Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

3249

3250

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

3284

3285

3286

3287

3288

3289

3290

3291

3292

3293

3294

3295

3296

3297

3298

3299

3300

3301

3302

3303

3304

3305

3306

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

3331

3332

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

3349

3350

3351

3352

3353

3354

3355

3356

3357

3358

3359

3360

3361

3362

3363

3364

3365

3366

3367

3368

3369

3370

3371

3372

3373

3374

3375

3376

3377

3378

3379

3380

3381

3382

3383

3384

3385

3386

3387

3388

3389

3390

3391

3392

3393

3394

3395

3396

3397

3398

3399

3400

3401

3402

3403

3404

3405

3406

3407

3408

3409

3410

3411

3412

3413

3414

3415

3416

3417

3418

3419

3420

3421

3422

3423

3424

3425

3426

3427

3428

3429

3430

3431

3432

3433

3434

3435

3436

3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

3449

3450

3451

3452

3453

3454

3455

3456

3457

3458

3459

3460

3461

3462

3463

3464

3465

3466

3467

3468

3469

3470

3471

3472

3473

3474

3475

3476

3477

3478

3479

3480

3481

3482

3483

3484

3485

3486

3487

3488

3489

3490

3491

3492

3493

3494

3495

3496

3497

3498

3499

3500

3501

3502

3503

3504

3505

3506

3507

3508

3509

3510

3511

3512

3513

3514

3515

3516

3517

3518

3519

3520

3521

3522

3523

3524

3525

3526

3527

3528

3529

3530

3531

3532

3533

3534

3535

3536

3537

3538

3539

3540

3541

3542

3543

3544

3545

3546

3547

3548

3549

3550

3551

3552

3553

3554

3555

3556

3557

3558

3559

3560

3561

3562

3563

3564

3565

3566

3567

3568

3569

3570

3571

3572

3573

3574

3575

3576

3577

3578

3579

3580

3581

3582

3583

3584

3585

3586

3587

3588

3589

3590

3591

3592

3593

3594

3595

3596

3597

3598

3599

3600

3601

3602

3603

3604

3605

3606

3607

3608

3609

3610

3611

3612

3613

3614

3615

3616

3617

3618

3619

3620

3621

3622

3623

3624

3625

3626

3627

3628

3629

3630

3631

3632

3633

3634

3635

3636

3637

3638

3639

3640

3641

3642

3643

3644

3645

3646

3647

3648

3649

3650

3651

3652

3653

3654

3655

3656

3657

3658

3659

3660

3661

3662

3663

3664

3665

3666

3667

3668

3669

3670

3671

3672

3673

3674

3675

3676

3677

3678

3679

3680

3681

3682

3683

3684

3685

3686

3687

3688

3689

3690

3691

3692

3693

3694

3695

3696

3697

3698

3699

3700

3701

3702

3703

3704

3705

3706

3707

3708

3709

3710

3711

3712

3713

3714

3715

3716

3717

3718

3719

3720

3721

3722

3723

3724

3725

3726

3727

3728

3729

3730

3731

3732

3733

3734

3735

3736

3737

3738

3739

3740

3741

3742

3743

3744

3745

3746

3747

3748

3749

3750

3751

3752

3753

3754

3755

3756

3757

3758

3759

3760

3761

3762

3763

3764

3765

3766

3767

3768

3769

3770

3771

3772

3773

3774

3775

3776

3777

3778

3779

3780

3781

3782

3783

3784

3785

3786

3787

3788

3789

3790

3791

3792

3793

3794

3795

3796

3797

3798

3799

3800

3801

3802

3803

3804

3805

3806

3807

3808

3809

3810

3811

3812

3813

3814

3815

3816

3817

3818

3819

3820

3821

3822

3823

3824

3825

3826

3827

3828

3829

3830

3831

3832

3833

3834

3835

3836

3837

3838

3839

3840

3841

3842

3843

3844

3845

3846

3847

3848

3849

3850

3851

3852

3853

3854

3855

3856

3857

3858

3859

3860

3861

3862

3863

3864

3865

3866

3867

3868

3869

3870

3871

3872

3873

3874

3875

3876

3877

3878

3879

3880

3881

3882

3883

3884

3885

3886

3887

3888

3889

3890

3891

3892

3893

3894

3895

3896

3897

3898

3899

3900

3901

3902

3903

3904

3905

3906

3907

3908

3909

3910

3911

3912

3913

3914

3915

3916

3917

3918

3919

3920

3921

3922

3923

3924

3925

3926

3927

3928

3929

3930

3931

3932

3933

3934

3935

3936

3937

3938

3939

3940

3941

3942

3943

3944

3945

3946

3947

3948

3949

3950

3951

3952

3953

3954

3955

3956

3957

3958

3959

3960

3961

3962

3963

3964

3965

3966

3967

3968

3969

3970

3971

3972

3973

3974

3975

3976

3977

3978

3979

3980

3981

3982

3983

3984

3985

3986

3987

3988

3989

3990

3991

3992

3993

3994

3995

3996

3997

3998

3999

4000

4001

4002

4003

4004

4005

4006

4007

4008

4009

4010

4011

4012

4013

4014

4015

4016

4017

4018

4019

4020

4021

4022

4023

4024

4025

4026

4027

4028

4029

4030

4031

4032

4033

4034

4035

4036

4037

4038

4039

4040

4041

4042

4043

4044

4045

4046

4047

4048

4049

4050

4051

4052

4053

4054

4055

4056

4057

4058

4059

4060

4061

4062

4063

4064

4065

4066

4067

4068

4069

4070

4071

4072

4073

4074

4075

4076

4077

4078

4079

4080

4081

4082

4083

4084

4085

4086

4087

4088

4089

4090

4091

4092

4093

4094

4095

4096

4097

4098

4099

4100

4101

4102

4103

4104

4105

4106

4107

4108

4109

4110

4111

4112

4113

4114

4115

4116

4117

4118

4119

4120

4121

4122

4123

4124

4125

4126

4127

4128

4129

4130

4131

4132

4133

4134

4135

4136

4137

4138

4139

4140

4141

4142

4143

4144

4145

4146

4147

4148

4149

4150

4151

4152

4153

4154

4155

4156

4157

4158

4159

4160

4161

4162

4163

4164

4165

4166

4167

4168

4169

4170

4171

4172

4173

4174

4175

4176

4177

4178

4179

4180

4181

4182

4183

4184

4185

4186

4187

4188

4189

4190

4191

4192

4193

4194

4195

4196

4197

4198

4199

4200

4201

4202

4203

4204

4205

4206

4207

4208

4209

4210

4211

4212

4213

4214

4215

4216

4217

4218

4219

4220

4221

4222

4223

4224

4225

4226

4227

4228

4229

4230

4231

4232

4233

4234

4235

4236

4237

4238

4239

4240

4241

4242

4243

4244

4245

4246

4247

4248

4249

4250

4251

4252

4253

4254

4255

4256

4257

4258

4259

4260

4261

4262

4263

4264

4265

4266

4267

4268

4269

4270

4271

4272

4273

4274

4275

4276

4277

4278

4279

4280

4281

4282

4283

4284

4285

4286

4287

4288

4289

4290

4291

4292

4293

4294

4295

4296

4297

4298

4299

4300

4301

4302

4303

4304

4305

4306

4307

4308

4309

4310

4311

4312

4313

4314

4315

4316

4317

4318

4319

4320

4321

4322

4323

4324

4325

4326

4327

4328

4329

4330

4331

4332

4333

4334

4335

4336

4337

4338

4339

4340

4341

4342

4343

4344

4345

4346

4347

4348

4349

4350

4351

4352

4353

4354

4355

4356

4357

4358

4359

4360

4361

4362

4363

4364

4365

4366

4367

4368

4369

4370

4371

4372

4373

4374

4375

4376

4377

4378

4379

4380

4381

4382

4383

4384

4385

4386

4387

4388

4389

4390

4391

4392

4393

4394

4395

4396

4397

4398

4399

4400

4401

4402

4403

4404

4405

4406

4407

4408

4409

4410

4411

4412

4413

4414

4415

4416

4417

4418

4419

4420

4421

4422

4423

4424

4425

4426

4427

4428

4429

4430

4431

4432

4433

4434

4435

4436

4437

4438

4439

4440

4441

4442

4443

4444

4445

4446

4447

4448

4449

4450

4451

4452

4453

4454

4455

4456

4457

4458

4459

4460

4461

4462

4463

4464

4465

4466

4467

4468

4469

4470

4471

4472

4473

4474

4475

4476

4477

4478

4479

4480

4481

4482

4483

4484

4485

4486

4487

4488

4489

4490

4491

4492

4493

4494

4495

4496

4497

4498

4499

4500

4501

4502

4503

4504

4505

4506

4507

4508

4509

4510

4511

4512

4513

4514

4515

4516

4517

4518

4519

4520

4521

4522

4523

4524

4525

4526

4527

4528

4529

4530

4531

4532

4533

4534

4535

4536

4537

4538

4539

4540

4541

4542

4543

4544

4545

4546

4547

4548

4549

4550

4551

4552

4553

4554

4555

4556

4557

4558

4559

4560

4561

4562

4563

4564

4565

4566

4567

4568

4569

4570

4571

4572

4573

4574

4575

4576

4577

4578

4579

4580

4581

4582

4583

4584

4585

4586

4587

4588

4589

4590

4591

4592

4593

4594

4595

4596

4597

4598

4599

4600

4601

4602

4603

4604

4605

4606

4607

4608

4609

4610

4611

4612

4613

4614

4615

4616

4617

4618

4619

4620

4621

4622

4623

4624

4625

4626

4627

4628

4629

4630

4631

4632

4633

4634

4635

4636

4637

4638

4639

4640

4641

4642

4643

4644

4645

4646

4647

4648

4649

4650

4651

4652

4653

4654

4655

4656

4657

4658

4659

4660

4661

4662

4663

4664

4665

4666

4667

4668

4669

4670

4671

4672

4673

4674

4675

4676

4677

4678

4679

4680

4681

4682

4683

4684

4685

4686

4687

4688

4689

4690

4691

4692

4693

4694

4695

4696

4697

4698

4699

4700

4701

4702

4703

4704

4705

4706

4707

4708

4709

4710

4711

4712

4713

4714

4715

4716

4717

4718

4719

4720

4721

4722

4723

4724

4725

4726

4727

4728

4729

4730

4731

4732

4733

4734

4735

4736

4737

4738

4739

4740

4741

4742

4743

4744

4745

4746

4747

4748

4749

4750

4751

4752

4753

4754

4755

4756

4757

4758

4759

4760

4761

4762

4763

4764

4765

4766

4767

4768

4769

4770

4771

4772

4773

4774

4775

4776

4777

4778

4779

4780

4781

4782

4783

4784

4785

4786

4787

4788

4789

4790

4791

4792

4793

4794

4795

4796

4797

4798

4799

4800

4801

4802

4803

4804

4805

4806

4807

4808

4809

4810

4811

4812

4813

4814

4815

4816

4817

4818

4819

4820

4821

4822

4823

4824

4825

4826

4827

4828

4829

4830

4831

4832

4833

4834

4835

4836

4837

4838

4839

4840

4841

4842

4843

4844

4845

4846

4847

4848

4849

4850

4851

4852

4853

4854

4855

4856

4857

4858

4859

4860

4861

4862

4863

4864

4865

4866

4867

4868

4869

4870

4871

4872

4873

4874

4875

4876

4877

4878

4879

4880

4881

4882

4883

4884

4885

4886

4887

4888

4889

4890

4891

4892

4893

4894

4895

4896

4897

4898

4899

4900

4901

4902

4903

4904

4905

4906

4907

4908

4909

4910

4911

4912

4913

4914

4915

4916

4917

4918

4919

4920

4921

4922

4923

4924

4925

4926

4927

4928

4929

4930

4931

4932

4933

4934

4935

4936

4937

4938

4939

4940

4941

4942

4943

4944

4945

4946

4947

4948

4949

4950

4951

4952

4953

4954

4955

4956

4957

4958

4959

4960

4961

4962

4963

4964

4965

4966

4967

4968

4969

4970

4971

4972

4973

4974

4975

4976

4977

4978

4979

4980

4981

4982

4983

4984

4985

4986

4987

4988

4989

4990

4991

4992

4993

4994

4995

4996

4997

4998

4999

5000

5001

5002

5003

5004

5005

5006

5007

5008

5009

5010

5011

5012

5013

5014

5015

5016

5017

5018

5019

5020

5021

5022

5023

5024

5025

5026

5027

5028

5029

5030

5031

5032

5033

5034

5035

5036

5037

5038

5039

5040

5041

5042

5043

5044

5045

5046

5047

5048

5049

5050

5051

5052

5053

5054

5055

5056

5057

5058

5059

5060

5061

5062

5063

5064

5065

5066

5067

5068

5069

5070

5071

5072

5073

5074

5075

5076

5077

5078

5079

5080

5081

5082

5083

5084

5085

5086

5087

5088

5089

5090

5091

5092

5093

5094

5095

5096

5097

5098

5099

5100

5101

5102

5103

5104

5105

5106

5107

5108

5109

5110

5111

5112

5113

5114

5115

5116

5117

5118

5119

5120

5121

5122

5123

5124

5125

5126

5127

5128

5129

5130

5131

5132

5133

5134

5135

5136

5137

5138

5139

5140

5141

5142

5143

5144

5145

5146

5147

5148

5149

5150

5151

5152

5153

5154

5155

5156

5157

5158

5159

5160

5161

5162

5163

5164

5165

5166

5167

5168

5169

5170

5171

5172

5173

5174

5175

5176

5177

5178

5179

5180

5181

5182

5183

5184

5185

5186

5187

5188

5189

5190

5191

5192

5193

5194

5195

5196

5197

5198

5199

5200

5201

5202

5203

5204

5205

5206

5207

5208

5209

5210

5211

5212

5213

5214

5215

5216

5217

5218

5219

5220

5221

5222

5223

5224

5225

5226

5227

5228

5229

5230

5231

5232

5233

5234

5235

5236

5237

5238

5239

5240

5241

5242

5243

5244

5245

5246

5247

5248

5249

5250

5251

5252

5253

5254

5255

5256

5257

5258

5259

5260

5261

5262

5263

5264

5265

5266

5267

5268

5269

5270

5271

5272

5273

5274

5275

5276

5277

5278

5279

5280

5281

5282

5283

5284

5285

5286

5287

5288

5289

5290

5291

5292

5293

5294

5295

5296

5297

5298

5299

5300

5301

5302

5303

5304

5305

5306

5307

5308

5309

5310

5311

5312

5313

5314

5315

5316

5317

5318

5319

5320

5321

5322

5323

5324

5325

5326

5327

5328

5329

5330

5331

5332

5333

5334

5335

5336

5337

5338

5339

5340

5341

5342

5343

5344

5345

5346

5347

5348

5349

5350

5351

5352

5353

5354

5355

5356

5357

5358

5359

5360

5361

5362

5363

5364

5365

5366

5367

5368

5369

5370

5371

5372

5373

5374

5375

5376

5377

5378

5379

5380

5381

5382

5383

5384

5385

5386

5387

5388

5389

5390

5391

5392

5393

5394

5395

5396

5397

5398

5399

5400

5401

5402

5403

5404

5405

5406

5407

5408

5409

5410

5411

5412

5413

5414

5415

5416

5417

5418

5419

5420

5421

5422

5423

5424

5425

5426

5427

5428

5429

5430

5431

5432

5433

5434

5435

5436

5437

5438

5439

5440

5441

5442

5443

5444

5445

5446

5447

5448

5449

5450

5451

5452

5453

5454

5455

5456

5457

5458

5459

5460

5461

5462

5463

5464

5465

5466

5467

5468

