Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

""" 

Projective curves. 

 

EXAMPLES: 

 

We can construct curves in either a projective plane:: 

 

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) 

sage: C = Curve([y*z^2 - x^3], P); C 

Projective Plane Curve over Rational Field defined by -x^3 + y*z^2 

 

or in higher dimensional projective spaces:: 

 

sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3) 

sage: C = Curve([y*w^3 - x^4, z*w^3 - x^4], P); C 

Projective Curve over Rational Field defined by -x^4 + y*w^3, -x^4 + z*w^3 

 

AUTHORS: 

 

- William Stein (2005-11-13) 

 

- David Joyner (2005-11-13) 

 

- David Kohel (2006-01) 

 

- Moritz Minzlaff (2010-11) 

 

- Grayson Jorgenson (2016-8) 

""" 

 

#***************************************************************************** 

# Copyright (C) 2005 William Stein <wstein@gmail.com> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# 

# The full text of the GPL is available at: 

# 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from __future__ import division 

from __future__ import absolute_import 

 

from sage.categories.fields import Fields 

from sage.categories.number_fields import NumberFields 

from sage.categories.homset import Hom, End 

from sage.interfaces.all import singular 

from sage.matrix.constructor import matrix 

from sage.misc.all import add, sage_eval 

from sage.rings.all import degree_lowest_rational_function 

from sage.rings.number_field.number_field import NumberField 

from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing 

from sage.rings.qqbar import (number_field_elements_from_algebraics, 

QQbar) 

from sage.rings.rational_field import is_RationalField 

from sage.schemes.affine.affine_space import AffineSpace 

from sage.schemes.projective.projective_space import ProjectiveSpace, is_ProjectiveSpace 

 

from . import point 

 

from sage.schemes.projective.projective_subscheme import AlgebraicScheme_subscheme_projective 

from sage.schemes.projective.projective_space import (is_ProjectiveSpace, 

ProjectiveSpace) 

 

from .curve import Curve_generic 

 

 

class ProjectiveCurve(Curve_generic, AlgebraicScheme_subscheme_projective): 

 

_point = point.ProjectiveCurvePoint_field 

 

def _repr_type(self): 

r""" 

Return a string representation of the type of this curve. 

 

EXAMPLES:: 

 

sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3) 

sage: C = Curve([y^3 - z^3 - w^3, z*x^3 - y^4]) 

sage: C._repr_type() 

'Projective' 

""" 

return "Projective" 

 

def __init__(self, A, X): 

r""" 

Initialization function. 

 

EXAMPLES:: 

 

sage: P.<x,y,z,w,u> = ProjectiveSpace(GF(7), 4) 

sage: C = Curve([y*u^2 - x^3, z*u^2 - x^3, w*u^2 - x^3, y^3 - x^3], P); C 

Projective Curve over Finite Field of size 7 defined by -x^3 + y*u^2, 

-x^3 + z*u^2, -x^3 + w*u^2, -x^3 + y^3 

 

:: 

 

sage: K.<u> = CyclotomicField(11) 

sage: P.<x,y,z,w> = ProjectiveSpace(K, 3) 

sage: C = Curve([y*w - u*z^2 - x^2, x*w - 3*u^2*z*w], P); C 

Projective Curve over Cyclotomic Field of order 11 and degree 10 defined 

by -x^2 + (-u)*z^2 + y*w, x*w + (-3*u^2)*z*w 

""" 

if not is_ProjectiveSpace(A): 

raise TypeError("A (=%s) must be a projective space"%A) 

Curve_generic.__init__(self, A, X) 

d = self.dimension() 

if d != 1: 

raise ValueError("defining equations (=%s) define a scheme of dimension %s != 1"%(X,d)) 

 

def affine_patch(self, i, AA=None): 

r""" 

Return the i-th affine patch of this projective curve. 

 

INPUT: 

 

- ``i`` -- affine coordinate chart of the projective ambient space of this curve to compute affine patch 

with respect to. 

 

- ``AA`` -- (default: None) ambient affine space, this is constructed if it is not given. 

 

OUTPUT: 

 

- a curve in affine space. 

 

EXAMPLES:: 

 

sage: P.<x,y,z,w> = ProjectiveSpace(CC, 3) 

sage: C = Curve([y*z - x^2, w^2 - x*y], P) 

sage: C.affine_patch(0) 

Affine Curve over Complex Field with 53 bits of precision defined by 

x0*x1 - 1.00000000000000, x2^2 - x0 

 

:: 

 

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) 

sage: C = Curve(x^3 - x^2*y + y^3 - x^2*z, P) 

sage: C.affine_patch(1) 

Affine Plane Curve over Rational Field defined by x0^3 - x0^2*x1 - x0^2 + 1 

 

:: 

 

sage: A.<x,y> = AffineSpace(QQ, 2) 

sage: P.<u,v,w> = ProjectiveSpace(QQ, 2) 

sage: C = Curve([u^2 - v^2], P) 

sage: C.affine_patch(1, A).ambient_space() == A 

True 

""" 

from .constructor import Curve 

return Curve(AlgebraicScheme_subscheme_projective.affine_patch(self, i, AA)) 

 

def projection(self, P=None, PS=None): 

r""" 

Return a projection of this curve into projective space of dimension one less than the dimension of 

the ambient space of this curve. 

 

This curve must not already be a plane curve. Over finite fields, if this curve contains all points 

in its ambient space, then an error will be returned. 

 

INPUT: 

 

- ``P`` -- (default: None) a point not on this curve that will be used to define the projection map; 

this is constructed if not specified. 

 

- ``PS`` -- (default: None) the projective space the projected curve will be defined in. This space must 

be defined over the same base ring as this curve, and must have dimension one less than that of the 

ambient space of this curve. This space will be constructed if not specified. 

 

OUTPUT: 

 

- a tuple consisting of two elements: a scheme morphism from this curve into a projective space of 

dimension one less than that of the ambient space of this curve, and the projective curve that 

is the image of that morphism. 

 

EXAMPLES:: 

 

sage: K.<a> = CyclotomicField(3) 

sage: P.<x,y,z,w> = ProjectiveSpace(K, 3) 

sage: C = Curve([y*w - x^2, z*w^2 - a*x^3], P) 

sage: L.<a,b,c> = ProjectiveSpace(K, 2) 

sage: proj1 = C.projection(PS=L) 

sage: proj1 

(Scheme morphism: 

From: Projective Curve over Cyclotomic Field of order 3 and degree 2 

defined by -x^2 + y*w, (-a)*x^3 + z*w^2 

To: Projective Space of dimension 2 over Cyclotomic Field of order 

3 and degree 2 

Defn: Defined on coordinates by sending (x : y : z : w) to 

(x : y : -z + w), 

Projective Plane Curve over Cyclotomic Field of order 3 and degree 2 

defined by a^6 + (-a)*a^3*b^3 - a^4*b*c) 

sage: proj1[1].ambient_space() is L 

True 

sage: proj2 = C.projection() 

sage: proj2[1].ambient_space() is L 

False 

 

:: 

 

sage: P.<x,y,z,w,a,b,c> = ProjectiveSpace(QQ, 6) 

sage: C = Curve([y - x, z - a - b, w^2 - c^2, z - x - a, x^2 - w*z], P) 

sage: C.projection() 

(Scheme morphism: 

From: Projective Curve over Rational Field defined by -x + y, z - a - 

b, w^2 - c^2, -x + z - a, x^2 - z*w 

To: Projective Space of dimension 5 over Rational Field 

Defn: Defined on coordinates by sending (x : y : z : w : a : b : c) 

to 

(x : y : -z + w : a : b : c), 

Projective Curve over Rational Field defined by x1 - x4, x0 - x4, x2*x3 

+ x3^2 + x2*x4 + 2*x3*x4, x2^2 - x3^2 - 2*x3*x4 + x4^2 - x5^2, x2*x4^2 + 

x3*x4^2 + x4^3 - x3*x5^2 - x4*x5^2, x4^4 - x3^2*x5^2 - 2*x3*x4*x5^2 - 

x4^2*x5^2) 

 

:: 

 

sage: P.<x,y,z,w> = ProjectiveSpace(GF(2), 3) 

sage: C = P.curve([(x - y)*(x - z)*(x - w)*(y - z)*(y - w), x*y*z*w*(x+y+z+w)]) 

sage: C.projection() 

Traceback (most recent call last): 

... 

NotImplementedError: this curve contains all points of its ambient space 

 

:: 

 

sage: P.<x,y,z,w,u> = ProjectiveSpace(GF(7), 4) 

sage: C = P.curve([x^3 - y*z*u, w^2 - u^2 + 2*x*z, 3*x*w - y^2]) 

sage: L.<a,b,c,d> = ProjectiveSpace(GF(7), 3) 

sage: C.projection(PS=L) 

(Scheme morphism: 

From: Projective Curve over Finite Field of size 7 defined by x^3 - 

y*z*u, 2*x*z + w^2 - u^2, -y^2 + 3*x*w 

To: Projective Space of dimension 3 over Finite Field of size 7 

Defn: Defined on coordinates by sending (x : y : z : w : u) to 

(x : y : z : w), 

Projective Curve over Finite Field of size 7 defined by b^2 - 3*a*d, 

a^5*b + a*b*c^3*d - 3*b*c^2*d^3, a^6 + a^2*c^3*d - 3*a*c^2*d^3) 

sage: Q.<a,b,c> = ProjectiveSpace(GF(7), 2) 

sage: C.projection(PS=Q) 

Traceback (most recent call last): 

... 

TypeError: (=Projective Space of dimension 2 over Finite Field of size 

7) must have dimension (=3) 

 

 

:: 

 

sage: PP.<x,y,z,w> = ProjectiveSpace(QQ, 3) 

sage: C = PP.curve([x^3 - z^2*y, w^2 - z*x]) 

sage: Q = PP([1,0,1,1]) 

sage: C.projection(P=Q) 

(Scheme morphism: 

From: Projective Curve over Rational Field defined by x^3 - y*z^2, 

-x*z + w^2 

To: Projective Space of dimension 2 over Rational Field 

Defn: Defined on coordinates by sending (x : y : z : w) to 

(y : -x + z : -x + w), 

Projective Plane Curve over Rational Field defined by x0*x1^5 - 

6*x0*x1^4*x2 + 14*x0*x1^3*x2^2 - 16*x0*x1^2*x2^3 + 9*x0*x1*x2^4 - 

2*x0*x2^5 - x2^6) 

sage: LL.<a,b,c> = ProjectiveSpace(QQ, 2) 

sage: Q = PP([0,0,0,1]) 

sage: C.projection(PS=LL, P=Q) 

(Scheme morphism: 

From: Projective Curve over Rational Field defined by x^3 - y*z^2, 

-x*z + w^2 

To: Projective Space of dimension 2 over Rational Field 

Defn: Defined on coordinates by sending (x : y : z : w) to 

(x : y : z), 

Projective Plane Curve over Rational Field defined by a^3 - b*c^2) 

sage: Q = PP([0,0,1,0]) 

sage: C.projection(P=Q) 

Traceback (most recent call last): 

... 

