Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

# -*- coding: utf-8 -*- 

"Birch and Swinnerton-Dyer formulas" 

from __future__ import print_function 

 

#import ell_point 

#import formal_group 

#import ell_torsion 

#from ell_generic import EllipticCurve_generic, is_EllipticCurve 

#from ell_number_field import EllipticCurve_number_field 

 

#import sage.groups.all 

import sage.arith.all as arith 

import sage.rings.all as rings 

from sage.rings.all import ZZ, Infinity 

from sage.functions.all import ceil 

 

class BSD_data: 

""" 

Helper class used to keep track of information in proving BSD. 

 

EXAMPLES:: 

 

sage: from sage.schemes.elliptic_curves.BSD import BSD_data 

sage: D = BSD_data() 

sage: D.Sha is None 

True 

sage: D.curve=EllipticCurve('11a') 

sage: D.update() 

sage: D.Sha 

Tate-Shafarevich group for the Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field 

 

""" 

def __init__(self): 

self.curve = None 

self.two_tor_rk = None 

self.Sha = None 

self.sha_an = None 

self.N = None 

 

self.rank = None 

self.gens = None 

self.bounds = {} # p : (low_bd, up_bd) bounds on ord_p(#sha) 

self.primes = None # BSD(E,p) holds for odd primes p outside this set 

self.heegner_indexes = {} # D : I_K, K = QQ(\sqrt(D)) 

self.heegner_index_upper_bound = {} # D : M, I_K <= M 

self.N_factorization = None 

self.proof = {} 

 

def update(self): 

""" 

Updates some properties from ``curve``. 

 

EXAMPLES:: 

 

sage: from sage.schemes.elliptic_curves.BSD import BSD_data 

sage: D = BSD_data() 

sage: D.Sha is None 

True 

sage: D.curve=EllipticCurve('11a') 

sage: D.update() 

sage: D.Sha 

Tate-Shafarevich group for the Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field 

""" 

self.two_tor_rk = self.curve.two_torsion_rank() 

self.Sha = self.curve.sha() 

self.sha_an = self.Sha.an(use_database=True) 

self.N = self.curve.conductor() 

 

def simon_two_descent_work(E, two_tor_rk): 

""" 

Prepares the output from Simon two-descent. 

 

INPUT: 

 

- ``E`` - an elliptic curve 

 

- ``two_tor_rk`` - its two-torsion rank 

 

OUTPUT: 

 

- a lower bound on the rank 

 

- an upper bound on the rank 

 

- a lower bound on the rank of Sha[2] 

 

- an upper bound on the rank of Sha[2] 

 

- a list of the generators found 

 

EXAMPLES:: 

 

sage: from sage.schemes.elliptic_curves.BSD import simon_two_descent_work 

sage: E = EllipticCurve('14a') 

sage: simon_two_descent_work(E, E.two_torsion_rank()) 

(0, 0, 0, 0, []) 

sage: E = EllipticCurve('37a') 

sage: simon_two_descent_work(E, E.two_torsion_rank()) 

(1, 1, 0, 0, [(0 : 0 : 1)]) 

 

""" 

rank_lower_bd, two_sel_rk, gens = E.simon_two_descent() 

rank_upper_bd = two_sel_rk - two_tor_rk 

gens = [P for P in gens if P.additive_order() == Infinity] 

return rank_lower_bd, rank_upper_bd, 0, rank_upper_bd - rank_lower_bd, gens 

 

def mwrank_two_descent_work(E, two_tor_rk): 

""" 

Prepares the output from mwrank two-descent. 

 

INPUT: 

 

- ``E`` - an elliptic curve 

 

- ``two_tor_rk`` - its two-torsion rank 

 

OUTPUT: 

 

- a lower bound on the rank 

 

- an upper bound on the rank 

 

- a lower bound on the rank of Sha[2] 

 

- an upper bound on the rank of Sha[2] 

 

- a list of the generators found 

 

EXAMPLES:: 

 

sage: from sage.schemes.elliptic_curves.BSD import mwrank_two_descent_work 

sage: E = EllipticCurve('14a') 

sage: mwrank_two_descent_work(E, E.two_torsion_rank()) 

(0, 0, 0, 0, []) 

sage: E = EllipticCurve('37a') 

sage: mwrank_two_descent_work(E, E.two_torsion_rank()) 

(1, 1, 0, 0, [(0 : -1 : 1)]) 

 

""" 

MWRC = E.mwrank_curve() 

rank_upper_bd = MWRC.rank_bound() 

rank_lower_bd = MWRC.rank() 

gens = [E(P) for P in MWRC.gens()] 

sha2_lower_bd = MWRC.selmer_rank() - two_tor_rk - rank_upper_bd 

sha2_upper_bd = MWRC.selmer_rank() - two_tor_rk - rank_lower_bd 

return rank_lower_bd, rank_upper_bd, sha2_lower_bd, sha2_upper_bd, gens 

 

def native_two_isogeny_descent_work(E, two_tor_rk): 

""" 

Prepares the output from two-descent by two-isogeny. 