5469

5470

5471

5472

5473

5474

5475

5476

5477

5478

5479

5480

5481

5482

5483

5484

5485

5486

5487

5488

5489

5490

5491

5492

5493

5494

5495

5496

5497

5498

5499

5500

5501

5502

5503

5504

5505

5506

5507

5508

5509

5510

5511

5512

5513

5514

5515

5516

5517

5518

5519

5520

5521

5522

5523

5524

5525

5526

5527

5528

5529

5530

5531

5532

5533

5534

5535

5536

5537

5538

5539

5540

5541

5542

5543

5544

5545

5546

5547

5548

5549

5550

5551

5552

5553

5554

5555

5556

5557

5558

5559

5560

5561

5562

5563

5564

5565

5566

5567

5568

5569

5570

5571

5572

5573

5574

5575

5576

5577

5578

5579

5580

5581

5582

5583

5584

5585

5586

5587

5588

5589

5590

5591

5592

5593

5594

5595

5596

5597

5598

5599

5600

5601

5602

5603

5604

5605

5606

5607

5608

5609

5610

5611

5612

5613

5614

5615

5616

5617

5618

5619

5620

5621

5622

5623

5624

5625

5626

5627

5628

5629

5630

5631

5632

5633

5634

5635

5636

5637

5638

5639

5640

5641

5642

5643

5644

5645

5646

5647

5648

5649

5650

5651

5652

5653

5654

5655

5656

5657

5658

5659

5660

5661

5662

5663

5664

5665

5666

5667

5668

5669

5670

5671

5672

5673

5674

5675

5676

5677

5678

5679

5680

5681

5682

5683

5684

5685

5686

5687

5688

5689

5690

5691

5692

5693

5694

5695

5696

5697

5698

5699

5700

5701

5702

5703

5704

5705

5706

5707

5708

5709

5710

5711

5712

5713

5714

5715

5716

5717

5718

5719

5720

5721

5722

5723

5724

5725

5726

5727

5728

5729

5730

5731

5732

5733

5734

5735

5736

5737

5738

5739

5740

5741

5742

5743

5744

5745

5746

5747

5748

5749

5750

5751

5752

5753

5754

5755

5756

5757

5758

5759

5760

5761

5762

5763

5764

5765

5766

5767

5768

5769

5770

5771

5772

5773

5774

5775

5776

5777

5778

5779

5780

5781

5782

5783

5784

5785

5786

5787

5788

5789

5790

5791

5792

5793

5794

5795

5796

5797

5798

5799

5800

5801

5802

5803

5804

5805

5806

5807

5808

5809

5810

5811

5812

5813

5814

5815

5816

5817

5818

5819

5820

5821

5822

5823

5824

5825

5826

5827

5828

5829

5830

5831

5832

5833

5834

5835

5836

5837

5838

5839

5840

5841

5842

5843

5844

5845

5846

5847

5848

5849

5850

5851

5852

5853

5854

5855

5856

5857

5858

5859

5860

5861

5862

5863

5864

5865

5866

5867

5868

5869

5870

5871

5872

5873

5874

5875

5876

5877

5878

5879

5880

5881

5882

5883

5884

5885

5886

5887

5888

5889

5890

5891

5892

5893

5894

5895

5896

5897

5898

5899

5900

5901

5902

5903

5904

5905

5906

5907

5908

5909

5910

5911

5912

5913

5914

5915

5916

5917

5918

5919

5920

5921

5922

5923

5924

5925

5926

5927

5928

5929

5930

5931

5932

5933

5934

5935

5936

5937

5938

5939

5940

5941

5942

5943

5944

5945

5946

5947

5948

5949

5950

5951

5952

5953

5954

5955

5956

5957

5958

5959

5960

5961

5962

5963

5964

5965

5966

5967

5968

5969

5970

5971

5972

5973

5974

5975

5976

5977

5978

5979

5980

5981

5982

5983

5984

5985

5986

5987

5988

5989

5990

5991

5992

5993

5994

5995

5996

5997

5998

5999

6000

6001

6002

6003

6004

6005

6006

6007

6008

6009

6010

6011

6012

6013

6014

6015

6016

6017

6018

6019

6020

6021

6022

6023

6024

6025

6026

6027

6028

6029

6030

6031

6032

6033

6034

6035

6036

6037

6038

6039

6040

6041

6042

6043

6044

6045

6046

6047

6048

6049

6050

6051

6052

6053

6054

6055

6056

6057

6058

6059

6060

6061

6062

6063

6064

6065

6066

6067

6068

6069

6070

6071

6072

6073

6074

6075

6076

6077

6078

6079

6080

6081

6082

6083

6084

6085

6086

6087

6088

6089

6090

6091

6092

6093

6094

6095

6096

6097

6098

6099

6100

6101

6102

6103

6104

6105

6106

6107

6108

6109

6110

6111

6112

6113

6114

6115

6116

6117

6118

6119

6120

6121

6122

6123

6124

6125

6126

6127

6128

6129

6130

6131

6132

6133

6134

6135

6136

6137

6138

6139

6140

6141

6142

6143

6144

6145

6146

6147

6148

6149

6150

6151

6152

6153

6154

6155

6156

6157

6158

6159

6160

6161

6162

6163

6164

6165

6166

6167

6168

6169

6170

6171

6172

6173

6174

6175

6176

6177

6178

6179

6180

6181

6182

6183

6184

6185

6186

6187

6188

6189

6190

6191

6192

6193

6194

6195

6196

6197

6198

6199

6200

6201

6202

6203

6204

6205

6206

6207

6208

6209

6210

6211

6212

6213

6214

6215

6216

6217

6218

6219

6220

6221

6222

6223

6224

6225

6226

6227

6228

6229

6230

6231

6232

6233

6234

6235

6236

6237

6238

6239

6240

6241

6242

6243

6244

6245

6246

6247

6248

6249

6250

6251

6252

6253

6254

6255

6256

6257

6258

6259

6260

6261

6262

6263

6264

6265

6266

6267

6268

6269

6270

6271

6272

6273

6274

6275

6276

6277

6278

6279

6280

6281

6282

6283

6284

6285

6286

6287

6288

6289

6290

6291

6292

6293

6294

6295

6296

6297

6298

6299

6300

6301

6302

6303

6304

6305

6306

6307

6308

6309

6310

6311

6312

6313

6314

6315

6316

6317

6318

6319

6320

6321

6322

6323

6324

6325

6326

6327

6328

6329

6330

6331

6332

6333

6334

6335

6336

6337

6338

6339

6340

6341

6342

6343

6344

6345

6346

6347

6348

6349

6350

6351

6352

6353

6354

6355

6356

6357

6358

6359

6360

6361

6362

6363

6364

6365

6366

6367

6368

6369

6370

6371

6372

6373

6374

6375

6376

6377

6378

6379

6380

6381

6382

6383

6384

6385

6386

6387

6388

6389

6390

6391

6392

6393

6394

6395

6396

6397

6398

6399

6400

6401

6402

6403

6404

6405

6406

6407

6408

6409

6410

6411

6412

6413

6414

6415

6416

6417

6418

6419

6420

6421

6422

6423

6424

6425

6426

6427

6428

6429

6430

6431

6432

6433

6434

6435

6436

6437

6438

6439

6440

6441

6442

6443

6444

6445

6446

6447

6448

6449

6450

6451

6452

6453

6454

6455

6456

6457

6458

6459

6460

6461

6462

6463

6464

6465

6466

6467

6468

6469

6470

6471

6472

6473

6474

6475

6476

6477

6478

6479

6480

6481

6482

6483

6484

6485

6486

6487

6488

6489

6490

6491

6492

6493

6494

6495

6496

6497

6498

6499

6500

6501

6502

6503

6504

6505

6506

6507

6508

6509

6510

6511

6512

6513

6514

6515

6516

6517

6518

6519

6520

6521

6522

6523

6524

6525

6526

6527

6528

6529

6530

6531

6532

6533

6534

6535

6536

6537

6538

6539

6540

6541

6542

6543

6544

6545

6546

6547

6548

6549

6550

6551

6552

6553

6554

6555

6556

6557

6558

6559

6560

6561

6562

6563

6564

6565

6566

6567

6568

6569

6570

6571

6572

6573

6574

6575

6576

6577

6578

6579

6580

6581

6582

6583

6584

6585

6586

6587

6588

6589

6590

6591

6592

6593

6594

6595

6596

6597

6598

6599

6600

6601

6602

6603

6604

6605

6606

6607

6608

6609

6610

6611

6612

6613

6614

6615

6616

6617

6618

6619

6620

6621

6622

6623

6624

6625

6626

6627

6628

6629

6630

6631

6632

6633

6634

6635

6636

6637

6638

6639

6640

6641

6642

6643

6644

6645

6646

6647

6648

6649

6650

6651

6652

6653

6654

6655

6656

6657

6658

6659

6660

6661

6662

6663

6664

6665

6666

6667

6668

6669

6670

6671

6672

6673

6674

6675

6676

6677

6678

6679

6680

6681

6682

6683

6684

6685

6686

6687

6688

6689

6690

6691

6692

6693

6694

6695

6696

6697

6698

6699

6700

6701

6702

6703

6704

6705

6706

6707

6708

6709

6710

6711

6712

6713

6714

6715

6716

6717

6718

6719

6720

6721

6722

6723

6724

6725

6726

6727

6728

6729

6730

6731

6732

6733

6734

6735

6736

6737

6738

6739

6740

6741

6742

6743

6744

6745

6746

6747

6748

6749

6750

6751

6752

6753

6754

6755

6756

6757

6758

6759

6760

6761

6762

6763

6764

6765

6766

6767

6768

6769

6770

6771

6772

6773

6774

6775

6776

6777

6778

6779

6780

6781

6782

6783

6784

6785

6786

6787

6788

6789

6790

6791

6792

6793

6794

6795

6796

6797

6798

6799

6800

6801

6802

6803

6804

6805

6806

6807

6808

6809

6810

6811

6812

6813

6814

6815

6816

6817

6818

6819

6820

6821

6822

6823

6824

6825

6826

6827

6828

6829

6830

6831

6832

6833

6834

6835

6836

6837

6838

6839

6840

6841

6842

6843

6844

6845

6846

6847

6848

6849

6850

6851

6852

6853

6854

6855

6856

6857

6858

6859

6860

6861

6862

6863

6864

6865

6866

6867

6868

6869

6870

6871

6872

6873

6874

6875

6876

6877

6878

6879

6880

6881

6882

6883

6884

6885

6886

6887

6888

6889

6890

6891

6892

6893

6894

6895

6896

6897

6898

6899

6900

6901

6902

6903

6904

6905

6906

6907

6908

6909

6910

6911

6912

6913

6914

6915

6916

6917

6918

6919

6920

6921

6922

6923

6924

6925

6926

6927

6928

6929

6930

6931

6932

6933

6934

6935

6936

6937

6938

6939

6940

6941

6942

6943

6944

6945

6946

6947

6948

6949

6950

6951

6952

6953

6954

6955

6956

6957

6958

6959

6960

6961

6962

6963

6964

6965

6966

6967

6968

6969

6970

6971

6972

6973

6974

6975

6976

6977

6978

6979

6980

6981

6982

6983

6984

6985

6986

6987

6988

6989

6990

6991

6992

6993

6994

6995

6996

6997

6998

6999

7000

7001

7002

7003

7004

7005

7006

7007

7008

7009

7010

7011

7012

7013

7014

7015

7016

7017

7018

7019

7020

7021

7022

7023

7024

7025

7026

7027

7028

7029

7030

7031

7032

7033

7034

7035

7036

7037

7038

7039

7040

7041

7042

7043

7044

7045

7046

7047

7048

7049

7050

7051

7052

7053

7054

7055

7056

7057

7058

7059

7060

7061

7062

7063

7064

7065

7066

7067

7068

7069

7070

7071

7072

7073

7074

7075

7076

7077

7078

7079

7080

7081

7082

7083

7084

7085

7086

7087

7088

7089

7090

7091

7092

7093

7094

7095

7096

7097

7098

7099

7100

7101

7102

7103

7104

7105

7106

7107

7108

7109

7110

7111

7112

7113

7114

7115

7116

7117

7118

7119

7120

7121

7122

7123

7124

7125

7126

7127

7128

7129

7130

7131

7132

7133

7134

7135

7136

7137

7138

7139

7140

7141

7142

7143

7144

7145

7146

7147

7148

7149

7150

7151

7152

7153

7154

7155

7156

7157

7158

7159

7160

7161

7162

7163

7164

7165

7166

7167

7168

7169

7170

7171

7172

7173

7174

7175

7176

7177

7178

7179

7180

7181

7182

7183

7184

7185

7186

7187

7188

7189

7190

7191

7192

7193

7194

7195

7196

7197

7198

7199

7200

7201

7202

7203

7204

7205

7206

7207

7208

7209

7210

7211

7212

7213

7214

7215

7216

7217

7218

7219

7220

7221

7222

7223

7224

7225

7226

7227

7228

7229

7230

7231

7232

7233

7234

7235

7236

7237

7238

7239

7240

7241

7242

7243

7244

7245

7246

# -*- coding: utf-8 -*- 

r""" 

Heegner points on elliptic curves over the rational numbers 

 

AUTHORS: 

 

- William Stein (August 2009)-- most of the initial version 

 

- Robert Bradshaw (July 2009) -- an early version of some specific code 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('433a') 

sage: P = E.heegner_point(-8,3) 

sage: z = P.point_exact(201); z 

(-4/3 : 1/27*a - 4/27 : 1) 

sage: parent(z) 

Abelian group of points on Elliptic Curve defined by y^2 + x*y = x^3 + 1 over Number Field in a with defining polynomial x^2 - 44*x + 1159 

sage: parent(z[0]).discriminant() 

-3 

sage: E.quadratic_twist(-3).rank() 

1 

sage: K.<a> = QuadraticField(-8) 

sage: K.factor(3) 

(Fractional ideal (1/2*a + 1)) * (Fractional ideal (-1/2*a + 1)) 

 

Next try an inert prime:: 

 

sage: K.factor(5) 

Fractional ideal (5) 

sage: P = E.heegner_point(-8,5) 

sage: z = P.point_exact(300) 

sage: z[0].charpoly().factor() 

(x^6 + x^5 - 1/4*x^4 + 19/10*x^3 + 31/20*x^2 - 7/10*x + 49/100)^2 

sage: z[1].charpoly().factor() 

x^12 - x^11 + 6/5*x^10 - 33/40*x^9 - 89/320*x^8 + 3287/800*x^7 - 5273/1600*x^6 + 993/4000*x^5 + 823/320*x^4 - 2424/625*x^3 + 12059/12500*x^2 + 3329/25000*x + 123251/250000 

sage: f = P.x_poly_exact(300); f 

x^6 + x^5 - 1/4*x^4 + 19/10*x^3 + 31/20*x^2 - 7/10*x + 49/100 

sage: f.discriminant().factor() 

-1 * 2^-9 * 5^-9 * 7^2 * 281^2 * 1021^2 

 

We find some Mordell-Weil generators in the rank 1 case using Heegner points:: 

 

sage: E = EllipticCurve('43a'); P = E.heegner_point(-7) 

sage: P.x_poly_exact() 

x 

sage: P.point_exact() 

(0 : 0 : 1) 

 

sage: E = EllipticCurve('997a') 

sage: E.rank() 

1 

sage: E.heegner_discriminants_list(10) 

[-19, -23, -31, -35, -39, -40, -52, -55, -56, -59] 

sage: P = E.heegner_point(-19) 

sage: P.x_poly_exact() 

x - 141/49 

sage: P.point_exact() 

(141/49 : -162/343 : 1) 

 

Here we find that the Heegner point generates a subgroup of index 3:: 

 

sage: E = EllipticCurve('92b1') 

sage: E.heegner_discriminants_list(1) 

[-7] 

sage: P = E.heegner_point(-7); z = P.point_exact(); z 

(0 : 1 : 1) 

sage: E.regulator() 

0.0498083972980648 

sage: z.height() 

0.448275575682583 

sage: P = E(1,1); P # a generator 

(1 : 1 : 1) 

sage: -3*P 

(0 : 1 : 1) 

sage: E.tamagawa_product() 

3 

 

The above is consistent with the following analytic computation:: 

 

sage: E.heegner_index(-7) 

3.0000? 