TypeError: (=(0 : 0 : 1 : 0)) must be a point not on this curve 

 

:: 

 

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) 

sage: C = P.curve(y^2 - x^2 + z^2) 

sage: C.projection() 

Traceback (most recent call last): 

... 

TypeError: this curve is already a plane curve 

""" 

PP = self.ambient_space() 

n = PP.dimension_relative() 

if n == 2: 

raise TypeError("this curve is already a plane curve") 

if self.base_ring() not in Fields(): 

raise TypeError("this curve must be defined over a field") 

if not PS is None: 

if not is_ProjectiveSpace(PS): 

raise TypeError("(=%s) must be a projective space"%PS) 

if PS.dimension_relative() != n - 1: 

raise TypeError("(=%s) must have dimension (=%s)"%(PS,n - 1)) 

if PS.base_ring() != PP.base_ring(): 

raise TypeError("(=%s) must be defined over the same base field as this curve"%PS) 

if P is None: 

# find a point not on the curve if not given 

if self.base_ring().characteristic() == 0: 

# when working over a characteristic 0 field, we can construct a point not on the curve. 

# we do this by constructing a point on which at least one nonzero element of the defining ideal of 

# this curve does not vanish 

F = 0 

# find a nonzero element 

for i in range(len(self.defining_polynomials())): 

if self.defining_polynomials()[i] != 0: 

F = self.defining_polynomials()[i] 

# find a point on which it doesn't vanish 

l = list(PP.gens()) 

for i in range(n + 1): 

l[i] = 0 

while(F(l) == 0): 

l[i] = l[i] + 1 

Q = PP(l) # will be a point not on the curve 

else: 

# if the base ring is a finite field, iterate over all points in the ambient space and check which 

# are on this curve 

Q = None 

for P in PP.rational_points(): 

try: 

self(P) 

except TypeError: 

Q = P 

break 

if Q is None: 

raise NotImplementedError("this curve contains all points of its ambient space") 

else: 

# make sure the given point is in the ambient space of the curve, but not on the curve 

Q = None 

try: 

Q = self(P) 

except TypeError: 

pass 

if not Q is None: 

raise TypeError("(=%s) must be a point not on this curve"%P) 

try: 

Q = self.ambient_space()(P) 

except TypeError: 

raise TypeError("(=%s) must be a point in the ambient space of this curve"%P) 

# in order to create the change of coordinates map, need to find a coordinate of Q that is nonzero 

j = 0 

while Q[j] == 0: 

j = j + 1 

# use this Q to project. Apply a change of coordinates to move Q to (0:...:0:1:0:...:0) 

# where 1 is in the jth coordinate 

if PS is None: 

PP2 = ProjectiveSpace(self.base_ring(), n - 1) 

else: 

PP2 = PS 

H = Hom(self, PP2) 

coords = [PP.gens()[i] - Q[i]/Q[j]*PP.gens()[j] for i in range(n + 1)] 

coords.pop(j) 

psi = H(coords) 

# compute image of psi via elimination 

# first construct the image of this curve by the change of coordinates. This can be found by composing the 

# defining polynomials of this curve with the polynomials defining the inverse of the change of coordinates 

invcoords = [Q[i]*PP.gens()[j] + PP.gens()[i] for i in range(n + 1)] 

invcoords[j] = Q[j]*PP.gens()[j] 

I = PP.coordinate_ring().ideal([f(invcoords) for f in self.defining_polynomials()]) 

J = I.elimination_ideal(PP.gens()[j]) 

K = Hom(PP.coordinate_ring(), PP2.coordinate_ring()) 

l = list(PP2.gens()) 

l.insert(j, 0) 

phi = K(l) 

G = [phi(f) for f in J.gens()] 

C = PP2.curve(G) 

return tuple([psi, C]) 

 

def plane_projection(self, PP=None): 

r""" 

Return a projection of this curve into a projective plane. 

 

INPUT: 

 

- ``PP`` -- (default: None) the projective plane the projected curve will be defined in. This space must 

be defined over the same base field as this curve, and must have dimension two. This space is constructed 

if not specified. 

 

OUTPUT: 

 

- a tuple consisting of two elements: a scheme morphism from this curve into a projective plane, 

and the projective curve that is the image of that morphism. 

 

EXAMPLES:: 

 

sage: P.<x,y,z,w,u,v> = ProjectiveSpace(QQ, 5) 

sage: C = P.curve([x*u - z*v, w - y, w*y - x^2, y^3*u*2*z - w^4*w]) 

sage: L.<a,b,c> = ProjectiveSpace(QQ, 2) 

sage: proj1 = C.plane_projection(PP=L) 

sage: proj1 

(Scheme morphism: 

From: Projective Curve over Rational Field defined by x*u - z*v, -y + 

w, -x^2 + y*w, -w^5 + 2*y^3*z*u 

To: Projective Space of dimension 2 over Rational Field 

Defn: Defined on coordinates by sending (x : y : z : w : u : v) to 

(x : -z + u : -z + v), 

Projective Plane Curve over Rational Field defined by a^8 + 6*a^7*b + 

4*a^5*b^3 - 4*a^7*c - 2*a^6*b*c - 4*a^5*b^2*c + 2*a^6*c^2) 

sage: proj1[1].ambient_space() is L 

True 

sage: proj2 = C.projection() 

sage: proj2[1].ambient_space() is L 

False 

 

:: 

 

sage: P.<x,y,z,w,u> = ProjectiveSpace(GF(7), 4) 

sage: C = P.curve([x^2 - 6*y^2, w*z*u - y^3 + 4*y^2*z, u^2 - x^2]) 

sage: C.plane_projection() 

(Scheme morphism: 

From: Projective Curve over Finite Field of size 7 defined by x^2 + 

y^2, -y^3 - 3*y^2*z + z*w*u, -x^2 + u^2 

To: Projective Space of dimension 2 over Finite Field of size 7 

Defn: Defined on coordinates by sending (x : y : z : w : u) to 

(y : z : -x + w), 

Projective Plane Curve over Finite Field of size 7 defined by x0^10 - 

2*x0^9*x1 + 3*x0^8*x1^2 - 2*x0^7*x1^3 + x0^6*x1^4 + 2*x0^6*x1^2*x2^2 - 

2*x0^5*x1^3*x2^2 - x0^4*x1^4*x2^2 + x0^2*x1^4*x2^4) 

 

:: 

 

sage: P.<x,y,z> = ProjectiveSpace(GF(17), 2) 

sage: C = P.curve(x^2 - y*z - z^2) 

sage: C.plane_projection() 

Traceback (most recent call last): 

... 

TypeError: this curve is already a plane curve 

""" 

PS = self.ambient_space() 

n = PS.dimension_relative() 

if n == 2: 

raise TypeError("this curve is already a plane curve") 

C = self 

H = Hom(PS, PS) 

phi = H([PS.gens()[i] for i in range(n + 1)]) 

for i in range(n - 2): 

if i == n - 3: 

L = C.projection(PS=PP) 

else: 

L = C.projection() 

C = L[1] 

# compose the scheme morphisms that are created 

K = Hom(phi.codomain().coordinate_ring(), PS.coordinate_ring()) 

psi = K(phi.defining_polynomials()) 

H = Hom(self, L[1].ambient_space()) 

phi = H([psi(L[0].defining_polynomials()[i]) for i in range(len(L[0].defining_polynomials()))]) 

return tuple([phi, C]) 

 

def arithmetic_genus(self): 

r""" 

Return the arithmetic genus of this projective curve. 

 

This is the arithmetic genus `g_a(C)` as defined in [Hartshorne]_. If `P` is the 

Hilbert polynomial of the defining ideal of this curve, then the arithmetic genus 

of this curve is `1 - P(0)`. This curve must be irreducible. 

 

OUTPUT: Integer. 

 

EXAMPLES:: 

 

sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3) 

sage: C = P.curve([w*z - x^2, w^2 + y^2 + z^2]) 

sage: C.arithmetic_genus() 

1 

 

:: 

 

sage: P.<x,y,z,w,t> = ProjectiveSpace(GF(7), 4) 

sage: C = P.curve([t^3 - x*y*w, x^3 + y^3 + z^3, z - w]) 

sage: C.arithmetic_genus() 

10 

""" 

if not self.is_irreducible(): 

raise TypeError("this curve must be irreducible") 

return 1 - self.defining_ideal().hilbert_polynomial()(0) 

 

def is_complete_intersection(self): 

r""" 

Return whether this projective curve is or is not a complete intersection. 

 

OUTPUT: Boolean. 

 

EXAMPLES:: 

 

sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3) 

sage: C = Curve([x*y - z*w, x^2 - y*w, y^2*w - x*z*w], P) 

sage: C.is_complete_intersection() 

False 

 

:: 

 

sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3) 

sage: C = Curve([y*w - x^2, z*w^2 - x^3], P) 

sage: C.is_complete_intersection() 

True 

 

sage: P.<x,y,z,w> = ProjectiveSpace(QQ, 3) 

sage: C = Curve([z^2 - y*w, y*z - x*w, y^2 - x*z], P) 

sage: C.is_complete_intersection() 

False 

""" 

singular.lib("sing.lib") 

I = singular.simplify(self.defining_ideal(), 10) 

L = singular.is_ci(I).sage() 

return len(self.ambient_space().gens()) - len(I.sage().gens()) == L[-1] 

 

class ProjectivePlaneCurve(ProjectiveCurve): 

 

_point = point.ProjectivePlaneCurvePoint_field 

 

def __init__(self, A, f): 

r""" 

Initialization function. 

 

EXAMPLES:: 

 

sage: P.<x,y,z> = ProjectiveSpace(QQbar, 2) 

sage: C = Curve([y*z - x^2 - QQbar.gen()*z^2], P); C 

Projective Plane Curve over Algebraic Field defined by 

-x^2 + y*z + (-I)*z^2 

 

:: 

 

sage: P.<x,y,z> = ProjectiveSpace(GF(5^2, 'v'), 2) 

sage: C = Curve([y^2*z - x*z^2 - z^3], P); C 

Projective Plane Curve over Finite Field in v of size 5^2 defined by y^2*z - x*z^2 - z^3 

""" 

if not (is_ProjectiveSpace(A) and A.dimension != 2): 

raise TypeError("Argument A (= %s) must be a projective plane."%A) 

Curve_generic.__init__(self, A, [f]) 

 

def _repr_type(self): 

r""" 

Return a string representation of the type of this curve. 