 

INPUT: 

 

- ``E`` - an elliptic curve 

 

- ``two_tor_rk`` - its two-torsion rank 

 

OUTPUT: 

 

- a lower bound on the rank 

 

- an upper bound on the rank 

 

- a lower bound on the rank of Sha[2] 

 

- an upper bound on the rank of Sha[2] 

 

- a list of the generators found (currently None, since we don't store them) 

 

EXAMPLES:: 

 

sage: from sage.schemes.elliptic_curves.BSD import native_two_isogeny_descent_work 

sage: E = EllipticCurve('14a') 

sage: native_two_isogeny_descent_work(E, E.two_torsion_rank()) 

(0, 0, 0, 0, None) 

sage: E = EllipticCurve('65a') 

sage: native_two_isogeny_descent_work(E, E.two_torsion_rank()) 

(1, 1, 0, 0, None) 

 

""" 

from sage.schemes.elliptic_curves.descent_two_isogeny import two_descent_by_two_isogeny 

n1, n2, n1p, n2p = two_descent_by_two_isogeny(E) 

# bring n1 and n1p up to the nearest power of two 

two = ZZ(2) # otherwise "log" is symbolic >.< 

e1 = ceil(ZZ(n1).log(two)) 

e1p = ceil(ZZ(n1p).log(two)) 

e2 = ZZ(n2).log(two) 

e2p = ZZ(n2p).log(two) 

rank_lower_bd = e1 + e1p - 2 

rank_upper_bd = e2 + e2p - 2 

sha_upper_bd = e2 + e2p - e1 - e1p 

gens = None # right now, we are not keeping track of them 

return rank_lower_bd, rank_upper_bd, 0, sha_upper_bd, gens 

 

def heegner_index_work(E): 

""" 

Prepares the input and output for computing the heegner index. 

 

INPUT: 

 

- ``E`` - an elliptic curve 

 

OUTPUT: 

 

- a Heegner index 

 

- the discriminant used 

 

EXAMPLES:: 

 

sage: from sage.schemes.elliptic_curves.BSD import heegner_index_work 

sage: heegner_index_work(EllipticCurve('14a')) 

(1, -31) 

 

""" 

for D in E.heegner_discriminants_list(10): 

I = None 

while I is None: 

dsl=15 

try: 

I = E.heegner_index(D, descent_second_limit=dsl) 

except RuntimeError as err: 

if err.args[0][-33:] == 'Generators not provably computed.': 

dsl += 1 

else: raise RuntimeError(err) 

J = I.is_int() 

if J[0] and J[1]>0: 

I = J[1] 

else: 

J = (2*I).is_int() 

if J[0] and J[1]>0: 

I = J[1] 

else: 

I = None 

if I is not None: 

return I, D 

 

 

def prove_BSD(E, verbosity=0, two_desc='mwrank', proof=None, secs_hi=5, 

return_BSD=False): 

r""" 

Attempts to prove the Birch and Swinnerton-Dyer conjectural 

formula for `E`, returning a list of primes `p` for which this 

function fails to prove BSD(E,p). Here, BSD(E,p) is the 

statement: "the Birch and Swinnerton-Dyer formula holds up to a 

rational number coprime to `p`." 

 

INPUT: 

 

- ``E`` - an elliptic curve 

 

- ``verbosity`` - int, how much information about the proof to print. 

 

- 0 - print nothing 

- 1 - print sketch of proof 

- 2 - print information about remaining primes 

 

- ``two_desc`` - string (default ``'mwrank'``), what to use for the 

two-descent. Options are ``'mwrank', 'simon', 'sage'`` 

 

- ``proof`` - bool or None (default: None, see 

proof.elliptic_curve or sage.structure.proof). If False, this 

function just immediately returns the empty list. 

 

- ``secs_hi`` - maximum number of seconds to try to compute the 

Heegner index before switching over to trying to compute the 

Heegner index bound. (Rank 0 only!) 

 

- ``return_BSD`` - bool (default: False) whether to return an object 

which contains information to reconstruct a proof 

 

NOTE: 

 

When printing verbose output, phrases such as "by Mazur" are referring 

to the following list of papers: 

 

REFERENCES: 

 

.. [Cha] \B. Cha. Vanishing of some cohomology goups and bounds for the 

Shafarevich-Tate groups of elliptic curves. J. Number Theory, 111:154- 

178, 2005. 

.. [Jetchev] \D. Jetchev. Global divisibility of Heegner points and 

Tamagawa numbers. Compos. Math. 144 (2008), no. 4, 811--826. 