""" 

 

#***************************************************************************** 

# Copyright (C) 2005-2009 William Stein <wstein@gmail.com> 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from __future__ import print_function, absolute_import 

from six.moves import range 

 

from sage.misc.all import verbose, prod 

from sage.misc.cachefunc import cached_method 

 

from sage.structure.sage_object import SageObject 

from sage.structure.richcmp import (richcmp_method, richcmp, 

richcmp_not_equal, rich_to_bool) 

 

import sage.rings.number_field.number_field_element 

import sage.rings.number_field.number_field as number_field 

import sage.rings.all as rings 

from sage.rings.all import (ZZ, GF, QQ, CDF, 

Integers, RealField, ComplexField, QuadraticField, 

is_fundamental_discriminant) 

from sage.arith.all import (gcd, xgcd, lcm, prime_divisors, factorial, 

binomial) 

from sage.quadratic_forms.all import (BinaryQF, 

BinaryQF_reduced_representatives) 

from sage.matrix.all import MatrixSpace, matrix 

 

from sage.modular.modsym.p1list import P1List 

 

 

################################################################################## 

# 

# The exported functions, which are in most cases enough to get the 

# user going working with Heegner points: 

# 

# heegner_points -- all of them with given level, discriminant, conducto 

# heegner_point -- a specific one 

# 

################################################################################## 

 

def heegner_points(N, D=None, c=None): 

""" 

Return all Heegner points of given level `N`. Can also restrict 

to Heegner points with specified discriminant `D` and optionally 

conductor `c`. 

 

INPUT: 

 

- `N` -- level (positive integer) 

 

- `D` -- discriminant (negative integer) 

 

- `c` -- conductor (positive integer) 

 

EXAMPLES:: 

 

sage: heegner_points(389,-7) 

Set of all Heegner points on X_0(389) associated to QQ[sqrt(-7)] 

sage: heegner_points(389,-7,1) 

All Heegner points of conductor 1 on X_0(389) associated to QQ[sqrt(-7)] 

sage: heegner_points(389,-7,5) 

All Heegner points of conductor 5 on X_0(389) associated to QQ[sqrt(-7)] 

""" 

if D is None and c is None: 

return HeegnerPoints_level(N) 

if D is not None and c is None: 

return HeegnerPoints_level_disc(N, D) 

if D is not None and c is not None: 

return HeegnerPoints_level_disc_cond(N,D,c) 

raise TypeError 

 

def heegner_point(N, D=None, c=1): 

""" 

Return a specific Heegner point of level `N` with given 

discriminant and conductor. If `D` is not specified, then the 

first valid Heegner discriminant is used. If `c` is not given, 

then `c=1` is used. 

 

INPUT: 

 

- `N` -- level (positive integer) 

 

- `D` -- discriminant (optional: default first valid `D`) 

 

- `c` -- conductor (positive integer, optional, default: 1) 

 

EXAMPLES:: 

 

sage: heegner_point(389) 

Heegner point 1/778*sqrt(-7) - 185/778 of discriminant -7 on X_0(389) 

sage: heegner_point(389,-7) 

Heegner point 1/778*sqrt(-7) - 185/778 of discriminant -7 on X_0(389) 

sage: heegner_point(389,-7,5) 

Heegner point 5/778*sqrt(-7) - 147/778 of discriminant -7 and conductor 5 on X_0(389) 

sage: heegner_point(389,-20) 

Heegner point 1/778*sqrt(-20) - 165/389 of discriminant -20 on X_0(389) 

""" 

if D is not None: 

return heegner_points(N,D,c)[0] 

H = heegner_points(N) 

D = H.discriminants(1)[0] 

return heegner_points(N,D,c)[0] 

 

 

################################################################################## 

# 

# Ring class fields, represented as abstract objects. These do not 

# derive from number fields, since we do not need to work with their 

# elements, and explicitly representing them as number fields would be 

# far too difficult. 

# 

################################################################################## 

 

class RingClassField(SageObject): 

""" 

A Ring class field of a quadratic imaginary field of given conductor. 

 

.. NOTE:: 

 

This is a *ring* class field, not a ray class field. In 

general, the ring class field of given conductor is a subfield 

of the ray class field of the same conductor. 

 

EXAMPLES:: 

 

sage: heegner_point(37,-7).ring_class_field() 

Hilbert class field of QQ[sqrt(-7)] 

sage: heegner_point(37,-7,5).ring_class_field() 

Ring class field extension of QQ[sqrt(-7)] of conductor 5 

sage: heegner_point(37,-7,55).ring_class_field() 

Ring class field extension of QQ[sqrt(-7)] of conductor 55 

 

TESTS:: 

 

sage: K_c = heegner_point(37,-7).ring_class_field() 

sage: type(K_c) 

<class 'sage.schemes.elliptic_curves.heegner.RingClassField'> 

sage: loads(dumps(K_c)) == K_c 

True 

""" 

def __init__(self, D, c, check=True): 

""" 

INPUT: 

 

- `D` -- discriminant of quadratic imaginary field 

 

- `c` -- conductor (positive integer coprime to `D`) 

 

- ``check`` -- bool (default: ``True``); whether to check 

validity of input 

 

EXAMPLES:: 

 

sage: sage.schemes.elliptic_curves.heegner.RingClassField(-7,5, False) 

Ring class field extension of QQ[sqrt(-7)] of conductor 5 

 

""" 

if check: 

D = ZZ(D); c = ZZ(c) 

self.__D = D 

self.__c = c 

 

def __eq__(self, other): 

""" 

Used for equality testing. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('389a') 

sage: K5 = E.heegner_point(-7,5).ring_class_field() 

sage: K11 = E.heegner_point(-7,11).ring_class_field() 

sage: K5 == K11 

False 

sage: K5 == K5 

True 

sage: K11 == 11 

False 

""" 

return isinstance(other, RingClassField) and self.__D == other.__D and self.__c == other.__c 

 

def __ne__(self, other): 

""" 

Check whether ``self`` is not equal to ``other``. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('389a') 

sage: K5 = E.heegner_point(-7,5).ring_class_field() 

sage: K11 = E.heegner_point(-7,11).ring_class_field() 

sage: K5 != K11 

True 

sage: K5 != K5 

False 

sage: K11 != 11 

True 

""" 

return not (self == other) 

 

def __hash__(self): 

""" 

Used for computing hash of ``self``. 

 

.. NOTE:: 

 

The hash is equal to the hash of the pair 

``(discriminant, conductor)``. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('389a'); K5 = E.heegner_point(-7,5).ring_class_field() 

sage: hash(K5) == hash((-7,5)) 

True 

""" 

return hash((self.__D, self.__c)) 

 

def conductor(self): 

""" 

Return the conductor of this ring class field. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('389a'); K5 = E.heegner_point(-7,5).ring_class_field() 

sage: K5.conductor() 

5 

""" 

return self.__c 

 

def discriminant_of_K(self): 

""" 

Return the discriminant of the quadratic imaginary field `K` contained in ``self``. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('389a'); K5 = E.heegner_point(-7,5).ring_class_field() 

sage: K5.discriminant_of_K() 

-7 

""" 

return self.__D 

 

@cached_method 

def ramified_primes(self): 

r""" 

Return the primes of `\ZZ` that ramify in this ring class field. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('389a'); K55 = E.heegner_point(-7,55).ring_class_field() 

sage: K55.ramified_primes() 

[5, 7, 11] 

sage: E.heegner_point(-7).ring_class_field().ramified_primes() 

[7] 

""" 

return prime_divisors(self.__D * self.__c) 

 

def _repr_(self): 

""" 

EXAMPLES:: 

 

sage: heegner_point(37,-7,55).ring_class_field()._repr_() 

'Ring class field extension of QQ[sqrt(-7)] of conductor 55' 

sage: heegner_point(37,-7).ring_class_field()._repr_() 

'Hilbert class field of QQ[sqrt(-7)]' 

""" 

c = self.__c 

if c == 1: 

return "Hilbert class field of QQ[sqrt(%s)]"%self.__D 

else: 

return "Ring class field extension of QQ[sqrt(%s)] of conductor %s"%(self.__D, self.__c) 

 

@cached_method 

def degree_over_K(self): 

""" 

Return the relative degree of this ring class field over the 

quadratic imaginary field `K`. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('389a'); P = E.heegner_point(-7,5) 

sage: K5 = P.ring_class_field(); K5 

Ring class field extension of QQ[sqrt(-7)] of conductor 5 

sage: K5.degree_over_K() 

6 

sage: type(K5.degree_over_K()) 

<... 'sage.rings.integer.Integer'> 

 

sage: E = EllipticCurve('389a'); E.heegner_point(-20).ring_class_field().degree_over_K() 

2 

sage: E.heegner_point(-20,3).ring_class_field().degree_over_K() 

4 

sage: kronecker(-20,11) 

-1 

sage: E.heegner_point(-20,11).ring_class_field().degree_over_K() 

24 

""" 

K = self.quadratic_field() 

 

# Multiply class number by relative degree of the Hilbert class field H over K. 

return K.class_number() * self.degree_over_H() 

 

@cached_method 

def degree_over_H(self): 

""" 

Return the degree of this field over the Hilbert class field `H` of `K`. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('389a') 

sage: E.heegner_point(-59).ring_class_field().degree_over_H() 

1 

sage: E.heegner_point(-59).ring_class_field().degree_over_K() 

3 

sage: QuadraticField(-59,'a').class_number() 

3 

 

Some examples in which prime dividing c is inert:: 

 

sage: heegner_point(37,-7,3).ring_class_field().degree_over_H() 

4 

sage: heegner_point(37,-7,3^2).ring_class_field().degree_over_H() 

12 

sage: heegner_point(37,-7,3^3).ring_class_field().degree_over_H() 

36 

 

The prime dividing c is split. For example, in the first case 

`O_K/cO_K` is isomorphic to a direct sum of two copies of 

``GF(2)``, so the units are trivial:: 

 

sage: heegner_point(37,-7,2).ring_class_field().degree_over_H() 

1 

sage: heegner_point(37,-7,4).ring_class_field().degree_over_H() 

2 

sage: heegner_point(37,-7,8).ring_class_field().degree_over_H() 

4 

 

Now c is ramified:: 

 

sage: heegner_point(37,-7,7).ring_class_field().degree_over_H() 

7 

sage: heegner_point(37,-7,7^2).ring_class_field().degree_over_H() 

49 

 

Check that :trac:`15218` is solved:: 

 

sage: E = EllipticCurve("19a"); 

sage: s = E.heegner_point(-3,2).ring_class_field().galois_group().complex_conjugation() 

sage: H = s.domain(); H.absolute_degree() 

2 

""" 

c = self.__c 

if c == 1: 

return ZZ(1) 

 

# Let K_c be the ring class field. We have by class field theory that 

# Gal(K_c / H) = (O_K / c O_K)^* / ((Z/cZ)^* M), 

# where M is the image of the roots of unity of K in (O_K / c O_K)^*. 

# 

# To compute the cardinality of the above Galois group, we 

# first reduce to the case that c = p^e is a prime power 

# (since the expression is multiplicative in c). 

# Of course, note also that #(Z/cZ)^* = phi(c) 

# 

# Case 1: p splits in O_K. Then 

# #(O_K/p^e*O_K)^* = (#(Z/p^eZ)^*)^2 = phi(p^e)^2, so 

# #(O_K/p^e*O_K)^*/(Z/p^eZ)^* = phi(p^e) = p^e - p^(e-1) 

# 

# Case 2: p is inert in O_K. Then 

# #(O_K/p^e O_K)^* = p^(2*e)-p^(2*(e-1)) 

# so #(O_K/p^e*O_K)^*/(Z/p^eZ)^* 

# = (p^(2*e)-p^(2*(e-1)))/(p^e-p^(e-1)) = p^e + p^(e-1). 

# 

# Case 3: p ramified in O_K. Then 

# #(O_K/p^e O_K)^* = p^(2*e) - p^(2*e-1), 

# so #(O_K/p^e O_K)^*/#(Z/p^eZ)^* = p^e. 

# 

# Section 4.2 of Cohen's "Advanced Computational Algebraic 

# Number Theory" GTM is also relevant, though Cohen is working 

# with *ray* class fields and here we want the cardinality 

# of the *ring* class field, which is a subfield. 

 

K = self.quadratic_field() 

 

n = ZZ(1) 

for p, e in c.factor(): 

F = K.factor(p) 

if len(F) == 2: 

# split case 

n *= p**e - p**(e-1) 

else: 

if F[0][1] > 1: 

# ramified case 

n *= p**e 

else: 

# inert case 

n *= p**e + p**(e-1) 

return (n * ZZ(2)) // K.number_of_roots_of_unity() 

 

@cached_method 

def absolute_degree(self): 

r""" 

Return the absolute degree of this field over `\QQ`. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('389a'); K = E.heegner_point(-7,5).ring_class_field() 

sage: K.absolute_degree() 

12 

sage: K.degree_over_K() 

6 

""" 

return 2*self.degree_over_K() 

 

degree_over_Q = absolute_degree 

 

@cached_method 

def quadratic_field(self): 

r""" 

Return the quadratic imaginary field `K = \QQ(\sqrt{D})`. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('389a'); K = E.heegner_point(-7,5).ring_class_field() 

sage: K.quadratic_field() 

Number Field in sqrt_minus_7 with defining polynomial x^2 + 7 

""" 

D = self.__D 

var = 'sqrt_minus_%s'%(-D) 

return number_field.QuadraticField(D,var) 

 

@cached_method 

def galois_group(self, base=QQ): 

""" 

Return the Galois group of ``self`` over base. 

 

INPUT: 

 

- ``base`` -- (default: `\QQ`) a subfield of ``self`` or `\QQ` 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('389a') 

sage: A = E.heegner_point(-7,5).ring_class_field() 

sage: A.galois_group() 

Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5 

sage: B = E.heegner_point(-7).ring_class_field() 

sage: C = E.heegner_point(-7,15).ring_class_field() 

sage: A.galois_group() 

Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5 

sage: A.galois_group(B) 

Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5 over Hilbert class field of QQ[sqrt(-7)] 

sage: A.galois_group().cardinality() 

12 

sage: A.galois_group(B).cardinality() 

6 

sage: C.galois_group(A) 

Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 15 over Ring class field extension of QQ[sqrt(-7)] of conductor 5 

sage: C.galois_group(A).cardinality() 

4 

 

""" 

return GaloisGroup(self, base) 

 

def is_subfield(self, M): 

""" 

Return ``True`` if this ring class field is a subfield of the ring class field `M`. 

If `M` is not a ring class field, then a TypeError is raised. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('389a') 

sage: A = E.heegner_point(-7,5).ring_class_field() 

sage: B = E.heegner_point(-7).ring_class_field() 

sage: C = E.heegner_point(-20).ring_class_field() 

sage: D = E.heegner_point(-7,15).ring_class_field() 

sage: B.is_subfield(A) 

True 

sage: B.is_subfield(B) 

True 

sage: B.is_subfield(D) 

True 

sage: B.is_subfield(C) 

False 

sage: A.is_subfield(B) 

False 

sage: A.is_subfield(D) 

True 

""" 

if not isinstance(M, RingClassField): 

raise TypeError("M must be a ring class field") 

return self.quadratic_field() == M.quadratic_field() and \ 

M.conductor() % self.conductor() == 0 

 

################################################################################## 

# 

# Galois groups of ring class fields 

# 

################################################################################## 

 

class GaloisGroup(SageObject): 

""" 

A Galois group of a ring class field. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('389a') 

sage: G = E.heegner_point(-7,5).ring_class_field().galois_group(); G 

Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5 

sage: G.field() 

Ring class field extension of QQ[sqrt(-7)] of conductor 5 

sage: G.cardinality() 

12 

sage: G.complex_conjugation() 

Complex conjugation automorphism of Ring class field extension of QQ[sqrt(-7)] of conductor 5 

 

TESTS:: 

 

sage: G = heegner_point(37,-7).ring_class_field().galois_group() 

sage: loads(dumps(G)) == G 

True 

sage: type(G) 

<class 'sage.schemes.elliptic_curves.heegner.GaloisGroup'> 

""" 

def __init__(self, field, base=QQ): 

r""" 

INPUT: 

 

- ``field`` -- a ring class field 

 

- ``base`` -- subfield of field (default: `\QQ`) 

 

EXAMPLES:: 

 

sage: K5 = heegner_points(389,-7,5).ring_class_field() 

sage: K1 = heegner_points(389,-7,1).ring_class_field() 

sage: sage.schemes.elliptic_curves.heegner.GaloisGroup(K5,K1) 

Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5 over Hilbert class field of QQ[sqrt(-7)] 

sage: K5.galois_group(K1) 

Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5 over Hilbert class field of QQ[sqrt(-7)] 

""" 

if not isinstance(field, RingClassField): 

raise TypeError("field must be of type RingClassField") 

if base != QQ and base != field.quadratic_field(): 

if not isinstance(base, RingClassField): 

raise TypeError("base must be of type RingClassField or QQ or quadratic field") 

if not base.is_subfield(field): 

raise TypeError("base must be a subfield of field") 

self.__field = field 

self.__base = base 

 

def __eq__(self, G): 

""" 

EXAMPLES:: 

 

sage: G = EllipticCurve('389a').heegner_point(-7,5).ring_class_field().galois_group() 

sage: G == G 

True 

sage: G == 0 

False 

sage: H = EllipticCurve('389a').heegner_point(-7,11).ring_class_field().galois_group() 

sage: G == H 

False 

""" 

return isinstance(G, GaloisGroup) and (G.__field,G.__base) == (self.__field,self.__base) 

 

def __ne__(self, other): 

""" 

EXAMPLES:: 

 

sage: G = EllipticCurve('389a').heegner_point(-7,5).ring_class_field().galois_group() 

sage: G != G 

False 

sage: G != 0 

True 

sage: H = EllipticCurve('389a').heegner_point(-7,11).ring_class_field().galois_group() 

sage: G != H 

True 

""" 

return not (self == other) 

 

def __hash__(self): 

""" 

Return hash of this Galois group, which is the same as the 

hash of the pair, the field and its base. 