 

EXAMPLES:: 

 

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) 

sage: C = Curve([y*z^3 - 5/7*x^4 + 4*x^3*z - 9*z^4], P) 

sage: C._repr_type() 

'Projective Plane' 

""" 

return "Projective Plane" 

 

def arithmetic_genus(self): 

r""" 

Return the arithmetic genus of this projective curve. 

 

This is the arithmetic genus `g_a(C)` as defined in [Hartshorne]_. For a projective 

plane curve of degree `d`, this is simply `(d-1)(d-2)/2`. It need *not* equal 

the geometric genus (the genus of the normalization of the curve). This curve must be 

irreducible. 

 

OUTPUT: Integer. 

 

EXAMPLES:: 

 

sage: x,y,z = PolynomialRing(GF(5), 3, 'xyz').gens() 

sage: C = Curve(y^2*z^7 - x^9 - x*z^8); C 

Projective Plane Curve over Finite Field of size 5 defined by -x^9 + y^2*z^7 - x*z^8 

sage: C.arithmetic_genus() 

28 

sage: C.genus() 

4 

 

:: 

 

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) 

sage: C = Curve([y^3*x - x^2*y*z - 7*z^4]) 

sage: C.arithmetic_genus() 

3 

 

REFERENCES: 

 

.. [Hartshorne] \R. Hartshorne. Algebraic Geometry. Springer-Verlag, New York, 1977. 

""" 

if not self.is_irreducible(): 

raise TypeError("this curve must be irreducible") 

d = self.defining_polynomial().total_degree() 

return int((d-1)*(d-2)/2) 

 

def divisor_of_function(self, r): 

""" 

Return the divisor of a function on a curve. 

 

INPUT: r is a rational function on X 

 

OUTPUT: 

 

 

- ``list`` - The divisor of r represented as a list of 

coefficients and points. (TODO: This will change to a more 

structural output in the future.) 

 

 

EXAMPLES:: 

 

sage: FF = FiniteField(5) 

sage: P2 = ProjectiveSpace(2, FF, names = ['x','y','z']) 

sage: R = P2.coordinate_ring() 

sage: x, y, z = R.gens() 

sage: f = y^2*z^7 - x^9 - x*z^8 

sage: C = Curve(f) 

sage: K = FractionField(R) 

sage: r = 1/x 

sage: C.divisor_of_function(r) # todo: not implemented !!!! 

[[-1, (0, 0, 1)]] 

sage: r = 1/x^3 

sage: C.divisor_of_function(r) # todo: not implemented !!!! 

[[-3, (0, 0, 1)]] 

""" 

F = self.base_ring() 

f = self.defining_polynomial() 

x, y, z = f.parent().gens() 

pnts = self.rational_points() 

divf = [] 

for P in pnts: 

if P[2] != F(0): 

# What is the '5' in this line and the 'r()' in the next??? 

lcs = self.local_coordinates(P,5) 

ldg = degree_lowest_rational_function(r(lcs[0],lcs[1]),z) 

if ldg[0] != 0: 

divf.append([ldg[0],P]) 

return divf 

 

 

def local_coordinates(self, pt, n): 

r""" 

Return local coordinates to precision n at the given point. 

 

Behaviour is flaky - some choices of `n` are worst that 

others. 

 

 

INPUT: 

 

 

- ``pt`` - an F-rational point on X which is not a 

point of ramification for the projection (x,y) - x. 

 

- ``n`` - the number of terms desired 

 

 

OUTPUT: x = x0 + t y = y0 + power series in t 

 

EXAMPLES:: 

 

sage: FF = FiniteField(5) 

sage: P2 = ProjectiveSpace(2, FF, names = ['x','y','z']) 

sage: x, y, z = P2.coordinate_ring().gens() 

sage: C = Curve(y^2*z^7-x^9-x*z^8) 

sage: pt = C([2,3,1]) 

sage: C.local_coordinates(pt,9) # todo: not implemented !!!! 

[2 + t, 3 + 3*t^2 + t^3 + 3*t^4 + 3*t^6 + 3*t^7 + t^8 + 2*t^9 + 3*t^11 + 3*t^12] 

""" 

 

f = self.defining_polynomial() 

R = f.parent() 

F = self.base_ring() 

p = F.characteristic() 

x0 = F(pt[0]) 

y0 = F(pt[1]) 

astr = ["a"+str(i) for i in range(1,2*n)] 

x,y = R.gens() 

R0 = PolynomialRing(F,2*n+2,names = [str(x),str(y),"t"]+astr) 

vars0 = R0.gens() 

t = vars0[2] 

yt = y0*t**0 + add([vars0[i]*t**(i-2) for i in range(3,2*n+2)]) 

xt = x0+t 

ft = f(xt,yt) 

S = singular 

S.eval('ring s = '+str(p)+','+str(R0.gens())+',lp;') 

S.eval('poly f = '+str(ft)) 

cmd = 'matrix c = coeffs ('+str(ft)+',t)' 

S.eval(cmd) 

N = int(S.eval('size(c)')) 

b = ["c["+str(i)+",1]," for i in range(2, N//2 - 4)] 

b = ''.join(b) 

b = b[:len(b)-1] #to cut off the trailing comma 

cmd = 'ideal I = '+b 

S.eval(cmd) 

c = S.eval('slimgb(I)') 

d = c.split("=") 

d = d[1:] 

d[len(d)-1] += "\n" 

e = [x[:x.index("\n")] for x in d] 

vals = [] 

for x in e: 

for y in vars0: 

if str(y) in x: 

if len(x.replace(str(y),"")) != 0: 

i = x.find("-") 

if i>0: 

vals.append([eval(x[1:i]),x[:i],F(eval(x[i+1:]))]) 

i = x.find("+") 

if i>0: 

vals.append([eval(x[1:i]),x[:i],-F(eval(x[i+1:]))]) 

else: 

vals.append([eval(str(y)[1:]),str(y),F(0)]) 

vals.sort() 

k = len(vals) 

v = [x0+t,y0+add([vals[i][2]*t**(i+1) for i in range(k)])] 

return v 

 

def plot(self, *args, **kwds): 

""" 

Plot the real points of an affine patch of this projective 

plane curve. 

 

 

INPUT: 

 

 

- ``self`` - an affine plane curve 

 

- ``patch`` - (optional) the affine patch to be plotted; if not 

specified, the patch corresponding to the last projective 

coordinate being nonzero 

 

- ``*args`` - optional tuples (variable, minimum, maximum) for 

plotting dimensions 

 

- ``**kwds`` - optional keyword arguments passed on to 

``implicit_plot`` 

 

 

EXAMPLES: 

 

A cuspidal curve:: 

 

sage: R.<x, y, z> = QQ[] 

sage: C = Curve(x^3 - y^2*z) 

sage: C.plot() 

Graphics object consisting of 1 graphics primitive 

 

The other affine patches of the same curve:: 

 

sage: C.plot(patch=0) 

Graphics object consisting of 1 graphics primitive 

sage: C.plot(patch=1) 

Graphics object consisting of 1 graphics primitive 

 

An elliptic curve:: 

 

sage: E = EllipticCurve('101a') 

sage: C = Curve(E) 

sage: C.plot() 

Graphics object consisting of 1 graphics primitive 

sage: C.plot(patch=0) 

Graphics object consisting of 1 graphics primitive 

sage: C.plot(patch=1) 

Graphics object consisting of 1 graphics primitive 

 

A hyperelliptic curve:: 

 

sage: P.<x> = QQ[] 

sage: f = 4*x^5 - 30*x^3 + 45*x - 22 

sage: C = HyperellipticCurve(f) 

sage: C.plot() 

Graphics object consisting of 1 graphics primitive 

sage: C.plot(patch=0) 

Graphics object consisting of 1 graphics primitive 

sage: C.plot(patch=1) 

Graphics object consisting of 1 graphics primitive 

""" 

# if user hasn't specified a favourite affine patch, take the 

# one avoiding "infinity", i.e. the one corresponding to the 

# last projective coordinate being nonzero 

patch = kwds.pop('patch', self.ngens() - 1) 

from .constructor import Curve 

C = Curve(self.affine_patch(patch)) 

return C.plot(*args, **kwds) 

 

def is_singular(self, P=None): 

r""" 

Return whether this curve is singular or not, or if a point ``P`` is provided, 

whether ``P`` is a singular point of this curve. 

 

INPUT: 

 

- ``P`` -- (default: None) a point on this curve. 

 

OUTPUT: 

 

- Boolean. If no point ``P`` is provided, returns True of False depending on whether 

this curve is singular or not. If a point ``P`` is provided, returns True or False 

depending on whether ``P`` is or is not a singular point of this curve. 

 

EXAMPLES: 

 

Over `\QQ`:: 

 

sage: F = QQ 

sage: P2.<X,Y,Z> = ProjectiveSpace(F,2) 

sage: C = Curve(X^3-Y^2*Z) 

sage: C.is_singular() 

True 

 

Over a finite field:: 

 

sage: F = GF(19) 

sage: P2.<X,Y,Z> = ProjectiveSpace(F,2) 

sage: C = Curve(X^3+Y^3+Z^3) 

sage: C.is_singular() 

False 

sage: D = Curve(X^4-X*Z^3) 

sage: D.is_singular() 

True 

sage: E = Curve(X^5+19*Y^5+Z^5) 

sage: E.is_singular() 

True 

sage: E = Curve(X^5+9*Y^5+Z^5) 

sage: E.is_singular() 

False 

 

Over `\CC`:: 

 

sage: F = CC 

sage: P2.<X,Y,Z> = ProjectiveSpace(F,2) 

sage: C = Curve(X) 

sage: C.is_singular() 

False 

sage: D = Curve(Y^2*Z-X^3) 

sage: D.is_singular() 

True 

sage: E = Curve(Y^2*Z-X^3+Z^3) 

sage: E.is_singular() 

False 

 

Showing that :trac:`12187` is fixed:: 

 

sage: F.<X,Y,Z> = GF(2)[] 

sage: G = Curve(X^2+Y*Z) 

sage: G.is_singular() 

False 

 

:: 

 

sage: P.<x,y,z> = ProjectiveSpace(CC, 2) 

sage: C = Curve([y^4 - x^3*z], P) 

sage: Q = P([0,0,1]) 

sage: C.is_singular() 

True 

""" 

if P is None: 

poly = self.defining_polynomial() 

return poly.parent().ideal(poly.gradient()+[poly]).dimension() > 0 

else: 

return not self.is_smooth(P) 

 

def degree(self): 

r""" 

Return the degree of this projective curve. 

