.relative_degree() 

if d == 1: 

return(self) 

#create a CoordinateFunction that gets the relative coordinates in terms of powers 

from sage.rings.number_field.number_field_element import CoordinateFunction 

v = L.gen() 

V, from_V, to_V = L.relative_vector_space() 

h = L(1) 

B = [to_V(h)] 

f = v.minpoly() 

for i in range(f.degree()-1): 

h *= v 

B.append(to_V(h)) 

W = V.span_of_basis(B) 

p = CoordinateFunction(v, W, to_V) 

newP = [] 

for t in self: 

newP += p(t) 

return(WR(newP)) 

 

def intersection_multiplicity(self, X): 

r""" 

Return the intersection multiplicity of the codomain of this point and ``X`` at this point. 

 

This uses the intersection_multiplicity implementations for projective/affine subschemes. This 

point must be a point on an affine subscheme. 

 

INPUT: 

 

- ``X`` -- a subscheme in the same ambient space as that of the codomain of this point. 

 

OUTPUT: Integer. 

 

EXAMPLES:: 

 

sage: A.<x,y> = AffineSpace(GF(17), 2) 

sage: X = A.subscheme([y^2 - x^3 + 2*x^2 - x]) 

sage: Y = A.subscheme([y - 2*x + 2]) 

sage: Q1 = Y([1,0]) 

sage: Q1.intersection_multiplicity(X) 

2 

sage: Q2 = X([4,6]) 

sage: Q2.intersection_multiplicity(Y) 

1 

 

:: 

 

sage: A.<x,y,z,w> = AffineSpace(QQ, 4) 

sage: X = A.subscheme([x^2 - y*z^2, z - 2*w^2]) 

sage: Q = A([2,1,2,-1]) 

sage: Q.intersection_multiplicity(X) 

Traceback (most recent call last): 

... 

TypeError: this point must be a point on an affine subscheme 

""" 

from sage.schemes.affine.affine_space import is_AffineSpace 

if is_AffineSpace(self.codomain()): 

raise TypeError("this point must be a point on an affine subscheme") 

return self.codomain().intersection_multiplicity(X, self) 

 

def multiplicity(self): 

r""" 

Return the multiplicity of this point on its codomain. 

 

Uses the subscheme multiplicity implementation. This point must be a point on an 

affine subscheme. 

 

OUTPUT: an integer. 

 

EXAMPLES:: 

 

sage: A.<x,y,z> = AffineSpace(QQ, 3) 

sage: X = A.subscheme([y^2 - x^7*z]) 

sage: Q1 = X([1,1,1]) 

sage: Q1.multiplicity() 

1 

sage: Q2 = X([0,0,2]) 

sage: Q2.multiplicity() 

2 

""" 

from sage.schemes.affine.affine_space import is_AffineSpace 

if is_AffineSpace(self.codomain()): 

raise TypeError("this point must be a point on an affine subscheme") 

return self.codomain().multiplicity(self) 

 

class SchemeMorphism_point_affine_finite_field(SchemeMorphism_point_affine_field): 

 

def __hash__(self): 

r""" 

Returns the integer hash of the point. 

 

OUTPUT: Integer. 

 

EXAMPLES:: 

 

sage: P.<x,y,z> = AffineSpace(GF(5), 3) 

sage: hash(P(2, 1, 2)) 

57 

 

:: 

 

sage: P.<x,y,z> = AffineSpace(GF(7), 3) 

sage: X = P.subscheme(x^2-y^2) 

sage: hash(X(1, 1, 2)) 

106 

 

:: 

 

sage: P.<x,y> = AffineSpace(GF(13), 2) 

sage: hash(P(3, 4)) 

55 

 

:: 

 

sage: P.<x,y> = AffineSpace(GF(13^3, 't'), 2) 

sage: hash(P(3, 4)) 

8791 

""" 

p = self.codomain().base_ring().order() 

N = self.codomain().ambient_space().dimension_relative() 

return sum(hash(self[i])*p**i for i in range(N)) 

 

def orbit_structure(self, f): 

r""" 

This function returns the pair `[m, n]` where `m` is the 

preperiod and `n` is the period of the point by ``f``. 

 

Every point is preperiodic over a finite field. 

 

 

INPUT: 

 

- ``f`` -- a :class:`ScemeMorphism_polynomial` with the point in ``f.domain()``. 

 

OUTPUT: 

 

- a list `[m, n]` of integers. 

 

EXAMPLES:: 

 

sage: P.<x,y,z> = AffineSpace(GF(5), 3) 

sage: f = DynamicalSystem_affine([x^2 + y^2, y^2, z^2 + y*z], domain=P) 

sage: f.orbit_structure(P(1, 1, 1)) 

[0, 6] 

 

:: 

 

sage: P.<x,y,z> = AffineSpace(GF(7), 3) 

sage: X = P.subscheme(x^2 - y^2) 

sage: f = DynamicalSystem_affine([x^2, y^2, z^2], domain=X) 

sage: f.orbit_structure(X(1, 1, 2)) 

[0, 2] 

 

:: 

 

sage: P.<x,y> = AffineSpace(GF(13), 2) 

sage: f = DynamicalSystem_affine([x^2 - y^2, y^2], domain=P) 

sage: P(3, 4).orbit_structure(f) 

doctest:warning 

... 

[2, 6] 

 

:: 

 

sage: P.<x,y> = AffineSpace(GF(13), 2) 

sage: H = End(P) 

sage: f = H([x^2 - y^2, y^2]) 

sage: f.orbit_structure(P(3, 4)) 

doctest:warning 

... 

[2, 6] 

""" 

from sage.misc.superseded import deprecation 

deprecation(23479, "use f.orbit_structure(P, n) instead") 

try: 

return f.orbit_structure(self) 

except AttributeError: 

raise TypeError("map must be a dynamical system")