 

EXAMPLES:: 

 

sage: G = EllipticCurve('389a').heegner_point(-7,5).ring_class_field().galois_group() 

sage: hash(G) == hash((G.field(), G.base_field())) 

True 

 

""" 

return hash((self.__field, self.__base)) 

 

def __call__(self, x): 

""" 

Coerce `x` into ``self``, where `x` is a Galois group element, or 

in case ``self`` has base field the Hilbert class field, `x` can 

also be an element of the ring of integers. 

 

INPUT: 

 

- `x` -- automorphism or quadratic field element 

 

OUTPUT: 

 

- automorphism (or TypeError) 

 

EXAMPLES:: 

 

sage: K5 = heegner_points(389,-52,5).ring_class_field() 

sage: K1 = heegner_points(389,-52,1).ring_class_field() 

sage: G = K5.galois_group(K1) 

sage: G(1) 

Class field automorphism defined by x^2 + 325*y^2 

sage: G(G[0]) 

Class field automorphism defined by x^2 + 325*y^2 

sage: alpha = 2 + K1.quadratic_field().gen(); alpha 

sqrt_minus_52 + 2 

sage: G(alpha) 

Class field automorphism defined by 14*x^2 - 10*x*y + 25*y^2 

 

A TypeError is raised when the coercion is not possible:: 

 

sage: G(0) 

Traceback (most recent call last): 

... 

TypeError: x does not define element of (O_K/c*O_K)^* 

 

""" 

if isinstance(x, GaloisAutomorphism) and x.parent() == self: 

return x 

try: 

return self._alpha_to_automorphism(x) 

except (ZeroDivisionError, TypeError): 

raise TypeError("x does not define element of (O_K/c*O_K)^*") 

 

def _repr_(self): 

""" 

Return string representation of this Galois group. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('389a') 

sage: G = E.heegner_point(-7,5).ring_class_field().galois_group() 

sage: G._repr_() 

'Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5' 

""" 

if self.base_field() != QQ: 

s = " over %s"%self.base_field() 

else: 

s = '' 

return "Galois group of %s%s"%(self.field(), s) 

 

def field(self): 

""" 

Return the ring class field that this Galois group acts on. 

 

EXAMPLES:: 

 

sage: G = heegner_point(389,-7,5).ring_class_field().galois_group() 

sage: G.field() 

Ring class field extension of QQ[sqrt(-7)] of conductor 5 

""" 

return self.__field 

 

def base_field(self): 

""" 

Return the base field, which the field fixed by all the 

automorphisms in this Galois group. 

 

EXAMPLES:: 

 

sage: x = heegner_point(37,-7,5) 

sage: Kc = x.ring_class_field(); Kc 

Ring class field extension of QQ[sqrt(-7)] of conductor 5 

sage: K = x.quadratic_field() 

sage: G = Kc.galois_group(); G 

Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5 

sage: G.base_field() 

Rational Field 

sage: G.cardinality() 

12 

sage: Kc.absolute_degree() 

12 

sage: G = Kc.galois_group(K); G 

Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5 over Number Field in sqrt_minus_7 with defining polynomial x^2 + 7 

sage: G.cardinality() 

6 

sage: G.base_field() 

Number Field in sqrt_minus_7 with defining polynomial x^2 + 7 

sage: G = Kc.galois_group(Kc); G 

Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5 over Ring class field extension of QQ[sqrt(-7)] of conductor 5 

sage: G.cardinality() 

1 

sage: G.base_field() 

Ring class field extension of QQ[sqrt(-7)] of conductor 5 

""" 

return self.__base 

 

@cached_method 

def kolyvagin_generators(self): 

r""" 

Assuming this Galois group `G` is of the form 

`G=\textrm{Gal}(K_c/K_1)`, with `c=p_1\dots p_n` satisfying the 

Kolyvagin hypothesis, this function returns noncanonical 

choices of lifts of generators for each of the cyclic factors 

of `G` corresponding to the primes dividing `c`. Thus the 

`i`-th returned valued is an element of `G` that maps to the 

identity element of `\textrm{Gal}(K_p/K_1)` for all `p \neq p_i` and 

to a choice of generator of `\textrm{Gal}(K_{p_i}/K_1)`. 

 

OUTPUT: 

 

- list of elements of ``self`` 

 

EXAMPLES:: 

 

sage: K3 = heegner_points(389,-52,3).ring_class_field() 

sage: K1 = heegner_points(389,-52,1).ring_class_field() 

sage: G = K3.galois_group(K1) 

sage: G.kolyvagin_generators() 

(Class field automorphism defined by 9*x^2 - 6*x*y + 14*y^2,) 

 

sage: K5 = heegner_points(389,-52,5).ring_class_field() 

sage: K1 = heegner_points(389,-52,1).ring_class_field() 

sage: G = K5.galois_group(K1) 

sage: G.kolyvagin_generators() 

(Class field automorphism defined by 17*x^2 - 14*x*y + 22*y^2,) 

""" 

M = self.field() 

c = M.conductor() 

if not (self._base_is_hilbert_class_field() and self.is_kolyvagin()): 

raise ValueError("field must be of the form Gal(K_c/K_1)") 

if not c.is_prime(): 

raise NotImplementedError("only implemented when c is prime") 

 

# Since c satisfies Kolyvagin and is prime, the group is cyclic, 

# so we just find a generator. 

for sigma in self: 

if sigma.order() == self.cardinality(): 

return tuple([sigma]) 

 

raise NotImplementedError 

 

@cached_method 

def lift_of_hilbert_class_field_galois_group(self): 

r""" 

Assuming this Galois group `G` is of the form `G=\textrm{Gal}(K_c/K)`, 

this function returns noncanonical choices of lifts of the 

elements of the quotient group `\textrm{Gal}(K_1/K)`. 

 

OUTPUT: 

 

- tuple of elements of self 

 

EXAMPLES:: 

 

sage: K5 = heegner_points(389,-52,5).ring_class_field() 

sage: G = K5.galois_group(K5.quadratic_field()) 

sage: G.lift_of_hilbert_class_field_galois_group() 

(Class field automorphism defined by x^2 + 325*y^2, Class field automorphism defined by 2*x^2 + 2*x*y + 163*y^2) 

sage: G.cardinality() 

12 

sage: K5.quadratic_field().class_number() 

2 

""" 

if not self._base_is_quad_imag_field(): 

raise ValueError("Galois group must be of the form Gal(K_c/K)") 

K = self.base_field() 

C = K.class_group() 

v = [] 

lifts = [] 

for sigma in self: 

I = sigma.ideal() 

g = C(I) 

if g not in v: 

v.append(g) 

lifts.append(sigma) 

return tuple(lifts) 

 

@cached_method 

def _list(self): 

r""" 

Enumerate the elements of ``self``. 

 

EXAMPLES:: 

 

Example with order 1 (a special case):: 

 

sage: E = EllipticCurve('389a'); F= E.heegner_point(-7,1).ring_class_field() 

sage: G = F.galois_group(F.quadratic_field()) 

sage: G._list() 

(Class field automorphism defined by x^2 + x*y + 2*y^2,) 

 

Example over quadratic imaginary field:: 

 

sage: E = EllipticCurve('389a'); F= E.heegner_point(-7,5).ring_class_field() 

sage: G = F.galois_group(F.quadratic_field()) 

sage: G._list() 

(Class field automorphism defined by x^2 + x*y + 44*y^2, Class field automorphism defined by 2*x^2 - x*y + 22*y^2, Class field automorphism defined by 2*x^2 + x*y + 22*y^2, Class field automorphism defined by 4*x^2 - x*y + 11*y^2, Class field automorphism defined by 4*x^2 + x*y + 11*y^2, Class field automorphism defined by 7*x^2 + 7*x*y + 8*y^2) 

 

Example over `\QQ` (it is not implemented yet):: 

 

sage: K3 = heegner_points(389,-52,3).ring_class_field() 

sage: K3.galois_group()._list() 

Traceback (most recent call last): 

... 

NotImplementedError: Galois group over QQ not yet implemented 

 

Example over Hilbert class field:: 

 

sage: K3 = heegner_points(389,-52,3).ring_class_field(); K1 = heegner_points(389,-52,1).ring_class_field() 

sage: G = K3.galois_group(K1) 

sage: G._list() 

(Class field automorphism defined by x^2 + 117*y^2, Class field automorphism defined by 9*x^2 - 6*x*y + 14*y^2, Class field automorphism defined by 9*x^2 + 13*y^2, Class field automorphism defined by 9*x^2 + 6*x*y + 14*y^2) 

""" 

if self._base_is_QQ(): 

raise NotImplementedError("Galois group over QQ not yet implemented") 

elif self._base_is_quad_imag_field(): 

# Over the quadratic imaginary field, so straightforward 

# enumeration of all reduced primitive binary quadratic 

# forms of discriminant D*c^2. 

D = self.base_field().discriminant() 

c = self.field().conductor() 

Q = [f for f in BinaryQF_reduced_representatives(D*c*c) if f.is_primitive()] 

v = [GaloisAutomorphismQuadraticForm(self, f) for f in Q] 

 

elif self._base_is_hilbert_class_field() and self.is_kolyvagin(): 

# Take only the automorphisms in the quad imag case that map to 

# a principal ideal. 

M = self.field() 

K = M.quadratic_field() 

v = [] 

self.__p1_to_automorphism = {} 

for sigma in M.galois_group(K)._list(): 

I = sigma.ideal() 

if I.is_principal(): 

# sigma does define an element of our Galois subgroup. 

alpha = sigma.ideal().gens_reduced()[0] 

t = GaloisAutomorphismQuadraticForm(self, sigma.quadratic_form(), alpha=alpha) 

self.__p1_to_automorphism[t.p1_element()] = t 

v.append(t) 

else: 

raise NotImplementedError("general Galois group not yet implemented") 

 

v.sort() 

assert len(v) == self.cardinality(), "bug enumerating Galois group elements" 

return tuple(v) 

 

def _quadratic_form_to_alpha(self, f): 

""" 

INPUT: 

 

- `f` -- a binary quadratic form with discriminant `c^2 D` 

 

OUTPUT: 

 

- an element of the ring of integers of the quadratic 

imaginary field 

 

EXAMPLES:: 

 

sage: K3 = heegner_points(389,-52,3).ring_class_field(); K1 = heegner_points(389,-52,1).ring_class_field() 

sage: G = K3.galois_group(K1) 

sage: [G._quadratic_form_to_alpha(s.quadratic_form()) for s in G] 

[3/2*sqrt_minus_52, 1/6*sqrt_minus_52 + 1/3, 1/6*sqrt_minus_52, 1/6*sqrt_minus_52 - 1/3] 

 

What happens when we input a quadratic form that has nothing 

to do with `G`:: 

 

sage: G._quadratic_form_to_alpha(BinaryQF([1,2,3])) 

Traceback (most recent call last): 

... 

ValueError: quadratic form has the wrong discriminant 

""" 

A,B,C = f 

K = self.field().quadratic_field() 

if f.discriminant() != self.field().conductor()**2 * K.discriminant(): 

raise ValueError("quadratic form has the wrong discriminant") 

 

R = K['X'] 

v = R([C,B,A]).roots()[0][0] 

return v 

 

def _alpha_to_automorphism(self, alpha): 

r""" 

Assuming ``self`` has base field the Hilbert class field, make an 

automorphism from the element `\alpha` of the ring of integers 

into ``self``. 

 

INPUT: 

 

- `\alpha` -- element of quadratic imaginary field coprime to conductor 

 

EXAMPLES:: 

 

sage: K3 = heegner_points(389,-52,3).ring_class_field() 

sage: K1 = heegner_points(389,-52,1).ring_class_field() 

sage: G = K3.galois_group(K1) 

sage: G._alpha_to_automorphism(1) 

Class field automorphism defined by x^2 + 117*y^2 

sage: [G._alpha_to_automorphism(s.alpha()) for s in G] == list(G) 

True 

""" 

if not self._base_is_hilbert_class_field() and self.is_kolyvagin(): 

raise TypeError("base must be Hilbert class field with Kolyvagin condition on conductor") 

R = self.field().quadratic_field().maximal_order() 

uv = self._alpha_to_p1_element(R(alpha)) 

try: 

d = self.__p1_to_automorphism 

except AttributeError: 

self._list() # computes attribute as side-effect 

d = self.__p1_to_automorphism 

return d[uv] 

 

 

def _alpha_to_p1_element(self, alpha): 

r""" 

Given an element of the ring of integers that is nonzero 

modulo c, return canonical (after our fixed choice of basis) 

element of the project line corresponding to it. 

 

INPUT: 

 

- `\alpha` -- element of the ring of integers of the 

quadratic imaginary field 

 

OUTPUT: 

 

- 2-tuple of integers 

 

EXAMPLES:: 

 

sage: K3 = heegner_points(389,-52,3).ring_class_field() 

sage: K1 = heegner_points(389,-52,1).ring_class_field() 

sage: G = K3.galois_group(K1) 

sage: G._alpha_to_p1_element(1) 

(1, 0) 

sage: sorted([G._alpha_to_p1_element(s.alpha()) for s in G]) 

[(0, 1), (1, 0), (1, 1), (1, 2)] 

""" 

try: 

A, P1 = self.__alpha_to_p1_element 

except AttributeError: 

# todo (optimize) -- this whole function can be massively optimized: 

M = self.field() 

A = M.quadratic_field().maximal_order().free_module() 

P1 = P1List(M.conductor()) 

self.__alpha_to_p1_element = A, P1 

alpha = self.field().quadratic_field()(alpha) 

w = A.coordinate_vector(alpha.vector()) 

w *= w.denominator() 

w = w.change_ring(ZZ) 

n = gcd(w) 

w /= n 

c = P1.N() 

w = P1.normalize(ZZ(w[0])%c, ZZ(w[1])%c) 

if w == (0,0): 

w = (1,0) 

return w 

 

def _p1_element_to_alpha(self, uv): 

""" 

Convert a normalized pair ``uv=(u,v)`` of integers to the 

corresponding element of the ring of integers got by taking `u 

b_0 + v b_1` where `b_0, b_1` are the basis for the ring of 

integers. 

 

INPUT: 

 

- ``uv`` -- pair of integers 

 

OUTPUT: 

 

- element of maximal order of quadratic field 

 

EXAMPLES:: 

 

sage: K5 = heegner_points(389,-52,5).ring_class_field() 

sage: K1 = heegner_points(389,-52,1).ring_class_field() 

sage: G = K5.galois_group(K1) 

sage: v = [G._alpha_to_p1_element(s.alpha()) for s in G] 

sage: [G._p1_element_to_alpha(z) for z in v] 

[1, 1/2*sqrt_minus_52, 1/2*sqrt_minus_52 + 1, 2*sqrt_minus_52 + 1, sqrt_minus_52 + 1, 3/2*sqrt_minus_52 + 1] 

sage: [G(G._p1_element_to_alpha(z)) for z in v] == list(G) 

True 

""" 

B = self.field().quadratic_field().maximal_order().basis() 

return uv[0]*B[0] + uv[1]*B[1] 

 

 

def _base_is_QQ(self): 

r""" 

Return ``True`` if the base field of this ring class field is `\QQ`. 