 

For a plane curve, this is just the degree of its defining polynomial. 

 

OUTPUT: integer. 

 

EXAMPLES:: 

 

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) 

sage: C = P.curve([y^7 - x^2*z^5 + 7*z^7]) 

sage: C.degree() 

7 

""" 

return self.defining_polynomial().degree() 

 

def tangents(self, P, factor=True): 

r""" 

Return the tangents of this projective plane curve at the point ``P``. 

 

These are found by homogenizing the tangents of an affine patch of this curve 

containing ``P``. The point ``P`` must be a point on this curve. 

 

INPUT: 

 

- ``P`` -- a point on this curve. 

 

- ``factor`` -- (default: True) whether to attempt computing the polynomials of the individual tangent 

lines over the base field of this curve, or to just return the polynomial corresponding to the union 

of the tangent lines (which requires fewer computations). 

 

OUTPUT: 

 

- a list of polynomials in the coordinate ring of the ambient space of this curve. 

 

EXAMPLES:: 

 

sage: set_verbose(-1) 

sage: P.<x,y,z> = ProjectiveSpace(QQbar, 2) 

sage: C = Curve([x^3*y + 2*x^2*y^2 + x*y^3 + x^3*z + 7*x^2*y*z + 14*x*y^2*z + 9*y^3*z], P) 

sage: Q = P([0,0,1]) 

sage: C.tangents(Q) 

[x + 4.147899035704788?*y, x + (1.426050482147607? + 0.3689894074818041?*I)*y, 

x + (1.426050482147607? - 0.3689894074818041?*I)*y] 

sage: C.tangents(Q, factor=False) 

[6*x^3 + 42*x^2*y + 84*x*y^2 + 54*y^3] 

 

:: 

 

sage: P.<x,y,z> = ProjectiveSpace(QQ,2) 

sage: C = P.curve([x^2*y^3*z^4 - y^6*z^3 - 4*x^2*y^4*z^3 - 4*x^4*y^2*z^3 + 3*y^7*z^2 +\ 

10*x^2*y^5*z^2 + 9*x^4*y^3*z^2 + 5*x^6*y*z^2 - 3*y^8*z - 9*x^2*y^6*z - 11*x^4*y^4*z -\ 

7*x^6*y^2*z - 2*x^8*z + y^9 + 2*x^2*y^7 + 3*x^4*y^5 + 4*x^6*y^3 + 2*x^8*y]) 

sage: Q = P([0,1,1]) 

sage: C.tangents(Q) 

[-y + z, 3*x^2 - y^2 + 2*y*z - z^2] 

 

:: 

 

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) 

sage: C = P.curve([z^3*x + y^4 - x^2*z^2]) 

sage: Q = P([1,1,1]) 

sage: C.tangents(Q) 

Traceback (most recent call last): 

... 

TypeError: (=(1 : 1 : 1)) is not a point on (=Projective Plane Curve 

over Rational Field defined by y^4 - x^2*z^2 + x*z^3) 

""" 

PP = self.ambient_space() 

# Check whether P is a point on this curve 

try: 

P = self(P) 

except TypeError: 

raise TypeError("(=%s) is not a point on (=%s)"%(P,self)) 

 

# Find an affine chart of the ambient space of self that contains P 

i = 0 

while(P[i] == 0): 

i = i + 1 

C = self.affine_patch(i) 

L = C.tangents(C(P.dehomogenize(i)), factor) 

R = PP.coordinate_ring() 

H = Hom(C.ambient_space().coordinate_ring(), R) 

G = list(R.gens()) 

x = G.pop(i) 

phi = H(G) 

return [phi(g).homogenize(x) for g in L] 

 

def is_ordinary_singularity(self, P): 

r""" 

Return whether the singular point ``P`` of this projective plane curve is an ordinary singularity. 

 

The point ``P`` is an ordinary singularity of this curve if it is a singular point, and 

if the tangents of this curve at ``P`` are distinct. 

 

INPUT: 

 

- ``P`` -- a point on this curve. 

 

OUTPUT: 

 

- Boolean. True or False depending on whether ``P`` is or is not an ordinary singularity of this 

curve, respectively. An error is raised if ``P`` is not a singular point of this curve. 

 

EXAMPLES:: 

 

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) 

sage: C = Curve([y^2*z^3 - x^5], P) 

sage: Q = P([0,0,1]) 

sage: C.is_ordinary_singularity(Q) 

False 

 

:: 

 

sage: R.<a> = QQ[] 

sage: K.<b> = NumberField(a^2 - 3) 

sage: P.<x,y,z> = ProjectiveSpace(K, 2) 

sage: C = P.curve([x^2*y^3*z^4 - y^6*z^3 - 4*x^2*y^4*z^3 - 4*x^4*y^2*z^3 + 3*y^7*z^2 + 10*x^2*y^5*z^2\ 

+ 9*x^4*y^3*z^2 + 5*x^6*y*z^2 - 3*y^8*z - 9*x^2*y^6*z - 11*x^4*y^4*z - 7*x^6*y^2*z - 2*x^8*z + y^9 +\ 

2*x^2*y^7 + 3*x^4*y^5 + 4*x^6*y^3 + 2*x^8*y]) 

sage: Q = P([0,1,1]) 

sage: C.is_ordinary_singularity(Q) 

True 

 

:: 

 

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) 

sage: C = P.curve([z^5 - y^5 + x^5 + x*y^2*z^2]) 

sage: Q = P([0,1,1]) 

sage: C.is_ordinary_singularity(Q) 

Traceback (most recent call last): 

... 

TypeError: (=(0 : 1 : 1)) is not a singular point of (=Projective Plane 

Curve over Rational Field defined by x^5 - y^5 + x*y^2*z^2 + z^5) 

""" 

r = self.multiplicity(P) 

if r < 2: 

raise TypeError("(=%s) is not a singular point of (=%s)"%(P,self)) 

 

# Find an affine chart of the ambient space of self that contains P 

i = 0 

while(P[i] == 0): 

i = i + 1 

C = self.affine_patch(i) 

return C.is_ordinary_singularity(C(P.dehomogenize(i))) 

 

def quadratic_transform(self): 

r""" 

Return a birational map from this curve to the proper transform of this curve with respect to the standard 

Cremona transformation. 

 

The standard Cremona transformation is the birational automorphism of `\mathbb{P}^{2}` defined 

`(x : y : z)\mapsto (yz : xz : xy)`. 

 

OUTPUT: 

 

- a scheme morphism representing the restriction of the standard Cremona transformation from this curve 

to the proper transform. 

 

EXAMPLES:: 

 

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) 

sage: C = Curve(x^3*y - z^4 - z^2*x^2, P) 

sage: C.quadratic_transform() 

Scheme morphism: 

From: Projective Plane Curve over Rational Field defined by x^3*y - 

x^2*z^2 - z^4 

To: Projective Plane Curve over Rational Field defined by -x^3*y - 

x*y*z^2 + z^4 

Defn: Defined on coordinates by sending (x : y : z) to 

(y*z : x*z : x*y) 

 

:: 

 

sage: P.<x,y,z> = ProjectiveSpace(GF(17), 2) 

sage: C = P.curve([y^7*z^2 - 16*x^9 + x*y*z^7 + 2*z^9]) 

sage: C.quadratic_transform() 

Scheme morphism: 

From: Projective Plane Curve over Finite Field of size 17 defined by 

x^9 + y^7*z^2 + x*y*z^7 + 2*z^9 

To: Projective Plane Curve over Finite Field of size 17 defined by 

2*x^9*y^7 + x^8*y^6*z^2 + x^9*z^7 + y^7*z^9 

Defn: Defined on coordinates by sending (x : y : z) to 

(y*z : x*z : x*y) 

""" 

PP = self.ambient_space() 

R = PP.coordinate_ring() 

L = R.gens() 

coords = [L[1]*L[2], L[0]*L[2], L[0]*L[1]] 

G = self.defining_polynomial()(coords) 

# remove the component of the curve corresponding to the exceptional divisor 

degs = [G.degree()]*len(L) 

for F in G.monomials(): 

for i in range(len(L)): 

if F.degree(L[i]) < degs[i]: 

degs[i] = F.degree(L[i]) 

T = [] 

for item in G.dict().items(): 

tup = tuple([item[0][i] - degs[i] for i in range(len(L))]) 

T.append(tuple([tup, item[1]])) 

G = R(dict(T)) 

H = Hom(self, PP.curve(G)) 

phi = H(coords) 

return phi 

 

def excellent_position(self, Q): 

r""" 

Return a transformation of this curve into one in excellent position with respect to the point ``Q``. 

 

Here excellent position is defined as in [Fulton89]_. A curve `C` of degree `d` containing the point 

`(0 : 0 : 1)` with multiplicity `r` is said to be in excellent position if none of the coordinate lines 

are tangent to `C` at any of the fundamental points `(1 : 0 : 0)`, `(0 : 1 : 0)`, and `(0 : 0 : 1)`, and 

if the two coordinate lines containing `(0 : 0 : 1)` intersect `C` transversally in `d - r` distinct 

non-fundamental points, and if the other coordinate line intersects `C` transversally at `d` distinct, 

non-fundamental points. 

 

INPUT: 

 

- ``Q`` -- a point on this curve. 

 

OUTPUT: 

 

- a scheme morphism from this curve to a curve in excellent position that is a restriction of a change 

of coordinates map of the projective plane. 