.. [Kato] \K. Kato. p-adic Hodge theory and values of zeta functions of 

modular forms. Astérisque, (295):ix, 117-290, 2004. 

.. [Kolyvagin] \V. A. Kolyvagin. On the structure of Shafarevich-Tate 

groups. Algebraic geometry, 94--121, Lecture Notes in Math., 1479, 

Springer, Berlin, 1991. 

.. [LawsonWuthrich] \T. Lawson and C. Wuthrich, Vanishing of some Galois 

cohomology groups for elliptic curves, :arxiv:`1505.02940` 

.. [LumStein] \A. Lum, W. Stein. Verification of the Birch and 

Swinnerton-Dyer Conjecture for Elliptic Curves with Complex 

Multiplication (unpublished) 

.. [Mazur] \B. Mazur. Modular curves and the Eisenstein ideal. Inst. 

Hautes Études Sci. Publ. Math. No. 47 (1977), 33--186 (1978). 

.. [Rubin] \K. Rubin. The "main conjectures" of Iwasawa theory for 

imaginary quadratic fields. Invent. Math. 103 (1991), no. 1, 25--68. 

.. [SteinWuthrich] \W. Stein and C. Wuthrich, Algorithms 

for the Arithmetic of Elliptic Curves using Iwasawa Theory 

Mathematics of Computation 82 (2013), 1757-1792. 

.. [SteinEtAl] \G. Grigorov, A. Jorza, S. Patrikis, W. Stein, 

C. Tarniţǎ. Computational verification of the Birch and 

Swinnerton-Dyer conjecture for individual elliptic curves. 

Math. Comp. 78 (2009), no. 268, 2397--2425. 

 

 

EXAMPLES:: 

 

sage: EllipticCurve('11a').prove_BSD(verbosity=2) 

p = 2: True by 2-descent 

True for p not in {2, 5} by Kolyvagin. 

Kolyvagin's bound for p = 5 applies by Lawson-Wuthrich 

True for p = 5 by Kolyvagin bound 

[] 

 

sage: EllipticCurve('14a').prove_BSD(verbosity=2) 

p = 2: True by 2-descent 

True for p not in {2, 3} by Kolyvagin. 

Kolyvagin's bound for p = 3 applies by Lawson-Wuthrich 

True for p = 3 by Kolyvagin bound 

[] 

 

sage: E = EllipticCurve("20a1") 

sage: E.prove_BSD(verbosity=2) 

p = 2: True by 2-descent 

True for p not in {2, 3} by Kolyvagin. 

Kato further implies that #Sha[3] is trivial. 

[] 

 

sage: E = EllipticCurve("50b1") 

sage: E.prove_BSD(verbosity=2) 

p = 2: True by 2-descent 

True for p not in {2, 3, 5} by Kolyvagin. 

Kolyvagin's bound for p = 3 applies by Lawson-Wuthrich 

True for p = 3 by Kolyvagin bound 

Remaining primes: 

p = 5: reducible, not surjective, additive, divides a Tamagawa number 

(no bounds found) 

ord_p(#Sha_an) = 0 

[5] 

sage: E.prove_BSD(two_desc='simon') 

[5] 

 

A rank two curve:: 

 

sage: E = EllipticCurve('389a') 

 

We know nothing with proof=True:: 

 

sage: E.prove_BSD() 

Set of all prime numbers: 2, 3, 5, 7, ... 

 

We (think we) know everything with proof=False:: 

 

sage: E.prove_BSD(proof=False) 

[] 

 

A curve of rank 0 and prime conductor:: 

 

sage: E = EllipticCurve('19a') 

sage: E.prove_BSD(verbosity=2) 

p = 2: True by 2-descent 

True for p not in {2, 3} by Kolyvagin. 

Kolyvagin's bound for p = 3 applies by Lawson-Wuthrich 

True for p = 3 by Kolyvagin bound 

[] 

 

sage: E = EllipticCurve('37a') 

sage: E.rank() 

1 

sage: E._EllipticCurve_rational_field__rank 

(1, True) 

sage: E.analytic_rank = lambda : 0 

sage: E.prove_BSD() 

Traceback (most recent call last): 

... 

RuntimeError: It seems that the rank conjecture does not hold for this curve (Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field)! This may be a counterexample to BSD, but is more likely a bug. 

 

We test the consistency check for the 2-part of Sha:: 

 

sage: E = EllipticCurve('37a') 

sage: S = E.sha(); S 

Tate-Shafarevich group for the Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field 

sage: def foo(use_database): 

....: return 4 

sage: S.an = foo 

sage: E.prove_BSD() 

Traceback (most recent call last): 

... 

RuntimeError: Apparent contradiction: 0 <= rank(sha[2]) <= 0, but ord_2(sha_an) = 2 

 

An example with a Tamagawa number at 5:: 

 

sage: E = EllipticCurve('123a1') 

sage: E.prove_BSD(verbosity=2) 

p = 2: True by 2-descent 

True for p not in {2, 5} by Kolyvagin. 