 

EXAMPLES:: 

 

sage: H = heegner_points(389,-20,3); M = H.ring_class_field() 

sage: M.galois_group(H.quadratic_field())._base_is_QQ() 

False 

sage: M.galois_group(QQ)._base_is_QQ() 

True 

sage: M.galois_group(heegner_points(389,-20,1).ring_class_field())._base_is_QQ() 

False 

""" 

return self.__base == QQ 

 

def _base_is_quad_imag_field(self): 

""" 

Return ``True`` if the base field of this ring class field is the 

quadratic imaginary field `K`. 

 

EXAMPLES:: 

 

sage: H = heegner_points(389,-20,3); M = H.ring_class_field() 

sage: M.galois_group(H.quadratic_field())._base_is_quad_imag_field() 

True 

sage: M.galois_group(QQ)._base_is_quad_imag_field() 

False 

sage: M.galois_group(heegner_points(389,-20,1).ring_class_field())._base_is_quad_imag_field() 

False 

""" 

return number_field.is_QuadraticField(self.__base) 

 

def is_kolyvagin(self): 

""" 

Return ``True`` if conductor `c` is prime to the discriminant of the 

quadratic field, `c` is squarefree and each prime dividing `c` 

is inert. 

 

EXAMPLES:: 

 

sage: K5 = heegner_points(389,-52,5).ring_class_field() 

sage: K1 = heegner_points(389,-52,1).ring_class_field() 

sage: K5.galois_group(K1).is_kolyvagin() 

True 

sage: K7 = heegner_points(389,-52,7).ring_class_field() 

sage: K7.galois_group(K1).is_kolyvagin() 

False 

sage: K25 = heegner_points(389,-52,25).ring_class_field() 

sage: K25.galois_group(K1).is_kolyvagin() 

False 

""" 

M = self.field() 

c = M.conductor() 

D = M.quadratic_field().discriminant() 

if c.gcd(D) != 1: return False 

if not c.is_squarefree(): return False 

for p in c.prime_divisors(): 

if not is_inert(D,p): 

return False 

return True 

 

def _base_is_hilbert_class_field(self): 

""" 

Return ``True`` if the base field of this ring class field is the 

Hilbert class field of `K` viewed as a ring class field (so 

not of data type QuadraticField). 

 

EXAMPLES:: 

 

sage: H = heegner_points(389,-20,3); M = H.ring_class_field() 

sage: M.galois_group(H.quadratic_field())._base_is_hilbert_class_field() 

False 

sage: M.galois_group(QQ)._base_is_hilbert_class_field() 

False 

sage: M.galois_group(heegner_points(389,-20,1).ring_class_field())._base_is_hilbert_class_field() 

True 

""" 

M = self.__base 

return isinstance(M, RingClassField) and M.conductor() == 1 

 

 

def __getitem__(self, i): 

""" 

EXAMPLES:: 

 

sage: E = EllipticCurve('389a'); F= E.heegner_point(-7,5).ring_class_field() 

sage: G = F.galois_group(F.quadratic_field()) 

sage: G[0] 

Class field automorphism defined by x^2 + x*y + 44*y^2 

""" 

return self._list()[i] 

 

 

def __len__(self): 

""" 

EXAMPLES:: 

 

sage: K5 = heegner_points(389,-52,5).ring_class_field() 

sage: K1 = heegner_points(389,-52,1).ring_class_field() 

sage: G = K5.galois_group(K1) 

sage: G.cardinality() 

6 

sage: len(G) 

6 

""" 

return self.cardinality() 

 

@cached_method 

def cardinality(self): 

""" 

Return the cardinality of this Galois group. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('389a') 

sage: G = E.heegner_point(-7,5).ring_class_field().galois_group(); G 

Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5 

sage: G.cardinality() 

12 

sage: G = E.heegner_point(-7).ring_class_field().galois_group() 

sage: G.cardinality() 

2 

sage: G = E.heegner_point(-7,55).ring_class_field().galois_group() 

sage: G.cardinality() 

120 

""" 

return self.__field.absolute_degree() // self.__base.absolute_degree() 

 

@cached_method 

def complex_conjugation(self): 

""" 

Return the automorphism of ``self`` determined by complex 

conjugation. The base field must be the rational numbers. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('389a') 

sage: G = E.heegner_point(-7,5).ring_class_field().galois_group() 

sage: G.complex_conjugation() 

Complex conjugation automorphism of Ring class field extension of QQ[sqrt(-7)] of conductor 5 

""" 

if self.base_field() != QQ: 

raise ValueError("the base field must be fixed by complex conjugation") 

return GaloisAutomorphismComplexConjugation(self) 

 

 

################################################################################## 

# 

# Elements of Galois groups 

# 

################################################################################## 

 

 

class GaloisAutomorphism(SageObject): 

""" 

An abstract automorphism of a ring class field. 

 

.. TODO:: 

 

make :class:`GaloisAutomorphism` derive from GroupElement, so 

that one gets powers for free, etc. 

""" 

def __init__(self, parent): 

""" 

INPUT: 

 

- ``parent`` -- a group of automorphisms of a ring class field 

 

EXAMPLES:: 

 

sage: G = heegner_points(389,-7,5).ring_class_field().galois_group(); G 

Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5 

sage: sage.schemes.elliptic_curves.heegner.GaloisAutomorphism(G) 

<sage.schemes.elliptic_curves.heegner.GaloisAutomorphism object at ...> 

""" 

self.__parent = parent 

 

def parent(self): 

""" 

Return the parent of this automorphism, which is a Galois 

group of a ring class field. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('389a') 

sage: s = E.heegner_point(-7,5).ring_class_field().galois_group().complex_conjugation() 

sage: s.parent() 

Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 5 

""" 

return self.__parent 

 

def domain(self): 

""" 

Return the domain of this automorphism. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('389a') 

sage: s = E.heegner_point(-7,5).ring_class_field().galois_group().complex_conjugation() 

sage: s.domain() 

Ring class field extension of QQ[sqrt(-7)] of conductor 5 

""" 

return self.parent().field() 

 

 

class GaloisAutomorphismComplexConjugation(GaloisAutomorphism): 

""" 

The complex conjugation automorphism of a ring class field. 

 

EXAMPLES:: 

 

sage: conj = heegner_point(37,-7,5).ring_class_field().galois_group().complex_conjugation() 

sage: conj 

Complex conjugation automorphism of Ring class field extension of QQ[sqrt(-7)] of conductor 5 

sage: conj.domain() 

Ring class field extension of QQ[sqrt(-7)] of conductor 5 

 

TESTS:: 

 

sage: type(conj) 

<class 'sage.schemes.elliptic_curves.heegner.GaloisAutomorphismComplexConjugation'> 

sage: loads(dumps(conj)) == conj 

True 

""" 

def __init__(self, parent): 

""" 

INPUT: 

 

- ``parent`` -- a group of automorphisms of a ring class field 

 

EXAMPLES:: 

 

sage: G = heegner_point(37,-7,5).ring_class_field().galois_group() 

sage: sage.schemes.elliptic_curves.heegner.GaloisAutomorphismComplexConjugation(G) 

Complex conjugation automorphism of Ring class field extension of QQ[sqrt(-7)] of conductor 5 

""" 

GaloisAutomorphism.__init__(self, parent) 

 

def __hash__(self): 

""" 

The hash value is the same as the hash value of the 

pair ``(self.parent(), 1)``. 

 

EXAMPLES:: 

 

sage: G = EllipticCurve('389a').heegner_point(-7,5).ring_class_field().galois_group() 

sage: conj = G.complex_conjugation() 

sage: hash(conj) == hash((conj.parent(), 1)) 

True 

""" 

return hash((self.parent(), 1)) 

 

def __eq__(self, right): 

""" 

EXAMPLES:: 

 

sage: G = EllipticCurve('389a').heegner_point(-7,5).ring_class_field().galois_group() 

sage: conj = G.complex_conjugation() 

sage: conj2 = sage.schemes.elliptic_curves.heegner.GaloisAutomorphismComplexConjugation(G) 

sage: conj is conj2 

False 

sage: conj == conj2 

True 

""" 

return isinstance(right, GaloisAutomorphismComplexConjugation) and \ 

self.parent() == right.parent() 

 

def __ne__(self, other): 

""" 

EXAMPLES:: 

 

sage: G = EllipticCurve('389a').heegner_point(-7,5).ring_class_field().galois_group() 

sage: conj = G.complex_conjugation() 

sage: conj2 = sage.schemes.elliptic_curves.heegner.GaloisAutomorphismComplexConjugation(G) 

sage: conj != conj2 

False 

""" 

return not (self == other) 

 

def _repr_(self): 

""" 

Return print representation of the complex conjugation automorphism. 

 

EXAMPLES:: 

 

sage: conj = heegner_point(37,-7,5).ring_class_field().galois_group().complex_conjugation() 

sage: conj._repr_() 

'Complex conjugation automorphism of Ring class field extension of QQ[sqrt(-7)] of conductor 5' 

""" 

return "Complex conjugation automorphism of %s"%self.domain() 

 

## def __mul__(self, right): 

## """ 

## Return the composition of two automorphisms. 

 

## EXAMPLES:: 

 

## sage: ? 

## """ 

## if self.parent() != right.__parent(): 

## raise TypeError, "automorphisms must be of the same class field" 

## raise NotImplementedError 

 

def __invert__(self): 

""" 

Return the inverse of ``self``, which is just ``self`` again. 

 

EXAMPLES:: 

 

sage: conj = heegner_point(37,-7,5).ring_class_field().galois_group().complex_conjugation() 

sage: ~conj 

Complex conjugation automorphism of Ring class field extension of QQ[sqrt(-7)] of conductor 5 

""" 

return self 

 

def order(self): 

""" 

EXAMPLES:: 

 

sage: conj = heegner_point(37,-7,5).ring_class_field().galois_group().complex_conjugation() 

sage: conj.order() 

2 

""" 

return ZZ(2) 

 

 

@richcmp_method 

class GaloisAutomorphismQuadraticForm(GaloisAutomorphism): 

""" 

An automorphism of a ring class field defined by a quadratic form. 

 

EXAMPLES:: 

 

sage: H = heegner_points(389,-20,3) 

sage: sigma = H.ring_class_field().galois_group(H.quadratic_field())[0]; sigma 

Class field automorphism defined by x^2 + 45*y^2 

sage: type(sigma) 

<class 'sage.schemes.elliptic_curves.heegner.GaloisAutomorphismQuadraticForm'> 

sage: loads(dumps(sigma)) == sigma 

True 

""" 

def __init__(self, parent, quadratic_form, alpha=None): 

r""" 

INPUT: 

 

- ``parent`` -- a group of automorphisms of a ring class field 

 

- ``quadratic_form`` -- a binary quadratic form that 

defines an element of the Galois group of `K_c` over `K`. 

 

- ``\alpha`` -- (default: ``None``) optional data that specified 

element corresponding element of `(\mathcal{O}_K / 

c\mathcal{O}_K)^* / (\ZZ/c\ZZ)^*`, via class field 

theory. 

 

EXAMPLES:: 

 

sage: H = heegner_points(389,-20,3); G = H.ring_class_field().galois_group(H.quadratic_field()) 

sage: f = BinaryQF_reduced_representatives(-20*9)[0] 

sage: sage.schemes.elliptic_curves.heegner.GaloisAutomorphismQuadraticForm(G, f) 

Class field automorphism defined by x^2 + 45*y^2 

""" 

self.__quadratic_form = quadratic_form.reduced_form() 

self.__alpha = alpha 

GaloisAutomorphism.__init__(self, parent) 

 

@cached_method 

def order(self): 

""" 

Return the multiplicative order of this Galois group automorphism. 

 

EXAMPLES:: 

 

sage: K3 = heegner_points(389,-52,3).ring_class_field() 

sage: K1 = heegner_points(389,-52,1).ring_class_field() 

sage: G = K3.galois_group(K1) 

sage: sorted([g.order() for g in G]) 

[1, 2, 4, 4] 

sage: K5 = heegner_points(389,-52,5).ring_class_field() 

sage: K1 = heegner_points(389,-52,1).ring_class_field() 

sage: G = K5.galois_group(K1) 

sage: sorted([g.order() for g in G]) 

[1, 2, 3, 3, 6, 6] 

""" 

alpha = self.__alpha 

if alpha is None: 

raise NotImplementedError("order only currently implemented when alpha given in construction") 

G = self.parent() 

one = G(1).p1_element() 

ans = ZZ(1) 

z = alpha 

for i in range(G.cardinality()): 

if G._alpha_to_p1_element(z) == one: 

return ans 

ans += 1 

z *= alpha 

assert False, "bug in order" 

 

def alpha(self): 

r""" 

Optional data that specified element corresponding element of 

`(\mathcal{O}_K / c\mathcal{O}_K)^* / (\ZZ/c\ZZ)^*`, via class 

field theory. 

 

This is a generator of the ideal corresponding to this 

automorphism. 

 

EXAMPLES:: 

 

sage: K3 = heegner_points(389,-52,3).ring_class_field() 

sage: K1 = heegner_points(389,-52,1).ring_class_field() 

sage: G = K3.galois_group(K1) 

sage: orb = sorted([g.alpha() for g in G]); orb # random (the sign depends on the database being installed or not) 

[1, 1/2*sqrt_minus_52 + 1, -1/2*sqrt_minus_52, 1/2*sqrt_minus_52 - 1] 

sage: sorted([x^2 for x in orb]) # this is just for testing 

[-13, -sqrt_minus_52 - 12, sqrt_minus_52 - 12, 1] 

 

sage: K5 = heegner_points(389,-52,5).ring_class_field() 

sage: K1 = heegner_points(389,-52,1).ring_class_field() 

sage: G = K5.galois_group(K1) 

sage: orb = sorted([g.alpha() for g in G]); orb # random (the sign depends on the database being installed or not) 

[1, -1/2*sqrt_minus_52, 1/2*sqrt_minus_52 + 1, 1/2*sqrt_minus_52 - 1, 1/2*sqrt_minus_52 - 2, -1/2*sqrt_minus_52 - 2] 

sage: sorted([x^2 for x in orb]) # just for testing 

[-13, -sqrt_minus_52 - 12, sqrt_minus_52 - 12, -2*sqrt_minus_52 - 9, 2*sqrt_minus_52 - 9, 1] 

 

""" 

if self.__alpha is None: 

raise ValueError("alpha data not defined") 

return self.__alpha 

 

@cached_method 

def p1_element(self): 

r""" 

Return element of the projective line corresponding to this 

automorphism. 

 

This only makes sense if this automorphism is in the Galois 

group `\textrm{Gal}(K_c/K_1)`. 

 

EXAMPLES:: 

 

sage: K3 = heegner_points(389,-52,3).ring_class_field() 

sage: K1 = heegner_points(389,-52,1).ring_class_field() 

sage: G = K3.galois_group(K1) 

sage: sorted([g.p1_element() for g in G]) 

[(0, 1), (1, 0), (1, 1), (1, 2)] 

 

sage: K5 = heegner_points(389,-52,5).ring_class_field() 

sage: K1 = heegner_points(389,-52,1).ring_class_field() 

sage: G = K5.galois_group(K1) 

sage: sorted([g.p1_element() for g in G]) 

[(0, 1), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4)] 

""" 

return self.parent()._alpha_to_p1_element(self.__alpha) 

 

def __hash__(self): 

""" 

The hash value is the hash of the pair formed by the parent 

and the quadratic form read as tuple. 

 

EXAMPLES:: 

 

sage: H = heegner_points(389,-20,3) 

sage: s = H.ring_class_field().galois_group(H.quadratic_field())[0] 

sage: hash(s) == hash((s.parent(), tuple(s.quadratic_form()))) 

True 

""" 

return hash((self.parent(), tuple(self.__quadratic_form))) 

 

def __richcmp__(self, right, op): 

""" 

Comparison. 