 

EXAMPLES:: 

 

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) 

sage: C = Curve([x*y - z^2], P) 

sage: Q = P([1,1,1]) 

sage: C.excellent_position(Q) 

Scheme morphism: 

From: Projective Plane Curve over Rational Field defined by x*y - z^2 

To: Projective Plane Curve over Rational Field defined by -x^2 - 

3*x*y - 4*y^2 - x*z - 3*y*z 

Defn: Defined on coordinates by sending (x : y : z) to 

(-x + 1/2*y + 1/2*z : -1/2*y + 1/2*z : x + 1/2*y - 1/2*z) 

 

:: 

 

sage: R.<a> = QQ[] 

sage: K.<b> = NumberField(a^2 - 3) 

sage: P.<x,y,z> = ProjectiveSpace(K, 2) 

sage: C = P.curve([z^2*y^3*x^4 - y^6*x^3 - 4*z^2*y^4*x^3 - 4*z^4*y^2*x^3 + 3*y^7*x^2 + 10*z^2*y^5*x^2\ 

+ 9*z^4*y^3*x^2 + 5*z^6*y*x^2 - 3*y^8*x - 9*z^2*y^6*x - 11*z^4*y^4*x - 7*z^6*y^2*x - 2*z^8*x + y^9 +\ 

2*z^2*y^7 + 3*z^4*y^5 + 4*z^6*y^3 + 2*z^8*y]) 

sage: Q = P([1,0,0]) 

sage: C.excellent_position(Q) 

Scheme morphism: 

From: Projective Plane Curve over Number Field in b with defining 

polynomial a^2 - 3 defined by -x^3*y^6 + 3*x^2*y^7 - 3*x*y^8 + y^9 + 

x^4*y^3*z^2 - 4*x^3*y^4*z^2 + 10*x^2*y^5*z^2 - 9*x*y^6*z^2 + 2*y^7*z^2 - 

4*x^3*y^2*z^4 + 9*x^2*y^3*z^4 - 11*x*y^4*z^4 + 3*y^5*z^4 + 5*x^2*y*z^6 - 

7*x*y^2*z^6 + 4*y^3*z^6 - 2*x*z^8 + 2*y*z^8 

To: Projective Plane Curve over Number Field in b with defining 

polynomial a^2 - 3 defined by 900*x^9 - 7410*x^8*y + 29282*x^7*y^2 - 

69710*x^6*y^3 + 110818*x^5*y^4 - 123178*x^4*y^5 + 96550*x^3*y^6 - 

52570*x^2*y^7 + 18194*x*y^8 - 3388*y^9 - 1550*x^8*z + 9892*x^7*y*z - 

30756*x^6*y^2*z + 58692*x^5*y^3*z - 75600*x^4*y^4*z + 67916*x^3*y^5*z - 

42364*x^2*y^6*z + 16844*x*y^7*z - 3586*y^8*z + 786*x^7*z^2 - 

3958*x^6*y*z^2 + 9746*x^5*y^2*z^2 - 14694*x^4*y^3*z^2 + 

15174*x^3*y^4*z^2 - 10802*x^2*y^5*z^2 + 5014*x*y^6*z^2 - 1266*y^7*z^2 - 

144*x^6*z^3 + 512*x^5*y*z^3 - 912*x^4*y^2*z^3 + 1024*x^3*y^3*z^3 - 

816*x^2*y^4*z^3 + 512*x*y^5*z^3 - 176*y^6*z^3 + 8*x^5*z^4 - 8*x^4*y*z^4 

- 16*x^3*y^2*z^4 + 16*x^2*y^3*z^4 + 8*x*y^4*z^4 - 8*y^5*z^4 

Defn: Defined on coordinates by sending (x : y : z) to 

(1/4*y + 1/2*z : -1/4*y + 1/2*z : x + 1/4*y - 1/2*z) 

 

:: 

 

sage: set_verbose(-1) 

sage: a = QQbar(sqrt(2)) 

sage: P.<x,y,z> = ProjectiveSpace(QQbar, 2) 

sage: C = Curve([(-1/4*a)*x^3 + (-3/4*a)*x^2*y + (-3/4*a)*x*y^2 + (-1/4*a)*y^3 - 2*x*y*z], P) 

sage: Q = P([0,0,1]) 

sage: C.excellent_position(Q) 

Scheme morphism: 

From: Projective Plane Curve over Algebraic Field defined by 

(-0.3535533905932738?)*x^3 + (-1.060660171779822?)*x^2*y + 

(-1.060660171779822?)*x*y^2 + (-0.3535533905932738?)*y^3 + (-2)*x*y*z 

To: Projective Plane Curve over Algebraic Field defined by 

(-2.828427124746190?)*x^3 + (-2)*x^2*y + 2*y^3 + (-2)*x^2*z + 2*y^2*z 

Defn: Defined on coordinates by sending (x : y : z) to 

(1/2*x + 1/2*y : (-1/2)*x + 1/2*y : 1/2*x + (-1/2)*y + z) 

 

REFERENCES: 

 

.. [Fulton89] \W. Fulton. Algebraic curves: an introduction to algebraic geometry. Addison-Wesley, 

Redwood City CA (1989). 

""" 

PP = self.ambient_space() 

# check that Q is on this curve 

try: 

Q = self(Q) 

except TypeError: 

raise TypeError("(=%s) must be a point on this curve"%Q) 

r = self.multiplicity(Q) 

d = self.degree() 

# first move Q to (0 : 0 : 1), (1 : 0 : 0), or (0 : 1 : 0) 

# this makes it easier to construct the main transformation 

i = 0 

while Q[i] == 0: 

i = i + 1 

coords = [PP.gens()[j] + Q[j]/Q[i]*PP.gens()[i] for j in range(3)] 

coords[i] = PP.gens()[i] 

accoords = [PP.gens()[j] - Q[j]/Q[i]*PP.gens()[i] for j in range(3)] # coords used in map construction 

accoords[i] = PP.gens()[i] 

baseC = PP.curve(self.defining_polynomial()(coords)) 

P = [0]*3 

P[i] = 1 

P = PP(P) 

l = [0,1,2] 

l.pop(i) 

# choose points forming a triangle with one vertex at P to map to the coordinate triangle 

good = False 

a = 0 

while not good: 

a = a + 1 

# find points to map to (1 : 0 : 0) and (0 : 1 : 0), not on the curve 

Px = [0]*3 

Px[l[0]] = a 

Px[l[1]] = 1 

Py = [0]*3 

Py[l[0]] = -a 

Py[l[1]] = 1 

Py[i] = 1 

try: 

Px = baseC(Px) 

Py = baseC(Py) 

continue 

except TypeError: 

pass 

# by construction, P, Px, Py are linearly independent so the following matrix is invertible 

M = matrix([[Px[j], Py[j], P[j]] for j in range(3)]) 

# M defines a change of coordinates sending (1 : 0 : 0) to Py, (0 : 1 : 0) to Px, (0 : 0 : 1) to P; the 

# inverse of the transformation we want, used to create the new defining polynomial 

coords = [sum([M.row(j)[k]*PP.gens()[k] for k in range(3)]) for j in range(3)] 

C = PP.curve(baseC.defining_polynomial()(coords)) 

# check tangents at (0 : 0 : 1) 

T = C.tangents(PP([0,0,1]), factor=False)[0] 

if all([e[0] > 0 for e in T.exponents()]) or all([e[1] > 0 for e in T.exponents()]): 

continue 

# check that the other intersections of C with the exceptional lines are correct 

need_continue = False 

for j in range(3): 

poly = C.defining_polynomial().subs({PP.gens()[j]: 0}) 

# this is a homogeneous polynomial in the other two variables 

# and so should factor completely into homogeneous linear factors 

# each corresponding to an intersection point where the jth coord is 0. 

# check if there are enough roots, up to multiplicity (that is, that PP.gens()[j] 

# doesn't divide the defining polynomial of C) 

if poly.degree() != d: 

need_continue = True 

break 

# if j != 2, then there should be d - r multiplicity 1 roots, 

# besides the root corresponding to (0 : 0 : 1) 

# if j == 2, then all roots should have multiplicity 1 

npoly = poly 

if j != 2: 

# since (0 : 0 : 1) has multiplicity r, divide out by the highest 

# shared power of the corresponding variable before doing the resultant computations 

if j == 0: 

div_pow = min([e[1] for e in npoly.exponents()]) 

npoly = PP.coordinate_ring()(dict([((v[0],v[1] - div_pow,v[2]),g) for (v,g) in\ 

npoly.dict().items()])) 

else: 

div_pow = min([e[0] for e in npoly.exponents()]) 

npoly = PP.coordinate_ring()(dict([((v[0] - div_pow,v[1],v[2]),g) for (v,g) in\ 

npoly.dict().items()])) 

# check the degree again 

if npoly.degree() != d - r: 

need_continue = True 

break 

# check that npoly isn't a constant now 

if npoly.degree() > 0: 

t = 0 

while npoly.degree(PP.gens()[t]) == 0: 

t = t + 1 

if npoly.resultant(npoly.derivative(PP.gens()[t]), PP.gens()[t]) == 0: 

need_continue = True 

break 

else: 

t = 0 

while npoly.degree(PP.gens()[t]) == 0: 

t = t + 1 

if poly.resultant(poly.derivative(PP.gens()[t]), PP.gens()[t]) == 0: 

need_continue = True 

break 

# check that intersections with the line PP.gens()[j] are transverse. 

# at a simple point P of the curve, the tangent at that point is 

# given by F_x(P)*x + F_y(P)*y + F_z(P)*z where F is the defining polynomial 

# of the curve 

tmp_l = [0,1,2] 

tmp_l.pop(j) 

poly1 = npoly.derivative(PP.gens()[tmp_l[0]]) 

poly2 = npoly.derivative(PP.gens()[tmp_l[1]]) 

if poly1.degree() > 0 or poly2.degree() > 0: 

t = 0 

while poly1.degree(PP.gens()[t]) == 0 and poly2.degree(PP.gens()[t]) == 0: 

t = t + 1 

# maybe a stricter check than necessary 

if poly1.resultant(poly2, PP.gens()[t]) == 0: 

need_continue = True 

break 

if need_continue: 

continue 

good = True 

# coords for map 

M = M.inverse() 

accoords2 = [sum([M.row(j)[k]*PP.gens()[k] for k in range(3)]) for j in range(3)] 

H = Hom(self, C) 

phi = H([f(accoords) for f in accoords2]) 

return phi 

 

def ordinary_model(self): 

r""" 

Return a birational map from this curve to a plane curve with only ordinary singularities. 

 

Currently only implemented over number fields. If not all of the coordinates of the non-ordinary 

singularities of this curve are contained in its base field, then the domain and codomain of the 

map returned will be defined over an extension. This curve must be irreducible. 

 

OUTPUT: 

 

- a scheme morphism from this curve to a curve with only ordinary singularities that defines a 

birational map between the two curves. 