Remaining primes: 

p = 5: reducible, not surjective, good ordinary, divides a Tamagawa number 

(no bounds found) 

ord_p(#Sha_an) = 0 

[5] 

 

A curve for which 3 divides the order of the Tate-Shafarevich group:: 

 

sage: E = EllipticCurve('681b') 

sage: E.prove_BSD(verbosity=2) # long time 

p = 2: True by 2-descent... 

True for p not in {2, 3} by Kolyvagin.... 

Remaining primes: 

p = 3: irreducible, surjective, non-split multiplicative 

(0 <= ord_p <= 2) 

ord_p(#Sha_an) = 2 

[3] 

 

A curve for which we need to use ``heegner_index_bound``:: 

 

sage: E = EllipticCurve('198b') 

sage: E.prove_BSD(verbosity=1, secs_hi=1) 

p = 2: True by 2-descent 

True for p not in {2, 3} by Kolyvagin. 

[3] 

 

The ``return_BSD`` option gives an object with detailed information 

about the proof:: 

 

sage: E = EllipticCurve('26b') 

sage: B = E.prove_BSD(return_BSD=True) 

sage: B.two_tor_rk 

0 

sage: B.N 

26 

sage: B.gens 

[] 

sage: B.primes 

[] 

sage: B.heegner_indexes 

{-23: 2} 

 

TESTS: 

 

This was fixed by :trac:`8184` and :trac:`7575`:: 

 

sage: EllipticCurve('438e1').prove_BSD(verbosity=1) 

p = 2: True by 2-descent... 

True for p not in {2} by Kolyvagin. 

[] 

 

:: 

 

sage: E = EllipticCurve('960d1') 

sage: E.prove_BSD(verbosity=1) # long time (4s on sage.math, 2011) 

p = 2: True by 2-descent 

True for p not in {2} by Kolyvagin. 

[] 

 

""" 

if proof is None: 

from sage.structure.proof.proof import get_flag 

proof = get_flag(proof, "elliptic_curve") 

else: 

proof = bool(proof) 

if not proof: 

return [] 

from copy import copy 

BSD = BSD_data() 

# We replace this curve by the optimal curve, which we can do since 

# truth of BSD(E,p) is invariant under isogeny. 

BSD.curve = E.optimal_curve() 

if BSD.curve.has_cm(): 

# ensure that CM is by a maximal order 

non_max_j_invs = [-12288000, 54000, 287496, 16581375] 

if BSD.curve.j_invariant() in non_max_j_invs: # is this possible for optimal curves? 

if verbosity > 0: 

print('CM by non maximal order: switching curves') 

for E in BSD.curve.isogeny_class(): 

if E.j_invariant() not in non_max_j_invs: 

BSD.curve = E 

break 

BSD.update() 

galrep = BSD.curve.galois_representation() 

 

if two_desc=='mwrank': 

M = mwrank_two_descent_work(BSD.curve, BSD.two_tor_rk) 

elif two_desc=='simon': 

M = simon_two_descent_work(BSD.curve, BSD.two_tor_rk) 

elif two_desc=='sage': 

M = native_two_isogeny_descent_work(BSD.curve, BSD.two_tor_rk) 

else: 

raise NotImplementedError() 

rank_lower_bd, rank_upper_bd, sha2_lower_bd, sha2_upper_bd, gens = M 

assert sha2_lower_bd <= sha2_upper_bd 

if gens is not None: gens = BSD.curve.saturation(gens)[0] 

if rank_lower_bd > rank_upper_bd: 

raise RuntimeError("Apparent contradiction: %d <= rank <= %d."%(rank_lower_bd, rank_upper_bd)) 

BSD.two_selmer_rank = rank_upper_bd + sha2_lower_bd + BSD.two_tor_rk 

if sha2_upper_bd == sha2_lower_bd: 

BSD.rank = rank_lower_bd 

BSD.bounds[2] = (sha2_lower_bd, sha2_upper_bd) 

else: 

BSD.rank = BSD.curve.rank(use_database=True) 

sha2_upper_bd -= (BSD.rank - rank_lower_bd) 

BSD.bounds[2] = (sha2_lower_bd, sha2_upper_bd) 

if verbosity > 0: 

print("Unable to compute the rank exactly -- used database.") 

if rank_lower_bd > 1: 

# We do not know BSD(E,p) for even a single p, since it's 

# an open problem to show that L^r(E,1)/(Reg*Omega) is 

# rational for any curve with r >= 2. 

from sage.sets.all import Primes 

BSD.primes = Primes() 

if return_BSD: 