 

EXAMPLES:: 

 

sage: H = heegner_points(389,-7,5) 

sage: s = H.ring_class_field().galois_group(H.quadratic_field())[1] 

sage: s == s 

True 

sage: s == s*s 

False 

sage: s == s*s*s*s*s 

False 

sage: s == s*s*s*s*s*s*s 

True 

 

sage: H = heegner_points(389,-20,3) 

sage: s = H.ring_class_field().galois_group(H.quadratic_field())[0] 

sage: s == s 

True 

sage: s == 0 

False 

""" 

if not isinstance(right, GaloisAutomorphismQuadraticForm): 

return NotImplemented 

lx = self.parent() 

rx = right.parent() 

if lx != rx: 

return richcmp_not_equal(lx, rx, op) 

if self.quadratic_form().is_equivalent(right.quadratic_form()): 

return rich_to_bool(op, 0) 

return richcmp(self.quadratic_form(), right.quadratic_form(), op) 

 

def _repr_(self): 

""" 

Return string representation of this automorphism. 

 

EXAMPLES:: 

 

sage: H = heegner_points(389,-20,3); s = H.ring_class_field().galois_group(H.quadratic_field())[0] 

sage: s._repr_() 

'Class field automorphism defined by x^2 + 45*y^2' 

 

""" 

return "Class field automorphism defined by %s"%self.__quadratic_form 

 

def __mul__(self, right): 

""" 

Return the composition of two automorphisms. 

 

EXAMPLES:: 

 

sage: H = heegner_points(389,-20,3); s = H.ring_class_field().galois_group(H.quadratic_field())[0] 

sage: s * s 

Class field automorphism defined by x^2 + 45*y^2 

sage: G = s.parent(); list(G) 

[Class field automorphism defined by x^2 + 45*y^2, Class field automorphism defined by 2*x^2 + 2*x*y + 23*y^2, Class field automorphism defined by 5*x^2 + 9*y^2, Class field automorphism defined by 7*x^2 + 4*x*y + 7*y^2] 

sage: G[0]*G[0] 

Class field automorphism defined by x^2 + 45*y^2 

sage: G[1]*G[2] == G[3] 

True 

""" 

if self.parent() != right.parent(): 

raise TypeError("automorphisms must be of the same class field") 

if not isinstance(right, GaloisAutomorphismQuadraticForm): 

# TODO: special case when right is complex conjugation 

raise NotImplementedError 

Q = (self.__quadratic_form * right.__quadratic_form).reduced_form() 

if self.__alpha and right.__alpha: 

alpha = self.__alpha * right.__alpha 

else: 

alpha = None 

return GaloisAutomorphismQuadraticForm(self.parent(), Q, alpha=alpha) 

 

def quadratic_form(self): 

""" 

Return reduced quadratic form corresponding to this Galois 

automorphism. 

 

 

EXAMPLES:: 

 

sage: H = heegner_points(389,-20,3); s = H.ring_class_field().galois_group(H.quadratic_field())[0] 

sage: s.quadratic_form() 

x^2 + 45*y^2 

""" 

return self.__quadratic_form 

 

@cached_method 

def ideal(self): 

r""" 

Return ideal of ring of integers of quadratic imaginary field 

corresponding to this quadratic form. This is the ideal 

 

`I = \left(A, \frac{-B+ c\sqrt{D}}{2}\right) \mathcal{O}_K`. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('389a'); F= E.heegner_point(-20,3).ring_class_field() 

sage: G = F.galois_group(F.quadratic_field()) 

sage: G[1].ideal() 

Fractional ideal (2, 1/2*sqrt_minus_20 + 1) 

sage: [s.ideal().gens() for s in G] 

[(1, 3/2*sqrt_minus_20), (2, 3/2*sqrt_minus_20 - 1), (5, 3/2*sqrt_minus_20), (7, 3/2*sqrt_minus_20 - 2)] 

""" 

M = self.parent().field() 

K = M.quadratic_field() 

f = self.quadratic_form() 

c = M.conductor() 

sqrtD = K.gen() 

(A,B,C) = f 

if A%c == 0: 

A, C = C, A 

return K.maximal_order().ideal([A, (-B+c*sqrtD)/2]) 

 

## def __call__(self, z): 

## """ 

## Return image of the Heegner point `z` under this automorphism. 

## 

## INPUT: 

## 

## - `z` -- a Heegner point on `X_0(N)` or an elliptic curve 

## 

## OUTPUT: 

## 

## - a Heegner point 

## 

## EXAMPLES:: 

## 

## sage: x = heegner_point(389,-20,3); F = x.ring_class_field() 

## sage: sigma = F.galois_group(F.quadratic_field())[1]; sigma 

## Class field automorphism defined by 2*x^2 + 2*x*y + 23*y^2 

## sage: sigma(x) 

## Heegner point 3/1556*sqrt(-20) - 495/778 of discriminant -20 and conductor 3 on X_0(389) 

## """ 

## if isinstance(z, HeegnerPointOnX0N): 

## if z.ring_class_field() != self.domain(): 

## raise NotImplementedError, "class fields must be the same" 

## # TODO -- check more compatibilities? 

## # TODO -- this is surely backwards -- something must be inverted? 

## f = z.quadratic_form() * self.quadratic_form() 

## # TODO -- put f into the correct form with A divisible by N, etc.? 

## # That could be done by looking up reduced form of f in a canonical 

## # list of best reps. 

## N,D,c = z.level(),z.discriminant(),z.conductor() 

## return HeegnerPointOnX0N(N,D,c, f = f) 

## else: 

## raise NotImplementedError 

 

################################################################################## 

# 

# Specific Heegner points 

# 

################################################################################## 

 

 

@richcmp_method 

class HeegnerPoint(SageObject): 

r""" 

A Heegner point of level `N`, discriminant `D` and conductor `c` 

is any point on a modular curve or elliptic curve that is 

concocted in some way from a quadratic imaginary `\tau` in the upper 

half plane with `\Delta(\tau) = D c = \Delta(N \tau)`. 

 

EXAMPLES:: 

 

sage: x = sage.schemes.elliptic_curves.heegner.HeegnerPoint(389,-7,13); x 

Heegner point of level 389, discriminant -7, and conductor 13 

sage: type(x) 

<class 'sage.schemes.elliptic_curves.heegner.HeegnerPoint'> 

sage: loads(dumps(x)) == x 

True 

""" 

def __init__(self, N, D, c): 

""" 

INPUT: 

 

- `N` -- (positive integer) the level 

 

- `D` -- (negative integer) fundamental discriminant 

 

- `c` -- (positive integer) conductor 

 

Since this is an abstract base class, no type or compatibility 

checks are done, as those are all assumed to be done in the 

derived class. 

 

EXAMPLES:: 

 

sage: H = sage.schemes.elliptic_curves.heegner.HeegnerPoint(389,-7,5) 

sage: type(H) 

<class 'sage.schemes.elliptic_curves.heegner.HeegnerPoint'> 

""" 

self.__N = N 

self.__D = D 

self.__c = c 

 

def __richcmp__(self, x, op): 

""" 

Compare two Heegner points. 

 

EXAMPLES:: 

 

sage: H = sage.schemes.elliptic_curves.heegner.HeegnerPoint(389,-7,5) 

sage: H == H 

True 

 

sage: H = sage.schemes.elliptic_curves.heegner.HeegnerPoint(389,-7,5); type(H) 

<class 'sage.schemes.elliptic_curves.heegner.HeegnerPoint'> 

sage: J = sage.schemes.elliptic_curves.heegner.HeegnerPoint(389,-7,11) 

sage: H == H 

True 

sage: H == J 

False 

sage: J == H 

False 

sage: H == 0 

False 

""" 

if not isinstance(x, HeegnerPoint): 

return NotImplemented 

return richcmp((self.__N, self.__D, self.__c), 

(x.__N, x.__D, x.__c), op) 

 

def _repr_(self): 

""" 

EXAMPLES:: 

 

sage: H = sage.schemes.elliptic_curves.heegner.HeegnerPoint(389,-7,5) 

sage: type(H) 

<class 'sage.schemes.elliptic_curves.heegner.HeegnerPoint'> 

sage: H._repr_() 

'Heegner point of level 389, discriminant -7, and conductor 5' 

""" 

return "Heegner point of level %s, discriminant %s, and conductor %s"%( 

self.__N, self.__D, self.__c) 

 

def __hash__(self): 

""" 

The hash value is obtained from level, discriminant, and conductor. 

 

EXAMPLES:: 

 

sage: H = sage.schemes.elliptic_curves.heegner.HeegnerPoint(389,-7,5); type(H) 

<class 'sage.schemes.elliptic_curves.heegner.HeegnerPoint'> 

sage: hash(H) == hash((H.level(), H.discriminant(), H.conductor())) 

True 

""" 

return hash((self.__N, self.__D, self.__c)) 

 

def level(self): 

""" 

Return the level of this Heegner point, which is the level of the 

modular curve `X_0(N)` on which this is a Heegner point. 

 

EXAMPLES:: 

 

sage: heegner_point(389,-7,5).level() 

389 

""" 

return self.__N 

 

def conductor(self): 

""" 

Return the conductor of this Heegner point. 

 

EXAMPLES:: 

 

sage: heegner_point(389,-7,5).conductor() 

5 

sage: E = EllipticCurve('37a1'); P = E.kolyvagin_point(-67,7); P 

Kolyvagin point of discriminant -67 and conductor 7 on elliptic curve of conductor 37 

sage: P.conductor() 

7 

sage: E = EllipticCurve('389a'); P = E.heegner_point(-7, 5); P.conductor() 

5 

""" 

return self.__c 

 

def discriminant(self): 

""" 

Return the discriminant of the quadratic imaginary field 

associated to this Heegner point. 

 

EXAMPLES:: 

 

sage: heegner_point(389,-7,5).discriminant() 

-7 

sage: E = EllipticCurve('37a1'); P = E.kolyvagin_point(-67,7); P 

Kolyvagin point of discriminant -67 and conductor 7 on elliptic curve of conductor 37 

sage: P.discriminant() 

-67 

sage: E = EllipticCurve('389a'); P = E.heegner_point(-7, 5); P.discriminant() 

-7 

""" 

return self.__D 

 

@cached_method 

def quadratic_field(self): 

""" 

Return the quadratic number field of discriminant `D`. 

 

EXAMPLES:: 

 

sage: x = heegner_point(37,-7,5) 

sage: x.quadratic_field() 

Number Field in sqrt_minus_7 with defining polynomial x^2 + 7 

 

 

sage: E = EllipticCurve('37a'); P = E.heegner_point(-40) 

sage: P.quadratic_field() 

Number Field in sqrt_minus_40 with defining polynomial x^2 + 40 

sage: P.quadratic_field() is P.quadratic_field() 

True 

sage: type(P.quadratic_field()) 

<class 'sage.rings.number_field.number_field.NumberField_quadratic_with_category'> 

""" 

return self.ring_class_field().quadratic_field() 

 

@cached_method 

def quadratic_order(self): 

""" 

Return the order in the quadratic imaginary field of conductor 

`c`, where `c` is the conductor of this Heegner point. 

 

EXAMPLES:: 

 

sage: heegner_point(389,-7,5).quadratic_order() 

Order in Number Field in sqrt_minus_7 with defining polynomial x^2 + 7 

sage: heegner_point(389,-7,5).quadratic_order().basis() 

[1, 5*sqrt_minus_7] 

 

sage: E = EllipticCurve('37a'); P = E.heegner_point(-40,11) 

sage: P.quadratic_order() 

Order in Number Field in sqrt_minus_40 with defining polynomial x^2 + 40 

sage: P.quadratic_order().basis() 

[1, 11*sqrt_minus_40] 

 

""" 

K = self.quadratic_field() 

return K.order([1,self.conductor()*K.gen()]) 

 

@cached_method 

def ring_class_field(self): 

""" 

Return the ring class field associated to this Heegner point. 

This is an extension `K_c` over `K`, where `K` is the 

quadratic imaginary field and `c` is the conductor associated 

to this Heegner point. This Heegner point is defined over 

`K_c` and the Galois group `Gal(K_c/K)` acts transitively on 

the Galois conjugates of this Heegner point. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('389a'); K.<a> = QuadraticField(-5) 

sage: len(K.factor(5)) 

1 

sage: len(K.factor(23)) 

2 

sage: E.heegner_point(-7, 5).ring_class_field().degree_over_K() 

6 

sage: E.heegner_point(-7, 23).ring_class_field().degree_over_K() 

22 

sage: E.heegner_point(-7, 5*23).ring_class_field().degree_over_K() 

132 

sage: E.heegner_point(-7, 5^2).ring_class_field().degree_over_K() 

30 

sage: E.heegner_point(-7, 7).ring_class_field().degree_over_K() 

7 

""" 

return RingClassField(self.discriminant(), self.conductor()) 

 

 

################################################################################## 

# 

# Sets of Heegner points 

# 

################################################################################## 

 

class HeegnerPoints(SageObject): 

""" 

The set of Heegner points with given parameters. 

 

EXAMPLES:: 

 

sage: H = heegner_points(389); H 

Set of all Heegner points on X_0(389) 

sage: type(H) 

<class 'sage.schemes.elliptic_curves.heegner.HeegnerPoints_level'> 

sage: isinstance(H, sage.schemes.elliptic_curves.heegner.HeegnerPoints) 

True 

""" 

def __init__(self, N): 

""" 

INPUT: 

 

- `N` -- level, a positive integer 

 

EXAMPLES:: 

 

sage: heegner_points(37) 

Set of all Heegner points on X_0(37) 

sage: heegner_points(0) 

Traceback (most recent call last): 

... 

ValueError: N must a positive integer 

""" 

self.__N = ZZ(N) 

if self.__N <= 0: 

raise ValueError("N must a positive integer") 

 

def level(self): 

""" 

Return the level `N` of the modular curve `X_0(N)`. 

 

EXAMPLES:: 

 

sage: heegner_points(389).level() 

389 

""" 

return self.__N 

 

 

class HeegnerPoints_level(HeegnerPoints): 

""" 

Return the infinite set of all Heegner points on `X_0(N)` for all 

quadratic imaginary fields. 

 

EXAMPLES:: 

 

sage: H = heegner_points(11); H 

Set of all Heegner points on X_0(11) 

sage: type(H) 

<class 'sage.schemes.elliptic_curves.heegner.HeegnerPoints_level'> 

sage: loads(dumps(H)) == H 

True 

""" 

def __eq__(self, other): 

""" 

EXAMPLES:: 

 

sage: H = heegner_points(11) 

sage: H == heegner_points(13) 

False 

sage: H == heegner_points(11) 

True 

sage: H == 0 

False 

""" 

return isinstance(other, HeegnerPoints_level) and self.level() == other.level() 

 

def __ne__(self, other): 

""" 

EXAMPLES:: 

 

sage: H = heegner_points(11) 

sage: H != heegner_points(13) 

True 

sage: H != heegner_points(11) 

False 

sage: H != 0 

True 

""" 

return not (self == other) 

 

def _repr_(self): 

""" 

Return string representation of the set of Heegner points. 

 

EXAMPLES:: 

 

sage: heegner_points(389)._repr_() 

'Set of all Heegner points on X_0(389)' 

""" 

return "Set of all Heegner points on X_0(%s)"%self.level() 

 

def reduce_mod(self, ell): 

r""" 

Return object that allows for computation with Heegner points 

of level `N` modulo the prime `\ell`, represented using 

quaternion algebras. 

 

INPUT: 

 

- `\ell` -- prime 

 

EXAMPLES:: 

 

sage: heegner_points(389).reduce_mod(7).quaternion_algebra() 

Quaternion Algebra (-1, -7) with base ring Rational Field 

""" 

return HeegnerQuatAlg(self.level(), ell) 

 

def discriminants(self, n=10, weak=False): 

r""" 

Return the first `n` quadratic imaginary discriminants that 

satisfy the Heegner hypothesis for `N`. 

 

INPUT: 

 

- `n` -- nonnegative integer 

 

- ``weak`` -- bool (default: ``False``); if ``True`` only require 

weak Heegner hypothesis, which is the same as usual but 

without the condition that `\gcd(D,N)=1`. 