 

EXAMPLES:: 

 

sage: set_verbose(-1) 

sage: K = QuadraticField(3) 

sage: P.<x,y,z> = ProjectiveSpace(K, 2) 

sage: C = Curve([x^5 - K.0*y*z^4], P) 

sage: C.ordinary_model() 

Scheme morphism: 

From: Projective Plane Curve over Number Field in a with defining 

polynomial x^2 - 3 defined by x^5 + (-a)*y*z^4 

To: Projective Plane Curve over Number Field in a with defining 

polynomial x^2 - 3 defined by (-a)*x^5*y + (-4*a)*x^4*y^2 + 

(-6*a)*x^3*y^3 + (-4*a)*x^2*y^4 + (-a)*x*y^5 + (-a - 1)*x^5*z + (-4*a + 

5)*x^4*y*z + (-6*a - 10)*x^3*y^2*z + (-4*a + 10)*x^2*y^3*z + (-a - 

5)*x*y^4*z + y^5*z 

Defn: Defined on coordinates by sending (x : y : z) to 

(-1/4*x^2 - 1/2*x*y + 1/2*x*z + 1/2*y*z - 1/4*z^2 : 1/4*x^2 + 

1/2*x*y + 1/2*y*z - 1/4*z^2 : -1/4*x^2 + 1/4*z^2) 

 

:: 

 

sage: set_verbose(-1) 

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) 

sage: C = Curve([y^2*z^2 - x^4 - x^3*z], P) 

sage: D = C.ordinary_model(); D # long time (2 seconds) 

Scheme morphism: 

From: Projective Plane Curve over Rational Field defined by -x^4 - 

x^3*z + y^2*z^2 

To: Projective Plane Curve over Rational Field defined by 4*x^6*y^3 

- 24*x^5*y^4 + 36*x^4*y^5 + 8*x^6*y^2*z - 40*x^5*y^3*z + 24*x^4*y^4*z + 

72*x^3*y^5*z - 4*x^6*y*z^2 + 8*x^5*y^2*z^2 - 56*x^4*y^3*z^2 + 

104*x^3*y^4*z^2 + 44*x^2*y^5*z^2 + 8*x^6*z^3 - 16*x^5*y*z^3 - 

24*x^4*y^2*z^3 + 40*x^3*y^3*z^3 + 48*x^2*y^4*z^3 + 8*x*y^5*z^3 - 

8*x^5*z^4 + 36*x^4*y*z^4 - 56*x^3*y^2*z^4 + 20*x^2*y^3*z^4 + 

40*x*y^4*z^4 - 16*y^5*z^4 

Defn: Defined on coordinates by sending (x : y : z) to 

(-3/64*x^4 + 9/64*x^2*y^2 - 3/32*x*y^3 - 1/16*x^3*z - 

1/8*x^2*y*z + 1/4*x*y^2*z - 1/16*y^3*z - 1/8*x*y*z^2 + 1/16*y^2*z^2 : 

-1/64*x^4 + 3/64*x^2*y^2 - 1/32*x*y^3 + 1/16*x*y^2*z - 1/16*y^3*z + 

1/16*y^2*z^2 : 3/64*x^4 - 3/32*x^3*y + 3/64*x^2*y^2 + 1/16*x^3*z - 

3/16*x^2*y*z + 1/8*x*y^2*z - 1/8*x*y*z^2 + 1/16*y^2*z^2) 

sage: all([D.codomain().is_ordinary_singularity(Q) for Q in D.codomain().singular_points()]) # long time 

True 

 

:: 

 

sage: set_verbose(-1) 

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) 

sage: C = Curve([(x^2 + y^2 - y*z - 2*z^2)*(y*z - x^2 + 2*z^2)*z + y^5], P) 

sage: C.ordinary_model() # long time (5 seconds) 

Scheme morphism: 

From: Projective Plane Curve over Number Field in a with defining 

polynomial y^2 - 2 defined by y^5 - x^4*z - x^2*y^2*z + 2*x^2*y*z^2 + 

y^3*z^2 + 4*x^2*z^3 + y^2*z^3 - 4*y*z^4 - 4*z^5 

To: Projective Plane Curve over Number Field in a with defining 

polynomial y^2 - 2 defined by (-29*a + 1)*x^8*y^6 + (10*a + 158)*x^7*y^7 

+ (-109*a - 31)*x^6*y^8 + (-80*a - 198)*x^8*y^5*z + (531*a + 

272)*x^7*y^6*z + (170*a - 718)*x^6*y^7*z + (19*a - 636)*x^5*y^8*z + 

(-200*a - 628)*x^8*y^4*z^2 + (1557*a - 114)*x^7*y^5*z^2 + (2197*a - 

2449)*x^6*y^6*z^2 + (1223*a - 3800)*x^5*y^7*z^2 + (343*a - 

1329)*x^4*y^8*z^2 + (-323*a - 809)*x^8*y^3*z^3 + (1630*a - 

631)*x^7*y^4*z^3 + (4190*a - 3126)*x^6*y^5*z^3 + (3904*a - 

7110)*x^5*y^6*z^3 + (1789*a - 5161)*x^4*y^7*z^3 + (330*a - 

1083)*x^3*y^8*z^3 + (-259*a - 524)*x^8*y^2*z^4 + (720*a - 

605)*x^7*y^3*z^4 + (3082*a - 2011)*x^6*y^4*z^4 + (4548*a - 

5462)*x^5*y^5*z^4 + (2958*a - 6611)*x^4*y^6*z^4 + (994*a - 

2931)*x^3*y^7*z^4 + (117*a - 416)*x^2*y^8*z^4 + (-108*a - 184)*x^8*y*z^5 

+ (169*a - 168)*x^7*y^2*z^5 + (831*a - 835)*x^6*y^3*z^5 + (2225*a - 

1725)*x^5*y^4*z^5 + (1970*a - 3316)*x^4*y^5*z^5 + (952*a - 

2442)*x^3*y^6*z^5 + (217*a - 725)*x^2*y^7*z^5 + (16*a - 77)*x*y^8*z^5 + 

(-23*a - 35)*x^8*z^6 + (43*a + 24)*x^7*y*z^6 + (21*a - 198)*x^6*y^2*z^6 

+ (377*a - 179)*x^5*y^3*z^6 + (458*a - 537)*x^4*y^4*z^6 + (288*a - 

624)*x^3*y^5*z^6 + (100*a - 299)*x^2*y^6*z^6 + (16*a - 67)*x*y^7*z^6 - 

5*y^8*z^6 

Defn: Defined on coordinates by sending (x : y : z) to 

((-5/128*a - 5/128)*x^4 + (-5/32*a + 5/32)*x^3*y + (-1/16*a + 

3/32)*x^2*y^2 + (1/16*a - 1/16)*x*y^3 + (1/32*a - 1/32)*y^4 - 1/32*x^3*z 

+ (3/16*a - 5/8)*x^2*y*z + (1/8*a - 5/16)*x*y^2*z + (1/8*a + 

5/32)*x^2*z^2 + (-3/16*a + 5/16)*x*y*z^2 + (-3/16*a - 1/16)*y^2*z^2 + 

1/16*x*z^3 + (1/4*a + 1/4)*y*z^3 + (-3/32*a - 5/32)*z^4 : (-5/128*a - 

5/128)*x^4 + (5/32*a)*x^3*y + (3/32*a + 3/32)*x^2*y^2 + (-1/16*a)*x*y^3 

+ (-1/32*a - 1/32)*y^4 - 1/32*x^3*z + (-11/32*a)*x^2*y*z + (1/8*a + 

5/16)*x*y^2*z + (3/16*a + 1/4)*y^3*z + (1/8*a + 5/32)*x^2*z^2 + (-1/16*a 

- 3/8)*x*y*z^2 + (-3/8*a - 9/16)*y^2*z^2 + 1/16*x*z^3 + (5/16*a + 

1/2)*y*z^3 + (-3/32*a - 5/32)*z^4 : (1/64*a + 3/128)*x^4 + (-1/32*a - 

1/32)*x^3*y + (3/32*a - 9/32)*x^2*y^2 + (1/16*a - 3/16)*x*y^3 - 1/32*y^4 

+ (3/32*a + 1/8)*x^2*y*z + (-1/8*a + 1/8)*x*y^2*z + (-1/16*a)*y^3*z + 

(-1/16*a - 3/32)*x^2*z^2 + (1/16*a + 1/16)*x*y*z^2 + (3/16*a + 

3/16)*y^2*z^2 + (-3/16*a - 1/4)*y*z^3 + (1/16*a + 3/32)*z^4) 

""" 

# helper function for extending the base field 

def extension(self): 

F = self.base_ring() 

pts = self.change_ring(F.embeddings(QQbar)[0]).rational_points() 

L = [t for pt in pts for t in pt] 

K = number_field_elements_from_algebraics(L)[0] 

if is_RationalField(K): 

return F.embeddings(F)[0] 

else: 

if is_RationalField(F): 

return F.embeddings(K)[0] 

else: 

# make sure the defining polynomial variable names are the same for K, N 

N = NumberField(K.defining_polynomial().parent()(F.defining_polynomial()), str(K.gen())) 

return N.composite_fields(K, both_maps=True)[0][1]*F.embeddings(N)[0] 

if not self.base_ring() in NumberFields(): 

raise NotImplementedError("the base ring of this curve must be a number field") 

if not self.is_irreducible(): 

raise TypeError("this curve must be irreducible") 

C_orig = self 

C = self 

PP = C.ambient_space() 

# extend the base field if necessary to find all singular points 

emb = extension(C.singular_subscheme()) 

PP = PP.change_ring(emb) 

C = C.change_ring(emb) 

C_orig = C_orig.change_ring(emb) 

pts = C.singular_points() 

H = End(C) 

phi = H(list(C.ambient_space().gens())) 

while len(pts) > 0: 

for i in range(len(pts) - 1, -1, -1): 

try: 

if C.is_ordinary_singularity(pts[i]): 

pts.pop(i) 

except TypeError: 

pts.pop(i) 

if len(pts) > 0: 

temp_exc = C.excellent_position(pts[0]) 

temp_qua = temp_exc.codomain().quadratic_transform() 

C = temp_qua.codomain() 

phi = temp_qua*temp_exc*phi 

# transform the old points 

for i in range(len(pts) - 1, -1, -1): 

# find image if it is a point the composition map is defined on 

try: 

temp_pt = (temp_qua*temp_exc)(temp_exc.domain()(pts[i])) 

pts.pop(i) 

if not PP(list(temp_pt)) in [PP(list(tpt)) for tpt in pts]: 

pts.append(temp_pt) 

except (TypeError, ValueError): 

pass 

# add points from the intersection of C and the line z 

PPline = ProjectiveSpace(PP.base_ring(), 1) 

# make sure the conversion happens in the right order 

ringH = Hom(PP.coordinate_ring(), PPline.coordinate_ring()) 

psi = ringH(list(PPline.gens()) + [0]) 

X = PPline.subscheme([psi(f) for f in C.singular_subscheme().defining_polynomials()]) 

emb = extension(X) 

PP = PP.change_ring(emb) 

phi = phi.change_ring(emb) 

C = C.change_ring(emb) 

C_orig = C_orig.change_ring(emb) 

X = X.change_ring(emb) 

pts = [PP(pt.change_ring(emb)) for pt in pts] 

newpts = [PP(list(pt) + [0]) for pt in X.rational_points()] 

# avoid duplicates 

for pt in newpts: 

if not PP(list(pt)) in [PP(list(tpt)) for tpt in pts]: 

pts.append(pt) 

return phi 

 

def is_transverse(self, C, P): 

r""" 

Return whether the intersection of this curve with the curve ``C`` at the point ``P`` is transverse. 