BSD.rank = rank_lower_bd 

return BSD 

return BSD.primes 

if (BSD.sha_an.ord(2) == 0) != (BSD.bounds[2][1] == 0): 

raise RuntimeError("Apparent contradiction: %d <= rank(sha[2]) <= %d, but ord_2(sha_an) = %d"%(sha2_lower_bd, sha2_upper_bd, BSD.sha_an.ord(2))) 

if BSD.bounds[2][0] == BSD.sha_an.ord(2) and BSD.sha_an.ord(2) == BSD.bounds[2][1]: 

if verbosity > 0: 

print('p = 2: True by 2-descent') 

BSD.primes = [] 

BSD.bounds.pop(2) 

BSD.proof[2] = ['2-descent'] 

else: 

BSD.primes = [2] 

BSD.proof[2] = [('2-descent',)+BSD.bounds[2]] 

if len(gens) > rank_lower_bd or \ 

rank_lower_bd > rank_upper_bd: 

raise RuntimeError("Something went wrong with 2-descent.") 

if BSD.rank != len(gens): 

gens = BSD.curve.gens(proof=True) 

if BSD.rank != len(gens): 

raise RuntimeError("Could not get generators") 

BSD.gens = [BSD.curve.point(x, check=True) for x in gens] 

 

if BSD.rank != BSD.curve.analytic_rank(): 

raise RuntimeError("It seems that the rank conjecture does not hold for this curve (%s)! This may be a counterexample to BSD, but is more likely a bug."%(BSD.curve)) 

 

# reduce set of remaining primes to a finite set 

import signal 

kolyvagin_primes = [] 

heegner_index = None 

if BSD.rank == 0: 

for D in BSD.curve.heegner_discriminants_list(10): 

max_height = max(13,BSD.curve.quadratic_twist(D).CPS_height_bound()) 

heegner_primes = -1 

while heegner_primes == -1: 

if max_height > 21: break 

heegner_primes, _, exact = BSD.curve.heegner_index_bound(D, max_height=max_height) 

max_height += 1 

if isinstance(heegner_primes, list): 

break 

if not isinstance(heegner_primes, list): 

raise RuntimeError("Tried 10 Heegner discriminants, and heegner_index_bound failed each time.") 

if exact is not False: 

heegner_index = exact 

BSD.heegner_indexes[D] = exact 

else: 

BSD.heegner_index_upper_bound[D] = max(heegner_primes+[1]) 

if 2 in heegner_primes: 

heegner_primes.remove(2) 

else: # rank 1 

for D in BSD.curve.heegner_discriminants_list(10): 

I = BSD.curve.heegner_index(D) 

J = I.is_int() 

if J[0] and J[1]>0: 

I = J[1] 

else: 

J = (2*I).is_int() 

if J[0] and J[1]>0: 

I = J[1] 

else: 

continue 

heegner_index = I 

BSD.heegner_indexes[D] = I 

break 

heegner_primes = [p for p in arith.prime_divisors(heegner_index) if p!=2] 

 

assert BSD.sha_an in ZZ and BSD.sha_an > 0 

if BSD.curve.has_cm(): 

if BSD.curve.analytic_rank() == 0: 

if verbosity > 0: 

print(' p >= 5: true by Rubin') 

BSD.primes.append(3) 

else: 

K = rings.QuadraticField(BSD.curve.cm_discriminant(), 'a') 

D_K = K.disc() 

D_E = BSD.curve.discriminant() 

if len(K.factor(3)) == 1: # 3 does not split in K 

BSD.primes.append(3) 

for p in arith.prime_divisors(D_K): 

if p >= 5: 

BSD.primes.append(p) 

for p in arith.prime_divisors(D_E): 

if p >= 5 and D_K%p and len(K.factor(p)) == 1: # p is inert in K 

BSD.primes.append(p) 

for p in heegner_primes: 

if p >= 5 and D_E%p != 0 and D_K%p != 0 and len(K.factor(p)) == 1: # p is good for E and inert in K 

kolyvagin_primes.append(p) 

for p in arith.prime_divisors(BSD.sha_an): 

if p >= 5 and D_K%p != 0 and len(K.factor(p)) == 1: 

if BSD.curve.is_good(p): 

if verbosity > 2 and p in heegner_primes and heegner_index is None: 

print('ALERT: Prime p (%d) >= 5 dividing sha_an, good for E, inert in K, in heegner_primes, should not divide the actual Heegner index') 

# Note that the following check is not entirely 

# exhaustive, in case there is a p not dividing 

# the Heegner index in heegner_primes, 

# for which only an outer bound was computed 

if p not in heegner_primes: 

raise RuntimeError("p = %d divides sha_an, is of good reduction for E, inert in K, and does not divide the Heegner index. This may be a counterexample to BSD, but is more likely a bug. %s"%(p,BSD.curve)) 

if verbosity > 0: 

print('True for p not in {%s} by Kolyvagin (via Stein & Lum -- unpublished) and Rubin.' % str(list(set(BSD.primes).union(set(kolyvagin_primes))))[1:-1]) 