 

EXAMPLES:: 

 

sage: X = heegner_points(37) 

sage: X.discriminants(5) 

[-7, -11, -40, -47, -67] 

 

The default is 10:: 

 

sage: X.discriminants() 

[-7, -11, -40, -47, -67, -71, -83, -84, -95, -104] 

sage: X.discriminants(15) 

[-7, -11, -40, -47, -67, -71, -83, -84, -95, -104, -107, -115, -120, -123, -127] 

 

The discriminant -111 satisfies only the weak Heegner hypothesis, since it 

is divisible by 37:: 

 

sage: X.discriminants(15,weak=True) 

[-7, -11, -40, -47, -67, -71, -83, -84, -95, -104, -107, -111, -115, -120, -123] 

""" 

N = self.level() 

n = ZZ(n) 

v = [] 

D = ZZ(-4) 

while len(v) < n: 

D -= 1 

if satisfies_weak_heegner_hypothesis(N,D): 

# if not weak, then also require gcd(D,N)=1 

if not weak and D.gcd(N) != 1: 

continue 

v.append(D) 

return v 

 

class HeegnerPoints_level_disc(HeegnerPoints): 

""" 

Set of Heegner points of given level and all conductors associated 

to a quadratic imaginary field. 

 

EXAMPLES:: 

 

sage: H = heegner_points(389,-7); H 

Set of all Heegner points on X_0(389) associated to QQ[sqrt(-7)] 

sage: type(H) 

<class 'sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc'> 

sage: H._repr_() 

'Set of all Heegner points on X_0(389) associated to QQ[sqrt(-7)]' 

sage: H.discriminant() 

-7 

sage: H.quadratic_field() 

Number Field in sqrt_minus_7 with defining polynomial x^2 + 7 

sage: H.kolyvagin_conductors() 

[1, 3, 5, 13, 15, 17, 19, 31, 39, 41] 

 

sage: loads(dumps(H)) == H 

True 

""" 

def __init__(self, N, D): 

""" 

INPUT: 

 

- `N` -- positive integer 

 

- `D` -- negative fundamental discriminant 

 

EXAMPLES:: 

 

sage: sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc(37,-7) 

Set of all Heegner points on X_0(37) associated to QQ[sqrt(-7)] 

""" 

HeegnerPoints.__init__(self, N) 

D = ZZ(D) 

if not satisfies_weak_heegner_hypothesis(N,D): 

raise ValueError("D (=%s) must satisfy the weak Heegner hypothesis for N (=%s)"%(D,N)) 

self.__D = D 

 

def __eq__(self, other): 

""" 

EXAMPLES:: 

 

sage: H = heegner_points(389,-7) 

sage: H == heegner_points(389,-7) 

True 

sage: H == 0 

False 

sage: H == heegner_points(389,-11) 

False 

""" 

return isinstance(other, HeegnerPoints_level_disc) and \ 

self.level() == other.level() and self.__D == other.__D 

 

def __ne__(self, other): 

""" 

EXAMPLES:: 

 

sage: H = heegner_points(389,-7) 

sage: H != heegner_points(389,-7) 

False 

sage: H != 0 

True 

sage: H != heegner_points(389,-11) 

True 

""" 

return not (self == other) 

 

def _repr_(self): 

""" 

Return string representation of the set of Heegner points for a given 

quadratic field. 

 

EXAMPLES:: 

 

sage: heegner_points(389,-7)._repr_() 

'Set of all Heegner points on X_0(389) associated to QQ[sqrt(-7)]' 

""" 

return "Set of all Heegner points on X_0(%s) associated to QQ[sqrt(%s)]"%( 

self.level(), self.discriminant()) 

 

 

def discriminant(self): 

r""" 

Return the discriminant of the quadratic imaginary extension `K`. 

 

EXAMPLES:: 

 

sage: heegner_points(389,-7).discriminant() 

-7 

""" 

return self.__D 

 

@cached_method 

def quadratic_field(self): 

r""" 

Return the quadratic imaginary field `K = \QQ(\sqrt{D})`. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('389a'); K = E.heegner_point(-7,5).ring_class_field() 

sage: K.quadratic_field() 

Number Field in sqrt_minus_7 with defining polynomial x^2 + 7 

""" 

D = self.__D 

var = 'sqrt_minus_%s'%(-D) 

return number_field.QuadraticField(D,var) 

 

def kolyvagin_conductors(self, r=None, n=10, E=None, m=None): 

r""" 

Return the first `n` conductors that are squarefree products 

of distinct primes inert in the quadratic imaginary field 

`K = \QQ(\sqrt{D})`. If `r` is specified, return only 

conductors that are a product of `r` distinct primes all inert 

in `K`. If `r = 0`, always return the list ``[1]``, 

no matter what. 

 

If the optional elliptic curve `E` and integer `m` are given, 

then only include conductors `c` such that for each prime 

divisor `p` of `c` we have `m \mid \gcd(a_p(E), p+1)`. 

 

INPUT: 

 

- `r` -- (default: ``None``) nonnegative integer or ``None`` 

 

- `n` -- positive integer 

 

- `E` -- an elliptic curve 

 

- `m` -- a positive integer 

 

EXAMPLES:: 

 

sage: H = heegner_points(389,-7) 

sage: H.kolyvagin_conductors(0) 

[1] 

sage: H.kolyvagin_conductors(1) 

[3, 5, 13, 17, 19, 31, 41, 47, 59, 61] 

sage: H.kolyvagin_conductors(1,15) 

[3, 5, 13, 17, 19, 31, 41, 47, 59, 61, 73, 83, 89, 97, 101] 

sage: H.kolyvagin_conductors(1,5) 

[3, 5, 13, 17, 19] 

sage: H.kolyvagin_conductors(1,5,EllipticCurve('389a'),3) 

[5, 17, 41, 59, 83] 

sage: H.kolyvagin_conductors(2,5,EllipticCurve('389a'),3) 

[85, 205, 295, 415, 697] 

""" 

D = self.__D 

if not satisfies_weak_heegner_hypothesis(self.level(),D): 

raise ValueError("D must satisfy the weak Heegner hypothesis") 

n = ZZ(n) 

if n <= 0: 

raise ValueError("n must be a positive integer") 

if r is not None: 

r = ZZ(r) 

if r < 0: 

raise ValueError("n must be a nonnegative integer") 

if r == 0: 

return [ZZ(1)] 

 

c = ZZ(1) 

v = [] 

N = self.level() 

 

if E is not None: 

m = ZZ(m) 

 

while len(v) < n: 

if is_kolyvagin_conductor(N, E, D, r, m, c): 

v.append(c) 

c += 1 

 

return v 

 

 

def is_kolyvagin_conductor(N, E, D, r, n, c): 

r""" 

Return ``True`` if `c` is a Kolyvagin conductor for level `N`, 

discriminant `D`, mod `n`, etc., i.e., `c` is divisible by exactly 

`r` prime factors, is coprime to `ND`, each prime dividing `c` is 

inert, and if `E` is not ``None`` then `n | \gcd(p+1, a_p(E))` 

for each prime `p` dividing `c`. 

 

INPUT: 

 

- `N` -- level (positive integer) 

 

- `E` -- elliptic curve or ``None`` 

 

- `D` -- negative fundamental discriminant 

 

- `r` -- number of prime factors (nonnegative integer) or ``None`` 

 

- `n` -- torsion order (i.e., do we get class in `(E(K_c)/n E(K_c))^{Gal(K_c/K)}`?) 

 

- `c` -- conductor (positive integer) 

 

EXAMPLES:: 

 

sage: from sage.schemes.elliptic_curves.heegner import is_kolyvagin_conductor 

sage: is_kolyvagin_conductor(389,None,-7,1,None,5) 

True 

sage: is_kolyvagin_conductor(389,None,-7,1,None,7) 

False 

sage: is_kolyvagin_conductor(389,None,-7,1,None,11) 

False 

sage: is_kolyvagin_conductor(389,EllipticCurve('389a'),-7,1,3,5) 

True 

sage: is_kolyvagin_conductor(389,EllipticCurve('389a'),-7,1,11,5) 

False 

""" 

ND = N*D 

if ND.gcd(c) != 1: return False 

if not c.is_squarefree(): return False 

P = c.prime_factors() 

if r is not None and len(P) != r: 

return False 

# check that each prime in P is inert in K 

for p in P: 

if D.kronecker(p) != -1: 

return False 

if E is not None and n is not None: 

for p in P: 

if (p+1).gcd(E.ap(p)) % n != 0: 

return False 

return True 

 

 

class HeegnerPoints_level_disc_cond(HeegnerPoints_level, HeegnerPoints_level_disc): 

""" 

The set of Heegner points of given level, discriminant, and conductor. 

 

EXAMPLES:: 

 

sage: H = heegner_points(389,-7,5); H 

All Heegner points of conductor 5 on X_0(389) associated to QQ[sqrt(-7)] 

sage: type(H) 

<class 'sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc_cond'> 

sage: H.discriminant() 

-7 

sage: H.level() 

389 

 

sage: len(H.points()) 

12 

sage: H.points()[0] 

Heegner point 5/778*sqrt(-7) - 147/778 of discriminant -7 and conductor 5 on X_0(389) 

sage: H.betas() 

(147, 631) 

 

sage: H.quadratic_field() 

Number Field in sqrt_minus_7 with defining polynomial x^2 + 7 

sage: H.ring_class_field() 

Ring class field extension of QQ[sqrt(-7)] of conductor 5 

 

sage: H.kolyvagin_conductors() 

[1, 3, 5, 13, 15, 17, 19, 31, 39, 41] 

sage: H.satisfies_kolyvagin_hypothesis() 

True 

 

sage: H = heegner_points(389,-7,5) 

sage: loads(dumps(H)) == H 

True 

""" 

def __init__(self, N, D, c=ZZ(1)): 

""" 

Create set of Heegner points. 

 

INPUT: 

 

- `N` -- positive integer (the level) 

 

- `D` -- negative fundamental discriminant 

 

- `c` -- conductor (default: 1) 

 

EXAMPLES:: 

 

sage: H = heegner_points(389,-7,5); H 

All Heegner points of conductor 5 on X_0(389) associated to QQ[sqrt(-7)] 

sage: type(H) 

<class 'sage.schemes.elliptic_curves.heegner.HeegnerPoints_level_disc_cond'> 

""" 

HeegnerPoints_level.__init__(self, N) 

HeegnerPoints_level_disc.__init__(self, N, D) 

self.__c = ZZ(c) 

 

def __eq__(self, other): 

""" 

EXAMPLES:: 

 

sage: H = heegner_points(389,-7, 3) 

sage: H == heegner_points(389,-7, 3) 

True 

sage: H == heegner_points(389,-7, 1) 

False 

sage: H == 0 

False 

""" 

return isinstance(other, HeegnerPoints_level_disc_cond) and \ 

self.level() == other.level() and self.discriminant() == other.discriminant() \ 

and self.conductor() == other.conductor() 

 

def __ne__(self, other): 

""" 

EXAMPLES:: 

 

sage: H = heegner_points(389,-7, 3) 

sage: H != heegner_points(389,-7, 3) 

False 

sage: H != heegner_points(389,-7, 1) 

True 

sage: H != 0 

True 

""" 

return not (self == other) 

 

def _repr_(self): 

""" 

Return string representation of this set of Heegner points. 

 

EXAMPLES:: 

 

sage: H = heegner_points(37,-7,5); H._repr_() 

'All Heegner points of conductor 5 on X_0(37) associated to QQ[sqrt(-7)]' 

""" 

return "All Heegner points of conductor %s on X_0(%s) associated to QQ[sqrt(%s)]"%( 

self.conductor(), self.level(), self.discriminant()) 

 

def conductor(self): 

""" 

Return the level of the conductor. 

 

EXAMPLES:: 

 

sage: heegner_points(389,-7,5).conductor() 

5 

""" 

return self.__c 

 

@cached_method 

def satisfies_kolyvagin_hypothesis(self): 

""" 

Return ``True`` if ``self`` satisfies the Kolyvagin hypothesis, i.e., 

that each prime dividing the conductor `c` of ``self`` is inert in 

`K` and coprime to `ND`. 

 

EXAMPLES: 

 

The prime 5 is inert, but the prime 11 is not:: 

 

sage: heegner_points(389,-7,5).satisfies_kolyvagin_hypothesis() 

True 

sage: heegner_points(389,-7,11).satisfies_kolyvagin_hypothesis() 

False 

""" 

return is_kolyvagin_conductor(N=self.level(), E=None, D=self.discriminant(), 

r=None, n=None, c=self.conductor()) 

 

@cached_method 

def ring_class_field(self): 

""" 

Return the ring class field associated to this set of Heegner 

points. This is an extension `K_c` over `K`, where `K` is the 

quadratic imaginary field and `c` the conductor associated to 

this Heegner point. This Heegner point is defined over `K_c` 

and the Galois group `Gal(K_c/K)` acts transitively on the 

Galois conjugates of this Heegner point. 

 

EXAMPLES:: 

 

sage: heegner_points(389,-7,5).ring_class_field() 

Ring class field extension of QQ[sqrt(-7)] of conductor 5 

""" 

return RingClassField(self.discriminant(), self.conductor()) 

 

def __getitem__(self, i): 

""" 

Return the `i`-th Heegner point. 

 

EXAMPLES:: 

 

sage: H = heegner_points(389,-7,5) 

sage: len(H) 

12 

sage: H[0] 

Heegner point 5/778*sqrt(-7) - 147/778 of discriminant -7 and conductor 5 on X_0(389) 

sage: H[-1] 

Heegner point 5/5446*sqrt(-7) - 757/778 of discriminant -7 and conductor 5 on X_0(389) 

""" 

return self.points()[i] 

 

def __len__(self): 

""" 

Return the number of Heegner points. 

 

EXAMPLES:: 

 

sage: len(heegner_points(389,-7,5)) 

12 

 

When the conductor is 1 the length is a power of 2 (number of 

square roots of `D` mod `4N` reduced mod `2N`) times the class 

number:: 

 

sage: len(heegner_points(389,-20,1)) 

4 

sage: QQ[sqrt(-20)].class_number() 

2 

""" 

return len(self.points()) 

 

@cached_method 

def betas(self): 

""" 

Return the square roots of `D c^2` modulo `4 N` all reduced 

mod `2 N`, without multiplicity. 

 

EXAMPLES:: 

 

sage: X = heegner_points(45,-11,1); X 

All Heegner points of conductor 1 on X_0(45) associated to QQ[sqrt(-11)] 

sage: [x.quadratic_form() for x in X] 

[45*x^2 + 13*x*y + y^2, 

45*x^2 + 23*x*y + 3*y^2, 

45*x^2 + 67*x*y + 25*y^2, 

45*x^2 + 77*x*y + 33*y^2] 

sage: X.betas() 

(13, 23, 67, 77) 

sage: X.points(13) 

(Heegner point 1/90*sqrt(-11) - 13/90 of discriminant -11 on X_0(45),) 

sage: [x.quadratic_form() for x in X.points(13)] 

[45*x^2 + 13*x*y + y^2] 

""" 

c = self.__c 

D = self.discriminant()*c*c 

N = self.level() 

R = Integers(4*N) 

m = 2*N 

return tuple(sorted( set([a%m for a in R(D).sqrt(all=True)]) )) 

 

 

@cached_method 

def points(self, beta=None): 

r""" 

Return the Heegner points in ``self``. If `\beta` is given, 

return only those Heegner points with given `\beta`, i.e., 

whose quadratic form has `B` congruent to `\beta` modulo `2 N`. 

 

Use ``self.beta()`` to get a list of betas. 

