Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

""" 

General curve constructors. 

 

AUTHORS: 

 

- William Stein (2005-11-13) 

 

- David Kohel (2006-01) 

 

- Grayson Jorgenson (2016-6) 

""" 

from __future__ import absolute_import 

 

#***************************************************************************** 

# Copyright (C) 2005 William Stein <wstein@gmail.com> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# 

# This code is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 

# General Public License for more details. 

# 

# The full text of the GPL is available at: 

# 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

 

from sage.rings.polynomial.multi_polynomial_element import is_MPolynomial 

from sage.rings.polynomial.multi_polynomial_ring import is_MPolynomialRing 

from sage.rings.finite_rings.finite_field_constructor import is_FiniteField 

 

from sage.structure.all import Sequence 

 

from sage.schemes.affine.affine_space import is_AffineSpace 

from sage.schemes.generic.ambient_space import is_AmbientSpace 

from sage.schemes.generic.algebraic_scheme import is_AlgebraicScheme 

from sage.schemes.projective.projective_space import is_ProjectiveSpace 

 

from sage.schemes.affine.all import AffineSpace 

 

from sage.schemes.projective.all import ProjectiveSpace 

 

 

from .projective_curve import (ProjectivePlaneCurve, 

ProjectiveCurve, 

ProjectivePlaneCurve_finite_field, 

ProjectivePlaneCurve_prime_finite_field) 

 

from .affine_curve import (AffinePlaneCurve, 

AffineCurve, 

AffinePlaneCurve_finite_field, 

AffinePlaneCurve_prime_finite_field) 

 

from sage.schemes.plane_conics.constructor import Conic 

 

def Curve(F, A=None): 

""" 

Return the plane or space curve defined by ``F``, where 

``F`` can be either a multivariate polynomial, a list or 

tuple of polynomials, or an algebraic scheme. 

 

If no ambient space is passed in for ``A``, and if ``F`` is not 

an algebraic scheme, a new ambient space is constructed. 

 

Also not specifying an ambient space will cause the curve to be defined 

in either affine or projective space based on properties of ``F``. In 

particular, if ``F`` contains a nonhomogenous polynomial, the curve is 

affine, and if ``F`` consists of homogenous polynomials, then the curve 

is projective. 

 

INPUT: 

 

- ``F`` -- a multivariate polynomial, or a list or tuple of polynomials, or an algebraic scheme. 

 

- ``A`` -- (default: None) an ambient space in which to create the curve. 

 

EXAMPLES: A projective plane curve 

 

:: 

 

sage: x,y,z = QQ['x,y,z'].gens() 

sage: C = Curve(x^3 + y^3 + z^3); C 

Projective Plane Curve over Rational Field defined by x^3 + y^3 + z^3 

sage: C.genus() 

1 

 

EXAMPLES: Affine plane curves 

 

:: 

 

sage: x,y = GF(7)['x,y'].gens() 

sage: C = Curve(y^2 + x^3 + x^10); C 

Affine Plane Curve over Finite Field of size 7 defined by x^10 + x^3 + y^2 

sage: C.genus() 

0 

sage: x, y = QQ['x,y'].gens() 

sage: Curve(x^3 + y^3 + 1) 

Affine Plane Curve over Rational Field defined by x^3 + y^3 + 1 

 

EXAMPLES: A projective space curve 

 

:: 

 

sage: x,y,z,w = QQ['x,y,z,w'].gens() 

sage: C = Curve([x^3 + y^3 - z^3 - w^3, x^5 - y*z^4]); C 

Projective Curve over Rational Field defined by x^3 + y^3 - z^3 - w^3, x^5 - y*z^4 

sage: C.genus() 

13 

 

EXAMPLES: An affine space curve 

 

:: 

 

sage: x,y,z = QQ['x,y,z'].gens() 

sage: C = Curve([y^2 + x^3 + x^10 + z^7, x^2 + y^2]); C 

Affine Curve over Rational Field defined by x^10 + z^7 + x^3 + y^2, x^2 + y^2 

sage: C.genus() 

47 

 

EXAMPLES: We can also make non-reduced non-irreducible curves. 

 

:: 

 

sage: x,y,z = QQ['x,y,z'].gens() 

sage: Curve((x-y)*(x+y)) 

Projective Conic Curve over Rational Field defined by x^2 - y^2 

sage: Curve((x-y)^2*(x+y)^2) 

Projective Plane Curve over Rational Field defined by x^4 - 2*x^2*y^2 + y^4 

 

EXAMPLES: A union of curves is a curve. 

 

:: 

 

sage: x,y,z = QQ['x,y,z'].gens() 

sage: C = Curve(x^3 + y^3 + z^3) 

sage: D = Curve(x^4 + y^4 + z^4) 

sage: C.union(D) 

Projective Plane Curve over Rational Field defined by 

x^7 + x^4*y^3 + x^3*y^4 + y^7 + x^4*z^3 + y^4*z^3 + x^3*z^4 + y^3*z^4 + z^7 

 

The intersection is not a curve, though it is a scheme. 

 

:: 

 

sage: X = C.intersection(D); X 

Closed subscheme of Projective Space of dimension 2 over Rational Field defined by: 

x^3 + y^3 + z^3, 

x^4 + y^4 + z^4 

 

Note that the intersection has dimension `0`. 