BSD.proof['finite'] = copy(BSD.primes) 

else: # no CM 

# do some tricks to get to a finite set without calling bound_kolyvagin 

BSD.primes += [p for p in galrep.non_surjective() if p != 2] 

for p in heegner_primes: 

if p not in BSD.primes: 

BSD.primes.append(p) 

for p in arith.prime_divisors(BSD.sha_an): 

if p not in BSD.primes and p != 2: 

BSD.primes.append(p) 

if verbosity > 0: 

s = str(BSD.primes)[1:-1] 

if 2 not in BSD.primes: 

if len(s) == 0: s = '2' 

else: s = '2, '+s 

print('True for p not in {' + s + '} by Kolyvagin.') 

BSD.proof['finite'] = copy(BSD.primes) 

primes_to_remove = [] 

for p in BSD.primes: 

if p == 2: continue 

if galrep.is_surjective(p) and not BSD.curve.has_additive_reduction(p): 

if BSD.curve.has_nonsplit_multiplicative_reduction(p): 

if BSD.rank > 0: 

continue 

if p==3: 

if (not (BSD.curve.is_ordinary(p) and BSD.curve.is_good(p))) and (not BSD.curve.has_split_multiplicative_reduction(p)): 

continue 

if BSD.rank > 0: 

continue 

if verbosity > 1: 

print(' p = %d: Trying p_primary_bound' % p) 

p_bound = BSD.Sha.p_primary_bound(p) 

if p in BSD.proof: 

BSD.proof[p].append(('Stein-Wuthrich', p_bound)) 

else: 

BSD.proof[p] = [('Stein-Wuthrich', p_bound)] 

if BSD.sha_an.ord(p) == 0 and p_bound == 0: 

if verbosity > 0: 

print('True for p=%d by Stein-Wuthrich.' % p) 

primes_to_remove.append(p) 

else: 

if p in BSD.bounds: 

BSD.bounds[p][1] = min(BSD.bounds[p][1], p_bound) 

else: 

BSD.bounds[p] = (0, p_bound) 

print('Analytic %d-rank is '%p + str(BSD.sha_an.ord(p)) + ', actual %d-rank is at most %d.' % (p, p_bound)) 

print(' by Stein-Wuthrich.\n') 

for p in primes_to_remove: 

BSD.primes.remove(p) 

kolyvagin_primes = [] 

for p in BSD.primes: 

if p == 2: continue 

if galrep.is_surjective(p): 

kolyvagin_primes.append(p) 

for p in kolyvagin_primes: 

BSD.primes.remove(p) 

# apply other hypotheses which imply Kolyvagin's bound holds 

bounded_primes = [] 

D_K = rings.QuadraticField(D, 'a').disc() 

 

# Cha's hypothesis 

for p in BSD.primes: 

if p == 2: continue 

if D_K%p != 0 and BSD.N%(p**2) != 0 and galrep.is_irreducible(p): 

if verbosity > 0: 

print('Kolyvagin\'s bound for p = %d applies by Cha.' % p) 

if p in BSD.proof: 

BSD.proof[p].append('Cha') 

else: 

BSD.proof[p] = ['Cha'] 

kolyvagin_primes.append(p) 

# Stein et al replaced 

for p in BSD.primes: 

# the lemma about the vanishing of H^1 is false in Stein et al for p=5 and 11 

# here is the correction from Lawson-Wuthrich. Especially Theorem 14 in 

# [LawsonWuthrich] above. 

if p in kolyvagin_primes or p == 2 or D_K % p == 0: 

continue 

crit_lw = False 

if p > 11 or p == 7: 

crit_lw = True 

elif p == 11: 

if BSD.N != 121 or BSD.curve.label() != "121c2": 

crit_lw = True 

elif galrep.is_irreducible(p): 

crit_lw = True 

else: 

phis = BSD.curve.isogenies_prime_degree(p) 

if len(phis) != 1: 

crit_lw = True 

else: 

C = phis[0].codomain() 

if p == 3: 

if BSD.curve.torsion_order() % p != 0 and C.torsion_order() % p != 0: 

crit_lw = True 

else: # p == 5 

Et = BSD.curve.quadratic_twist(5) 

if Et.torsion_order() % p != 0 and C.torsion_order() % p != 0: 

crite_lw = True 

if crit_lw: 

if verbosity > 0: 

print('Kolyvagin\'s bound for p = %d applies by Lawson-Wuthrich' % p) 

kolyvagin_primes.append(p) 

if p in BSD.proof: 

BSD.proof[p].append('Lawson-Wuthrich') 

else: 

BSD.proof[p] = ['Lawson-Wuthrich'] 

for p in kolyvagin_primes: 

if p in BSD.primes: 

BSD.primes.remove(p) 

 