 

The intersection at ``P`` is transverse if ``P`` is a nonsingular point of both curves, and if the 

tangents of the curves at ``P`` are distinct. 

 

INPUT: 

 

- ``C`` -- a curve in the ambient space of this curve. 

 

- ``P`` -- a point in the intersection of both curves. 

 

OUTPUT: Boolean. 

 

EXAMPLES:: 

 

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) 

sage: C = Curve([x^2 - y^2], P) 

sage: D = Curve([x - y], P) 

sage: Q = P([1,1,0]) 

sage: C.is_transverse(D, Q) 

False 

 

:: 

 

sage: K = QuadraticField(-1) 

sage: P.<x,y,z> = ProjectiveSpace(K, 2) 

sage: C = Curve([y^2*z - K.0*x^3], P) 

sage: D = Curve([z*x + y^2], P) 

sage: Q = P([0,0,1]) 

sage: C.is_transverse(D, Q) 

False 

 

:: 

 

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) 

sage: C = Curve([x^2 - 2*y^2 - 2*z^2], P) 

sage: D = Curve([y - z], P) 

sage: Q = P([2,1,1]) 

sage: C.is_transverse(D, Q) 

True 

""" 

if not self.intersects_at(C, P): 

raise TypeError("(=%s) must be a point in the intersection of (=%s) and this curve"%(P,C)) 

if self.is_singular(P) or C.is_singular(P): 

return False 

 

# there is only one tangent at a nonsingular point of a plane curve 

return not self.tangents(P)[0] == C.tangents(P)[0] 

 

def fundamental_group(self): 

r""" 

Return a presentation of the fundamental group of the complement 

of ``self``. 

 

.. NOTE:: 

 

The curve must be defined over the rationals or a number field 

with an embedding over `\QQbar`. 

 

EXAMPLES:: 

 

sage: P.<x,y,z> = ProjectiveSpace(QQ,2) 

sage: C = P.curve(x^2*z-y^3) 

sage: C.fundamental_group() # optional - sirocco 

Finitely presented group < x0 | x0^3 > 

 

In the case of number fields, they need to have an embedding 

into the algebraic field:: 

 

sage: a = QQ[x](x^2+5).roots(QQbar)[0][0] 

sage: a 

-2.236067977499790?*I 

sage: F = NumberField(a.minpoly(), 'a', embedding=a) 

sage: P.<x,y,z> = ProjectiveSpace(F, 2) 

sage: F.inject_variables() 

Defining a 

sage: C = P.curve(x^2 + a * y^2) 

sage: C.fundamental_group() # optional - sirocco 

Finitely presented group < x0 | > 

 

.. WARNING:: 

 

This functionality requires the sirocco package to be installed. 

""" 

from sage.schemes.curves.zariski_vankampen import fundamental_group 

F = self.base_ring() 

from sage.rings.qqbar import QQbar 

if QQbar.coerce_map_from(F) is None: 

raise NotImplementedError("the base field must have an embedding" 

" to the algebraic field") 

f = self.affine_patch(2).defining_polynomial() 

if f.degree() == self.degree(): 

return fundamental_group(f, projective=True) 

else: #in this case, the line at infinity is part of the curve, so the complement lies in the affine patch 

return fundamental_group(f, projective=False) 

 

def rational_parameterization(self): 

r""" 

Return a rational parameterization of this curve. 

 

This curve must have rational coefficients and be absolutely irreducible (i.e. irreducible 

over the algebraic closure of the rational field). The curve must also be rational (have 

geometric genus zero). 

 

The rational parameterization may have coefficients in a quadratic extension of the rational 

field. 

 

OUTPUT: 

 

- a birational map between `\mathbb{P}^{1}` and this curve, given as a scheme morphism. 

 

EXAMPLES:: 

 

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) 

sage: C = Curve([y^2*z - x^3], P) 

sage: C.rational_parameterization() 

Scheme morphism: 

From: Projective Space of dimension 1 over Rational Field 

To: Projective Plane Curve over Rational Field defined by -x^3 + y^2*z 

Defn: Defined on coordinates by sending (s : t) to 

(s^2*t : s^3 : t^3) 

 

:: 

 

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) 

sage: C = Curve([x^3 - 4*y*z^2 + x*z^2 - x*y*z], P) 

sage: C.rational_parameterization() 

Scheme morphism: 

From: Projective Space of dimension 1 over Rational Field 

To: Projective Plane Curve over Rational Field defined by x^3 - x*y*z + x*z^2 - 4*y*z^2 

Defn: Defined on coordinates by sending (s : t) to 

(4*s^2*t + s*t^2 : s^2*t + t^3 : 4*s^3 + s^2*t) 

 

:: 

 

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) 

sage: C = Curve([x^2 + y^2 + z^2], P) 

sage: C.rational_parameterization() 

Scheme morphism: 

From: Projective Space of dimension 1 over Number Field in a with defining polynomial a^2 + 1 

To: Projective Plane Curve over Number Field in a with defining 

polynomial a^2 + 1 defined by x^2 + y^2 + z^2 

Defn: Defined on coordinates by sending (s : t) to 

((-a)*s^2 + (-a)*t^2 : s^2 - t^2 : 2*s*t) 

""" 

if self.genus() != 0: 

raise TypeError("this curve must have geometric genus zero") 

if not is_RationalField(self.base_ring()): 

raise TypeError("this curve must be defined over the rational field") 

singular.lib("paraplanecurves.lib") 

R = singular.paraPlaneCurve(self.defining_polynomial()) 

singular.setring(R) 

param = singular('PARA').sage().gens() 

R = R.sage() 

C = self.change_ring(R.base_ring()) 

H = Hom(ProjectiveSpace(R.base_ring(), 1, R.gens()), C) 

return H(param) 

 

def riemann_surface(self,**kwargs): 

r"""Return the complex riemann surface determined by this curve 

 

OUTPUT: 

 

- RiemannSurface object 

 

EXAMPLES:: 

 

sage: R.<x,y,z>=QQ[] 

sage: C=Curve(x^3+3*y^3+5*z^3) 

sage: C.riemann_surface() 

Riemann surface defined by polynomial f = x0^3 + 3*x1^3 + 5 = 0, with 53 bits of precision 

 

""" 

return self.affine_patch(2).riemann_surface(**kwargs) 

 

class ProjectivePlaneCurve_finite_field(ProjectivePlaneCurve): 

 

_point = point.ProjectivePlaneCurvePoint_finite_field 

 

def rational_points_iterator(self): 

r""" 

Return a generator object for the rational points on this curve. 

 

INPUT: 

 

- ``self`` -- a projective curve 

 

OUTPUT: 

 

A generator of all the rational points on the curve defined over its base field. 

 

EXAMPLES:: 

 

sage: F = GF(37) 

sage: P2.<X,Y,Z> = ProjectiveSpace(F,2) 

sage: C = Curve(X^7+Y*X*Z^5*55+Y^7*12) 

sage: len(list(C.rational_points_iterator())) 

37 

 

:: 

 

sage: F = GF(2) 

sage: P2.<X,Y,Z> = ProjectiveSpace(F,2) 

sage: C = Curve(X*Y*Z) 

sage: a = C.rational_points_iterator() 

sage: next(a) 

(1 : 0 : 0) 

sage: next(a) 

(0 : 1 : 0) 

sage: next(a) 

(1 : 1 : 0) 

sage: next(a) 

(0 : 0 : 1) 

sage: next(a) 

(1 : 0 : 1) 

sage: next(a) 

(0 : 1 : 1) 

sage: next(a) 

Traceback (most recent call last): 

... 

StopIteration 

 

:: 

 

sage: F = GF(3^2,'a') 

sage: P2.<X,Y,Z> = ProjectiveSpace(F,2) 

sage: C = Curve(X^3+5*Y^2*Z-33*X*Y*X) 

sage: b = C.rational_points_iterator() 

sage: next(b) 

(0 : 1 : 0) 

sage: next(b) 

(0 : 0 : 1) 

sage: next(b) 

(2*a + 2 : a : 1) 

sage: next(b) 

(2 : a + 1 : 1) 

sage: next(b) 

(a + 1 : 2*a + 1 : 1) 

sage: next(b) 

(1 : 2 : 1) 

sage: next(b) 

(2*a + 2 : 2*a : 1) 

sage: next(b) 

(2 : 2*a + 2 : 1) 

sage: next(b) 

(a + 1 : a + 2 : 1) 

sage: next(b) 

(1 : 1 : 1) 

sage: next(b) 

Traceback (most recent call last): 

... 

StopIteration 

 

""" 

g = self.defining_polynomial() 

K = g.parent().base_ring() 

from sage.rings.polynomial.all import PolynomialRing 

R = PolynomialRing(K,'X') 

X = R.gen() 

one = K.one() 

zero = K.zero() 

 

# the point with Z = 0 = Y 

try: 

t = self.point([one,zero,zero]) 

yield(t) 

except TypeError: 

pass 

 

# points with Z = 0, Y = 1 

g10 = R(g(X,one,zero)) 

if g10.is_zero(): 

for x in K: 

yield(self.point([x,one,zero])) 

else: 

for x in g10.roots(multiplicities=False): 

yield(self.point([x,one,zero])) 

 

# points with Z = 1 

for y in K: 

gy1 = R(g(X,y,one)) 

if gy1.is_zero(): 

for x in K: 

yield(self.point([x,y,one])) 

else: 

for x in gy1.roots(multiplicities=False): 

yield(self.point([x,y,one])) 

 

def rational_points(self, algorithm="enum", sort=True): 

r""" 

Return the rational points on this curve computed via enumeration. 

 

 

INPUT: 

 

- ``algorithm`` (string, default: 'enum') -- the algorithm to 

use. Currently this is ignored. 

 

- ``sort`` (boolean, default ``True``) -- whether the output 

points should be sorted. If False, the order of the output 

is non-deterministic. 

 

OUTPUT: 

 

A list of all the rational points on the curve defined over 

its base field, possibly sorted. 

 

.. note:: 

 

This is a slow Python-level implementation. 