 

:: 

 

sage: X.dimension() 

0 

sage: I = X.defining_ideal(); I 

Ideal (x^3 + y^3 + z^3, x^4 + y^4 + z^4) of Multivariate Polynomial Ring in x, y, z over Rational Field 

 

EXAMPLES: In three variables, the defining equation must be 

homogeneous. 

 

If the parent polynomial ring is in three variables, then the 

defining ideal must be homogeneous. 

 

:: 

 

sage: x,y,z = QQ['x,y,z'].gens() 

sage: Curve(x^2+y^2) 

Projective Conic Curve over Rational Field defined by x^2 + y^2 

sage: Curve(x^2+y^2+z) 

Traceback (most recent call last): 

... 

TypeError: x^2 + y^2 + z is not a homogeneous polynomial 

 

The defining polynomial must always be nonzero:: 

 

sage: P1.<x,y> = ProjectiveSpace(1,GF(5)) 

sage: Curve(0*x) 

Traceback (most recent call last): 

... 

ValueError: defining polynomial of curve must be nonzero 

 

:: 

 

sage: A.<x,y,z> = AffineSpace(QQ, 3) 

sage: C = Curve([y - x^2, z - x^3], A) 

sage: A == C.ambient_space() 

True 

""" 

if not A is None: 

if not isinstance(F, (list, tuple)): 

return Curve([F], A) 

if not is_AmbientSpace(A): 

raise TypeError("A (=%s) must be either an affine or projective space"%A) 

if not all([f.parent() == A.coordinate_ring() for f in F]): 

raise TypeError("F (=%s) must be a list or tuple of polynomials of the coordinate ring of " \ 

"A (=%s)"%(F, A)) 

n = A.dimension_relative() 

if n < 2: 

raise TypeError("A (=%s) must be either an affine or projective space of dimension > 1"%A) 

# there is no dimension check when initializing a plane curve, so check here that F consists 

# of a single nonconstant polynomial 

if n == 2: 

if len(F) != 1 or F[0] == 0 or not is_MPolynomial(F[0]): 

raise TypeError("F (=%s) must consist of a single nonconstant polynomial to define a plane curve"%(F,)) 

if is_AffineSpace(A): 

if n > 2: 

return AffineCurve(A, F) 

k = A.base_ring() 

if is_FiniteField(k): 

if k.is_prime_field(): 

return AffinePlaneCurve_prime_finite_field(A, F[0]) 

return AffinePlaneCurve_finite_field(A, F[0]) 

return AffinePlaneCurve(A, F[0]) 

elif is_ProjectiveSpace(A): 

if not all([f.is_homogeneous() for f in F]): 

raise TypeError("polynomials defining a curve in a projective space must be homogeneous") 

if n > 2: 

return ProjectiveCurve(A, F) 

k = A.base_ring() 

if is_FiniteField(k): 

if k.is_prime_field(): 

return ProjectivePlaneCurve_prime_finite_field(A, F[0]) 

return ProjectivePlaneCurve_finite_field(A, F[0]) 

return ProjectivePlaneCurve(A, F[0]) 

 

if is_AlgebraicScheme(F): 

return Curve(F.defining_polynomials(), F.ambient_space()) 

 

if isinstance(F, (list, tuple)): 

if len(F) == 1: 

return Curve(F[0]) 

F = Sequence(F) 

P = F.universe() 

if not is_MPolynomialRing(P): 

raise TypeError("universe of F must be a multivariate polynomial ring") 

 

for f in F: 

if not f.is_homogeneous(): 

A = AffineSpace(P.ngens(), P.base_ring()) 

A._coordinate_ring = P 

return AffineCurve(A, F) 

 

A = ProjectiveSpace(P.ngens()-1, P.base_ring()) 

A._coordinate_ring = P 

return ProjectiveCurve(A, F) 

 

if not is_MPolynomial(F): 

raise TypeError("F (=%s) must be a multivariate polynomial"%F) 

 

P = F.parent() 

k = F.base_ring() 

if F.parent().ngens() == 2: 

if F == 0: 

raise ValueError("defining polynomial of curve must be nonzero") 

A2 = AffineSpace(2, P.base_ring()) 

A2._coordinate_ring = P 

 

if is_FiniteField(k): 

if k.is_prime_field(): 

return AffinePlaneCurve_prime_finite_field(A2, F) 

else: 

return AffinePlaneCurve_finite_field(A2, F) 

else: 

return AffinePlaneCurve(A2, F) 

 

elif F.parent().ngens() == 3: 

if F == 0: 

raise ValueError("defining polynomial of curve must be nonzero") 

P2 = ProjectiveSpace(2, P.base_ring()) 

P2._coordinate_ring = P 

 

if F.total_degree() == 2 and k.is_field(): 

return Conic(F) 

 

if is_FiniteField(k): 

if k.is_prime_field(): 

return ProjectivePlaneCurve_prime_finite_field(P2, F) 

else: 

return ProjectivePlaneCurve_finite_field(P2, F) 

else: 

return ProjectivePlaneCurve(P2, F) 

 

 

else: 

 

raise TypeError("Number of variables of F (=%s) must be 2 or 3"%F)