# apply Kolyvagin's bound 

primes_to_remove = [] 

for p in kolyvagin_primes: 

if p == 2: continue 

if p not in heegner_primes: 

ord_p_bound = 0 

elif heegner_index is not None: # p must divide heegner_index 

ord_p_bound = 2*heegner_index.ord(p) 

# Here Jetchev's results apply. 

m_max = max([BSD.curve.tamagawa_number(q).ord(p) for q in BSD.N.prime_divisors()]) 

if m_max > 0: 

if verbosity > 0: 

print('Jetchev\'s results apply (at p = %d) with m_max =' % p, m_max) 

if p in BSD.proof: 

BSD.proof[p].append(('Jetchev',m_max)) 

else: 

BSD.proof[p] = [('Jetchev',m_max)] 

ord_p_bound -= 2*m_max 

else: # Heegner index is None 

for D in BSD.heegner_index_upper_bound: 

M = BSD.heegner_index_upper_bound[D] 

ord_p_bound = 0 

while p**(ord_p_bound+1) <= M**2: 

ord_p_bound += 1 

# now ord_p_bound is one on I_K!!! 

ord_p_bound *= 2 # by Kolyvagin, now ord_p_bound is one on #Sha 

break 

if p in BSD.proof: 

BSD.proof[p].append(('Kolyvagin',ord_p_bound)) 

else: 

BSD.proof[p] = [('Kolyvagin',ord_p_bound)] 

if BSD.sha_an.ord(p) == 0 and ord_p_bound == 0: 

if verbosity > 0: 

print('True for p = %d by Kolyvagin bound' % p) 

primes_to_remove.append(p) 

elif BSD.sha_an.ord(p) > ord_p_bound: 

raise RuntimeError("p = %d: ord_p_bound == %d, but sha_an.ord(p) == %d. This appears to be a counterexample to BSD, but is more likely a bug."%(p,ord_p_bound,BSD.sha_an.ord(p))) 

else: # BSD.sha_an.ord(p) <= ord_p_bound != 0: 

if p in BSD.bounds: 

low = BSD.bounds[p][0] 

BSD.bounds[p] = (low, min(BSD.bounds[p][1], ord_p_bound)) 

else: 

BSD.bounds[p] = (0, ord_p_bound) 

for p in primes_to_remove: 

kolyvagin_primes.remove(p) 

BSD.primes = list( set(BSD.primes).union(set(kolyvagin_primes)) ) 

 

# Kato's bound 

if BSD.rank == 0 and not BSD.curve.has_cm(): 

L_over_Omega = BSD.curve.lseries().L_ratio() 

kato_primes = BSD.Sha.bound_kato() 

primes_to_remove = [] 

for p in BSD.primes: 

if p == 2: continue 

if p not in kato_primes: 

if verbosity > 0: 

print('Kato further implies that #Sha[%d] is trivial.' % p) 

primes_to_remove.append(p) 

if p in BSD.proof: 

BSD.proof[p].append(('Kato',0)) 

else: 

BSD.proof[p] = [('Kato',0)] 

if p not in [2,3] and BSD.N%p != 0: 

if galrep.is_surjective(p): 

bd = L_over_Omega.valuation(p) 

if verbosity > 1: 

print('Kato implies that ord_p(#Sha[%d]) <= %d ' % (p, bd)) 

if p in BSD.proof: 

BSD.proof[p].append(('Kato',bd)) 

else: 

BSD.proof[p] = [('Kato',bd)] 

if p in BSD.bounds: 

low = BSD.bounds[p][0] 

BSD.bounds[p][1] = (low, min(BSD.bounds[p][1], bd)) 

else: 

BSD.bounds[p] = (0, bd) 

for p in primes_to_remove: 

BSD.primes.remove(p) 

 

# Mazur 

primes_to_remove = [] 

if BSD.N.is_prime(): 

for p in BSD.primes: 

if p == 2: continue 

if galrep.is_reducible(p): 

primes_to_remove.append(p) 

if verbosity > 0: 

print('True for p=%s by Mazur' % p) 

for p in primes_to_remove: 

BSD.primes.remove(p) 

if p in BSD.proof: 

BSD.proof[p].append('Mazur') 

else: 

BSD.proof[p] = ['Mazur'] 

 

BSD.primes.sort() 

 

# Try harder to compute the Heegner index, where it matters 

if heegner_index is None: 

if max_height < 18: 

max_height = 18 

for D in BSD.heegner_index_upper_bound: 

M = BSD.heegner_index_upper_bound[D] 

for p in kolyvagin_primes: 

if p not in BSD.primes or p == 3: continue 

if verbosity > 0: 

print(' p = %d: Trying harder for Heegner index' % p) 

obt = 0 

while p**(BSD.sha_an.ord(p)/2+1) <= M and max_height < 22: 

if verbosity > 2: 

print(' trying max_height =', max_height) 

old_bound = M 

M, _, exact = BSD.curve.heegner_index_bound(D, max_height=max_height, secs_dc=secs_hi) 

if M == -1: 

max_height += 1 

continue 

if exact is not False: 

heegner_index = exact 

BSD.heegner_indexes[D] = exact 

M = exact 

if verbosity > 2: 

print(' heegner index =', M) 

else: 