 

 

EXAMPLES:: 

 

sage: F = GF(7) 

sage: P2.<X,Y,Z> = ProjectiveSpace(F,2) 

sage: C = Curve(X^3+Y^3-Z^3) 

sage: C.rational_points() 

[(0 : 1 : 1), (0 : 2 : 1), (0 : 4 : 1), (1 : 0 : 1), (2 : 0 : 1), (3 : 1 : 0), (4 : 0 : 1), (5 : 1 : 0), (6 : 1 : 0)] 

 

 

:: 

 

sage: F = GF(1237) 

sage: P2.<X,Y,Z> = ProjectiveSpace(F,2) 

sage: C = Curve(X^7+7*Y^6*Z+Z^4*X^2*Y*89) 

sage: len(C.rational_points()) 

1237 

 

:: 

 

sage: F = GF(2^6,'a') 

sage: P2.<X,Y,Z> = ProjectiveSpace(F,2) 

sage: C = Curve(X^5+11*X*Y*Z^3 + X^2*Y^3 - 13*Y^2*Z^3) 

sage: len(C.rational_points()) 

104 

 

:: 

 

sage: R.<x,y,z> = GF(2)[] 

sage: f = x^3*y + y^3*z + x*z^3 

sage: C = Curve(f); pts = C.rational_points() 

sage: pts 

[(0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0)] 

 

""" 

points = list(self.rational_points_iterator()) 

if sort: 

points.sort() 

return points 

 

class ProjectivePlaneCurve_prime_finite_field(ProjectivePlaneCurve_finite_field): 

def _points_via_singular(self, sort=True): 

r""" 

Return all rational points on this curve, computed using Singular's 

Brill-Noether implementation. 

 

INPUT: 

 

 

- ``sort`` - bool (default: True), if True return the 

point list sorted. If False, returns the points in the order 

computed by Singular. 

 

 

EXAMPLES:: 

 

sage: x, y, z = PolynomialRing(GF(5), 3, 'xyz').gens() 

sage: f = y^2*z^7 - x^9 - x*z^8 

sage: C = Curve(f); C 

Projective Plane Curve over Finite Field of size 5 defined by 

-x^9 + y^2*z^7 - x*z^8 

sage: C._points_via_singular() 

[(0 : 0 : 1), (0 : 1 : 0), (2 : 2 : 1), (2 : 3 : 1), 

(3 : 1 : 1), (3 : 4 : 1)] 

sage: C._points_via_singular(sort=False) #random 

[(0 : 1 : 0), (3 : 1 : 1), (3 : 4 : 1), (2 : 2 : 1), 

(0 : 0 : 1), (2 : 3 : 1)] 

 

 

.. note:: 

 

The Brill-Noether package does not always work (i.e., the 

'bn' algorithm. When it fails a RuntimeError exception is 

raised. 

""" 

f = self.defining_polynomial()._singular_() 

singular = f.parent() 

singular.lib('brnoeth') 

try: 

X1 = f.Adj_div() 

except (TypeError, RuntimeError) as s: 

raise RuntimeError(str(s) + "\n\n ** Unable to use the\ 

Brill-Noether Singular package to\ 

compute all points (see above).") 

 

X2 = singular.NSplaces(1, X1) 

R = X2[5][1][1] 

singular.set_ring(R) 

 

# We use sage_flattened_str_list since iterating through 

# the entire list through the sage/singular interface directly 

# would involve hundreds of calls to singular, and timing issues with 

# the expect interface could crop up. Also, this is vastly 

# faster (and more robust). 

v = singular('POINTS').sage_flattened_str_list() 

pnts = [self(int(v[3*i]), int(v[3*i+1]), int(v[3*i+2])) 

for i in range(len(v)//3)] 

# singular always dehomogenizes with respect to the last variable 

# so if this variable divides the curve equation, we need to add 

# points at infinity 

F = self.defining_polynomial() 

z = F.parent().gens()[-1] 

if z.divides(F): 

pnts += [self(1,a,0) for a in self.base_ring()] 

pnts += [self(0,1,0)] 

# remove multiple points 

pnts = list(set(pnts)) 

if sort: 

pnts.sort() 

return pnts 

 

def riemann_roch_basis(self, D): 

r""" 

Return a basis for the Riemann-Roch space corresponding to 

`D`. 

 

This uses Singular's Brill-Noether implementation. 

 

INPUT: 

 

- ``D`` - a divisor 

 

OUTPUT: 

 

A list of function field elements that form a basis of the Riemann-Roch space 

 

EXAMPLES:: 

 

sage: R.<x,y,z> = GF(2)[] 

sage: f = x^3*y + y^3*z + x*z^3 

sage: C = Curve(f); pts = C.rational_points() 

sage: D = C.divisor([ (4, pts[0]), (4, pts[2]) ]) 

sage: C.riemann_roch_basis(D) 

[x/y, 1, z/y, z^2/y^2, z/x, z^2/(x*y)] 

 

:: 

 

sage: R.<x,y,z> = GF(5)[] 

sage: f = x^7 + y^7 + z^7 

sage: C = Curve(f); pts = C.rational_points() 

sage: D = C.divisor([ (3, pts[0]), (-1,pts[1]), (10, pts[5]) ]) 

sage: C.riemann_roch_basis(D) 

[(-x - 2*y)/(-2*x - 2*y), (-x + z)/(x + y)] 

 

 

.. NOTE:: 

 

Currently this only works over prime field and divisors 

supported on rational points. 

""" 

f = self.defining_polynomial()._singular_() 

singular = f.parent() 

singular.lib('brnoeth') 

try: 

X1 = f.Adj_div() 

except (TypeError, RuntimeError) as s: 

raise RuntimeError(str(s) + "\n\n ** Unable to use the Brill-Noether Singular package to compute all points (see above).") 

X2 = singular.NSplaces(1, X1) 

# retrieve list of all computed closed points (possibly of degree >1) 

v = X2[3].sage_flattened_str_list() # We use sage_flattened_str_list since iterating through 

# the entire list through the sage/singular interface directly 

# would involve hundreds of calls to singular, and timing issues with 

# the expect interface could crop up. Also, this is vastly 

# faster (and more robust). 

v = [ v[i].partition(',') for i in range(len(v)) ] 

pnts = [ ( int(v[i][0]), int(v[i][2])-1 ) for i in range(len(v))] 

# retrieve coordinates of rational points 

R = X2[5][1][1] 

singular.set_ring(R) 

v = singular('POINTS').sage_flattened_str_list() 

coords = [self(int(v[3*i]), int(v[3*i+1]), int(v[3*i+2])) for i in range(len(v)//3)] 

# build correct representation of D for singular 

Dsupport = D.support() 

Dcoeffs = [] 

for x in pnts: 

if x[0] == 1: 

Dcoeffs.append(D.coefficient(coords[x[1]])) 

else: 

Dcoeffs.append(0) 

Dstr = str(tuple(Dcoeffs)) 

G = singular(','.join([str(x) for x in Dcoeffs]), type='intvec') 

# call singular's brill noether routine and return 

T = X2[1][2] 

T.set_ring() 

LG = G.BrillNoether(X2) 

LG = [X.split(',\n') for X in LG.sage_structured_str_list()] 

x,y,z = self.ambient_space().coordinate_ring().gens() 

vars = {'x':x, 'y':y, 'z':z} 

V = [(sage_eval(a, vars)/sage_eval(b, vars)) for a, b in LG] 

return V 

 

def rational_points(self, algorithm="enum", sort=True): 

r""" 

INPUT: 

 

 

- ``algorithm`` - string: 

 

- ``'enum'`` - straightforward enumeration 

 

- ``'bn'`` - via Singular's brnoeth package. 

 

 

EXAMPLES:: 

 

sage: x, y, z = PolynomialRing(GF(5), 3, 'xyz').gens() 

sage: f = y^2*z^7 - x^9 - x*z^8 

sage: C = Curve(f); C 

Projective Plane Curve over Finite Field of size 5 defined by 

-x^9 + y^2*z^7 - x*z^8 

sage: C.rational_points() 

[(0 : 0 : 1), (0 : 1 : 0), (2 : 2 : 1), (2 : 3 : 1), 

(3 : 1 : 1), (3 : 4 : 1)] 

sage: C = Curve(x - y + z) 

sage: C.rational_points() 

[(0 : 1 : 1), (1 : 1 : 0), (1 : 2 : 1), (2 : 3 : 1), 

(3 : 4 : 1), (4 : 0 : 1)] 

sage: C = Curve(x*z+z^2) 

sage: C.rational_points('all') 

[(0 : 1 : 0), (1 : 0 : 0), (1 : 1 : 0), (2 : 1 : 0), 

(3 : 1 : 0), (4 : 0 : 1), (4 : 1 : 0), (4 : 1 : 1), 

(4 : 2 : 1), (4 : 3 : 1), (4 : 4 : 1)] 

 

.. note:: 

 

The Brill-Noether package does not always work (i.e., the 

'bn' algorithm. When it fails a RuntimeError exception is 

raised. 

""" 

if algorithm == "enum": 

 

return ProjectivePlaneCurve_finite_field.rational_points(self, 

algorithm="enum", 

sort=sort) 

 

elif algorithm == "bn": 

 

return self._points_via_singular(sort=sort) 

 

elif algorithm == "all": 

 

S_enum = self.rational_points(algorithm = "enum") 

S_bn = self.rational_points(algorithm = "bn") 

if S_enum != S_bn: 

raise RuntimeError("Bug in rational_points -- different\ 

algorithms give different answers for\ 

curve %s!"%self) 

return S_enum 

 

else: 

 

raise ValueError("No algorithm '%s' known"%algorithm) 

 

def Hasse_bounds(q, genus=1): 

r""" 

Return the Hasse-Weil bounds for the cardinality of a nonsingular 

curve defined over `\GF{q}` of given ``genus``. 

 

INPUT: 

 

- ``q`` (int) -- a prime power 

 

- ``genus`` (int, default 1) -- a non-negative integer, 

 

OUTPUT: 

 

(tuple) The Hasse bounds (lb,ub) for the cardinality of a curve of 

genus ``genus`` defined over `\GF{q}`. 

 

EXAMPLES:: 

 

sage: Hasse_bounds(2) 

(1, 5) 

sage: Hasse_bounds(next_prime(10^30)) 

(999999999999998000000000000058, 1000000000000002000000000000058) 

""" 

if genus==1: 

rq = (4*q).isqrt() 

else: 

rq = (4*(genus**2)*q).isqrt() 

return (q+1-rq,q+1+rq) 

 

# Fix pickles from changing class names and plane_curves folder name 

from sage.structure.sage_object import register_unpickle_override 

register_unpickle_override('sage.schemes.plane_curves.projective_curve', 

'ProjectiveCurve_generic', ProjectivePlaneCurve)