M = max(M+[1]) 

if verbosity > 2: 

print(' bound =', M) 

if old_bound == M: 

obt += 1 

if obt == 2: 

break 

max_height += 1 

BSD.heegner_index_upper_bound[D] = min(M,BSD.heegner_index_upper_bound[D]) 

low, upp = BSD.bounds[p] 

expn = 0 

while p**(expn+1) <= M: 

expn += 1 

if 2*expn < upp: 

upp = 2*expn 

BSD.bounds[p] = (low,upp) 

if verbosity > 0: 

print(' got better bound on ord_p =', upp) 

if low == upp: 

if upp != BSD.sha_an.ord(p): 

raise RuntimeError 

else: 

if verbosity > 0: 

print(' proven!') 

BSD.primes.remove(p) 

break 

for p in kolyvagin_primes: 

if p not in BSD.primes or p == 3: continue 

for D in BSD.curve.heegner_discriminants_list(4): 

if D in BSD.heegner_index_upper_bound: continue 

print(' discriminant', D) 

if verbosity > 0: 

print('p = %d: Trying discriminant = %d for Heegner index' % (p, D)) 

max_height = max(10, BSD.curve.quadratic_twist(D).CPS_height_bound()) 

obt = 0 

while True: 

if verbosity > 2: 

print(' trying max_height =', max_height) 

old_bound = M 

if p**(BSD.sha_an.ord(p)/2+1) > M or max_height >= 22: 

break 

M, _, exact = BSD.curve.heegner_index_bound(D, max_height=max_height, secs_dc=secs_hi) 

if M == -1: 

max_height += 1 

continue 

if exact is not False: 

heegner_index = exact 

BSD.heegner_indexes[D] = exact 

M = exact 

if verbosity > 2: 

print(' heegner index =', M) 

else: 

M = max(M+[1]) 

if verbosity > 2: 

print(' bound =', M) 

if old_bound == M: 

obt += 1 

if obt == 2: 

break 

max_height += 1 

BSD.heegner_index_upper_bound[D] = M 

low, upp = BSD.bounds[p] 

expn = 0 

while p**(expn+1) <= M: 

expn += 1 

if 2*expn < upp: 

upp = 2*expn 

BSD.bounds[p] = (low,upp) 

if verbosity > 0: 

print(' got better bound =', upp) 

if low == upp: 

if upp != BSD.sha_an.ord(p): 

raise RuntimeError 

else: 

if verbosity > 0: 

print(' proven!') 

BSD.primes.remove(p) 

break 

 

# print some extra information 

if verbosity > 1: 

if len(BSD.primes) > 0: 

print('Remaining primes:') 

for p in BSD.primes: 

s = 'p = ' + str(p) + ': ' 

if galrep.is_irreducible(p): 

s += 'ir' 

s += 'reducible, ' 

if not galrep.is_surjective(p): 

s += 'not ' 

s += 'surjective, ' 

a_p = BSD.curve.an(p) 

if BSD.curve.is_good(p): 

if a_p%p != 0: 

s += 'good ordinary' 

else: 

s += 'good, non-ordinary' 

else: 

assert BSD.curve.is_minimal() 

if a_p == 0: 

s += 'additive' 

elif a_p == 1: 

s += 'split multiplicative' 

elif a_p == -1: 

s += 'non-split multiplicative' 

if BSD.curve.tamagawa_product()%p==0: 

s += ', divides a Tamagawa number' 

if p in BSD.bounds: 

s += '\n (%d <= ord_p <= %d)'%BSD.bounds[p] 

else: 

s += '\n (no bounds found)' 

s += '\n ord_p(#Sha_an) = %d'%BSD.sha_an.ord(p) 

if heegner_index is None: 

may_divide = True 

for D in BSD.heegner_index_upper_bound: 

if p > BSD.heegner_index_upper_bound[D] or p not in kolyvagin_primes: 

may_divide = False 

if may_divide: 

s += '\n may divide the Heegner index, for which only a bound was computed' 

print(s) 

 

if BSD.curve.has_cm(): 

if BSD.rank == 1: 

BSD.proof['reason_finite'] = 'Rubin&Kolyvagin' 

else: 

BSD.proof['reason_finite'] = 'Rubin' 

else: 

BSD.proof['reason_finite'] = 'Kolyvagin' 

# reduce memory footprint of BSD object: 

BSD.curve = BSD.curve.label() 

BSD.Sha = None 

return BSD if return_BSD else BSD.primes