 

EXAMPLES:: 

 

sage: H = heegner_points(389,-7,5); H 

All Heegner points of conductor 5 on X_0(389) associated to QQ[sqrt(-7)] 

sage: H.points() 

(Heegner point 5/778*sqrt(-7) - 147/778 of discriminant -7 and conductor 5 on X_0(389), ..., Heegner point 5/5446*sqrt(-7) - 757/778 of discriminant -7 and conductor 5 on X_0(389)) 

sage: H.betas() 

(147, 631) 

sage: [x.tau() for x in H.points(147)] 

[5/778*sqrt_minus_7 - 147/778, 5/1556*sqrt_minus_7 - 147/1556, 5/1556*sqrt_minus_7 - 925/1556, 5/3112*sqrt_minus_7 - 1703/3112, 5/3112*sqrt_minus_7 - 2481/3112, 5/5446*sqrt_minus_7 - 21/778] 

 

sage: [x.tau() for x in H.points(631)] 

[5/778*sqrt_minus_7 - 631/778, 5/1556*sqrt_minus_7 - 631/1556, 5/1556*sqrt_minus_7 - 1409/1556, 5/3112*sqrt_minus_7 - 631/3112, 5/3112*sqrt_minus_7 - 1409/3112, 5/5446*sqrt_minus_7 - 757/778] 

 

The result is cached and is a tuple (since it is immutable):: 

 

sage: H.points() is H.points() 

True 

sage: type(H.points()) 

<... 'tuple'> 

""" 

if beta is None: 

SDN = self.betas() 

return tuple(sorted(sum([list(self.points(b)) for b in SDN], []))) 

 

c = self.conductor() 

N = self.level() 

D = self.discriminant() 

b = ZZ(beta) % (2*N) 

 

disc = D*c*c 

 

U = [] 

R = [] 

h = self.ring_class_field().degree_over_K() 

a = 1 

while len(U) < h: 

if c.gcd(a) != 1: 

a += 1 

continue 

# todo (optimize) -- replace for over all s with for over solution set 

y = ZZ((b*b - disc)/(4*N)) 

for s in Integers(a): 

if N*s*s + b*s + y == 0: 

s = s.lift() 

f = (a*N, b+2*N*s, ZZ( ((b + 2*N*s)**2 - disc)/(4*a*N)) ) 

g = BinaryQF(f).reduced_form() 

assert g.discriminant() == disc 

if g not in U: 

U.append(g) 

R.append(HeegnerPointOnX0N(N,D,c,f)) 

if len(U) >= h: break 

a += 1 

return tuple(sorted(R)) 

 

def plot(self, *args, **kwds): 

""" 

Returns plot of all the representatives in the upper half 

plane of the Heegner points in this set of Heegner points. 

 

The inputs to this function get passed onto the point command. 

 

EXAMPLES:: 

 

sage: heegner_points(389,-7,5).plot(pointsize=50, rgbcolor='red') 

Graphics object consisting of 12 graphics primitives 

sage: heegner_points(53,-7,15).plot(pointsize=50, rgbcolor='purple') 

Graphics object consisting of 48 graphics primitives 

""" 

return sum(z.plot(*args, **kwds) for z in self) 

 

 

class HeegnerPointOnX0N(HeegnerPoint): 

r""" 

A Heegner point as a point on the modular curve `X_0(N)`, which we 

view as the upper half plane modulo the action of `\Gamma_0(N)`. 

 

EXAMPLES:: 

 

sage: x = heegner_point(37,-7,5); x 

Heegner point 5/74*sqrt(-7) - 11/74 of discriminant -7 and conductor 5 on X_0(37) 

sage: type(x) 

<class 'sage.schemes.elliptic_curves.heegner.HeegnerPointOnX0N'> 

sage: x.level() 

37 

sage: x.conductor() 

5 

sage: x.discriminant() 

-7 

sage: x.quadratic_field() 

Number Field in sqrt_minus_7 with defining polynomial x^2 + 7 

sage: x.quadratic_form() 

37*x^2 + 11*x*y + 2*y^2 

sage: x.quadratic_order() 

Order in Number Field in sqrt_minus_7 with defining polynomial x^2 + 7 

sage: x.tau() 

5/74*sqrt_minus_7 - 11/74 

sage: loads(dumps(x)) == x 

True 

""" 

def __init__(self, N, D, c=ZZ(1), f=None, check=True): 

r""" 

INPUT: 

 

- `N` -- positive integer 

 

- `D` -- fundamental discriminant, a negative integer 

 

- `c` -- conductor, a positive integer coprime to `N` 

 

- `f` -- binary quadratic form, 3-tuple `(A,B,C)` of coefficients 

of `AX^2 + BXY + CY^2`, or element of quadratic imaginary 

field `\QQ(\sqrt{D})` in the upper half plan. 

 

- ``check`` -- bool, default: ``True``. should not be used 

except internally. 

 

 

EXAMPLES:: 

 

sage: x = heegner_point(389, -7, 5); x 

Heegner point 5/778*sqrt(-7) - 147/778 of discriminant -7 and conductor 5 on X_0(389) 

sage: type(x) 

<class 'sage.schemes.elliptic_curves.heegner.HeegnerPointOnX0N'> 

sage: sage.schemes.elliptic_curves.heegner.HeegnerPointOnX0N(389, -7, 5, None, check=False) 

Heegner point 5/778*sqrt(-7) - 147/778 of discriminant -7 and conductor 5 on X_0(389) 

""" 

if check: 

N = ZZ(N); D = ZZ(D); c = ZZ(c) 

if c.gcd(N) != 1: 

raise ValueError("conductor c (=%s) must be coprime to N (=%s)" % (c, N)) 

if not satisfies_weak_heegner_hypothesis(N, D): 

raise ValueError("N (=%s) and D (=%s) must satisfy the Heegner hypothesis"%(N, D)) 

if f is not None: 

if isinstance(f, tuple): 

if len(f) != 3: 

raise ValueError("if f is a tuple, it must have length 3") 

f = tuple(ZZ(a) for a in f) 

elif isinstance(f, BinaryQF): 

# convert from BinaryQF 

f = tuple(f) 

elif sage.rings.number_field.number_field_element.is_NumberFieldElement(f): 

# tau = number field element 

g = f.minpoly() 

if g.degree() != 2: 

raise TypeError("number field element f must have degree 2") 

g *= g.denominator() # make integral 

f = (ZZ(g[2]), ZZ(g[1]), ZZ(g[0])) 

else: 

raise TypeError("f must be a 3-tuple, quadratic form, or element of the upper half plane") 

A, B, C = f 

if B*B - 4*A*C != D*c*c: 

raise ValueError("f (=%s) must have discriminant %s"%(f, D*c*c)) 

HeegnerPoint.__init__(self, N, D, c) 

if f is None: 

# We know that N|A, so A = N is optimal. 

A = N 

B = ZZ(Integers(4*N)(D*c*c).sqrt(extend=False) % (2*N)) 

C = ZZ((B*B - D*c*c)/(4*A)) 

f = (A,B,C) 

self.__f = f 

 

 

def __hash__(self): 

""" 

The hash is obtained from the hash provided by :class:`HeegnerPoint`, 

together with the reduced quadratic form. 

 

EXAMPLES:: 

 

sage: x = heegner_point(37,-7,5) 

sage: from sage.schemes.elliptic_curves.heegner import HeegnerPoint 

sage: hash(x) == hash( (HeegnerPoint.__hash__(x), x.reduced_quadratic_form()) ) 

True 

""" 

return hash((HeegnerPoint.__hash__(self), self.reduced_quadratic_form())) 

 

def __richcmp__(self, x, op): 

""" 

Compare two Heegner points with character. 

 

EXAMPLES:: 

 

sage: x1 = EllipticCurve('389a').heegner_point(-7).heegner_point_on_X0N() 

sage: x5 = EllipticCurve('389a').heegner_point(-7,5).heegner_point_on_X0N() 

sage: x1 == x1 

True 

sage: x1 < x5 

True 

sage: x5 > x1 

True 

""" 

if not isinstance(x, HeegnerPointOnX0N): 

return NotImplemented 

return richcmp((self.level(), self.discriminant(), 

self.conductor(), self.__f), 

(x.level(), x.discriminant(), 

x.conductor(), x.__f), op) 

 

def _repr_(self): 

""" 

Return string representation of this Heegner point. 

 

EXAMPLES:: 

 

sage: x = heegner_point(37,-7,5); x._repr_() 

'Heegner point 5/74*sqrt(-7) - 11/74 of discriminant -7 and conductor 5 on X_0(37)' 

""" 

c = self.conductor() 

s = " and conductor %s"%c if c != 1 else "" 

N = self.level() 

D = self.discriminant() 

tau = repr(self.tau()).replace('sqrt_minus_%s'%(-D),'sqrt(%s)'%D) 

return "Heegner point %s of discriminant %s%s on X_0(%s)"%(tau, D, s, N) 

 

def atkin_lehner_act(self, Q=None): 

r""" 

Given an integer Q dividing the level N such that `\gcd(Q, N/Q) = 1`, returns the 

image of this Heegner point under the Atkin-Lehner operator `W_Q`. 

 

INPUT: 

 

- `Q` -- positive divisor of `N`; if not given, default to `N` 

 

EXAMPLES:: 

 

sage: x = heegner_point(389,-7,5) 

sage: x.atkin_lehner_act() 

Heegner point 5/199168*sqrt(-7) - 631/199168 of discriminant -7 and conductor 5 on X_0(389) 

 

sage: x = heegner_point(45,D=-11,c=1); x 

Heegner point 1/90*sqrt(-11) - 13/90 of discriminant -11 on X_0(45) 

sage: x.atkin_lehner_act(5) 

Heegner point 1/90*sqrt(-11) + 23/90 of discriminant -11 on X_0(45) 

sage: y = x.atkin_lehner_act(9); y 

Heegner point 1/90*sqrt(-11) - 23/90 of discriminant -11 on X_0(45) 

sage: z = y.atkin_lehner_act(9); z 

Heegner point 1/90*sqrt(-11) - 13/90 of discriminant -11 on X_0(45) 

sage: z == x 

True 

""" 

N = self.level() 

if Q is None: 

Q = N 

if Q == 1: 

return self # trivial special case 

g, u, v = xgcd(Q*Q, -N) 

if g != Q: 

raise ValueError("Q must divide N and be coprime to N/Q") 

tau = self.tau() 

WQ_tau = ((u*Q*tau + v) / (N*tau + Q)) 

return HeegnerPointOnX0N(N, self.discriminant(), self.conductor(), f=WQ_tau, check=True) 

 

 

@cached_method 

def quadratic_form(self): 

""" 

Return the integral primitive positive-definite binary 

quadratic form associated to this Heegner point. 

 

EXAMPLES:: 

 

sage: heegner_point(389,-7,5).quadratic_form() 

389*x^2 + 147*x*y + 14*y^2 

""" 

# It is good/important that this return a copy, since 

# BinaryQF's stupidly are mutable and cannot be made immutable. 

# In particular, they have a stupid reduce method that changes 

# them in place. 

return BinaryQF(self.__f) 

 

def reduced_quadratic_form(self): 

""" 

Return reduced binary quadratic corresponding to this Heegner point. 

 

EXAMPLES:: 

 

sage: x = heegner_point(389,-7,5) 

sage: x.quadratic_form() 

389*x^2 + 147*x*y + 14*y^2 

sage: x.reduced_quadratic_form() 

4*x^2 - x*y + 11*y^2 

""" 

return self.quadratic_form().reduced_form() 

 

@cached_method 

def tau(self): 

""" 

Return an element ``tau`` in the upper half plane that corresponds 

to this particular Heegner point. 

 

Actually, ``tau`` is in the quadratic imaginary field K associated 

to this Heegner point. 

 

EXAMPLES:: 

 

sage: x = heegner_point(37,-7,5); tau = x.tau(); tau 

5/74*sqrt_minus_7 - 11/74 

sage: 37 * tau.minpoly() 

37*x^2 + 11*x + 2 

sage: x.quadratic_form() 

37*x^2 + 11*x*y + 2*y^2 

""" 

K = self.quadratic_field() 

d = K.gen() * self.conductor() 

A, B, _ = self.__f 

return (-B + d) / (2 * A) 

 

def map_to_curve(self, E): 

""" 

Return the image of this Heegner point on the elliptic curve 

`E`, which must also have conductor `N`, where `N` is the 

level of ``self``. 

 

EXAMPLES:: 

 

sage: x = heegner_point(389,-7,5); x 

Heegner point 5/778*sqrt(-7) - 147/778 of discriminant -7 and conductor 5 on X_0(389) 

sage: y = x.map_to_curve(EllipticCurve('389a')); y 

Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor 389 

sage: y.curve().cremona_label() 

'389a1' 

sage: y.heegner_point_on_X0N() 

Heegner point 5/778*sqrt(-7) - 147/778 of discriminant -7 and conductor 5 on X_0(389) 

 

You can also directly apply the modular parametrization of the elliptic curve:: 

 

sage: x = heegner_point(37,-7); x 

Heegner point 1/74*sqrt(-7) - 17/74 of discriminant -7 on X_0(37) 

sage: E = EllipticCurve('37a'); phi = E.modular_parametrization() 

sage: phi(x) 

Heegner point of discriminant -7 on elliptic curve of conductor 37 

""" 

return HeegnerPointOnEllipticCurve(E, self) 

 

@cached_method 

def galois_orbit_over_K(self): 

r""" 

Return the `Gal(K_c/K)`-orbit of this Heegner point. 

 

EXAMPLES:: 

 

sage: x = heegner_point(389,-7,3); x 

Heegner point 3/778*sqrt(-7) - 223/778 of discriminant -7 and conductor 3 on X_0(389) 

sage: x.galois_orbit_over_K() 

[Heegner point 3/778*sqrt(-7) - 223/778 of discriminant -7 and conductor 3 on X_0(389), Heegner point 3/1556*sqrt(-7) - 223/1556 of discriminant -7 and conductor 3 on X_0(389), Heegner point 3/1556*sqrt(-7) - 1001/1556 of discriminant -7 and conductor 3 on X_0(389), Heegner point 3/3112*sqrt(-7) - 223/3112 of discriminant -7 and conductor 3 on X_0(389)] 

""" 

c = self.conductor() 

N = self.level() 

D = self.discriminant() 

b = self.__f[1] % (2*N) # B 

 

disc = D*c*c 

 

U = [] 

R = [] 

h = self.ring_class_field().degree_over_K() 

a = 1 

while len(U) < h: 

if c.gcd(a) != 1: 

a += 1 

continue 

# todo (optimize) -- replace for over all s with for over solution set 

y = ZZ((b*b - disc)/(4*N)) 

for s in Integers(a): 

if N*s*s + b*s + y == 0: 

s = s.lift() 

f = (a*N, b+2*N*s, ZZ( ((b + 2*N*s)**2 - disc)/(4*a*N)) ) 

g = BinaryQF(f).reduced_form() 

assert g.discriminant() == disc 

if g not in U: 

U.append(g) 

R.append(HeegnerPointOnX0N(N,D,c,f)) 

a += 1 

return R 

 

def plot(self, **kwds): 

r""" 

Draw a point at `(x,y)` where this Heegner point is 

represented by the point `\tau = x + i y` in the upper half 

plane. 

 

The ``kwds`` get passed onto the point plotting command. 

 

EXAMPLES:: 

 

sage: heegner_point(389,-7,1).plot(pointsize=50) 

Graphics object consisting of 1 graphics primitive 

""" 

from sage.plot.all import point 

return point(CDF(self.tau()), **kwds) 

 

 

class HeegnerPointOnEllipticCurve(HeegnerPoint): 

""" 

A Heegner point on a curve associated to an order in a quadratic 

imaginary field. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('37a'); P = E.heegner_point(-7,5); P 

Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor 37 

sage: type(P) 

<class 'sage.schemes.elliptic_curves.heegner.HeegnerPointOnEllipticCurve'> 

""" 

def __init__(self, E, x, check=True): 

r""" 

INPUT: 

 

- `E` -- an elliptic curve over the rational numbers 

 

- `x` -- Heegner point on `X_0(N)` 

 

- ``check`` -- bool (default: ``True``); if ``True``, ensure that `D`, 

`c` are of type Integer and define a Heegner point 

on `E` 

 

EXAMPLES:: 

 

sage: x = heegner_point(389,-7,5) 

sage: E = EllipticCurve('389a') 

sage: sage.schemes.elliptic_curves.heegner.HeegnerPointOnEllipticCurve(E, x) 

Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor 389 

""" 

if check: 

if E.conductor() != x.level(): 

raise ValueError("conductor of curve must equal level of Heegner point") 

self.__E = E 

self.__x = x 

HeegnerPoint.__init__(self, x.level(), x.discriminant(), x.conductor()) 

 

@cached_method 

def satisfies_kolyvagin_hypothesis(self, n=None): 

""" 

Return ``True`` if this Heegner point and `n` satisfy the 

Kolyvagin hypothesis, i.e., that each prime dividing the 

conductor `c` of ``self`` is inert in K and coprime to `ND`. 

Moreover, if `n` is not ``None``, also check that for each prime 

`p` dividing `c` we have that `n | \gcd(a_p(E), p+1)`. 

 

INPUT: 

 

`n` -- positive integer 

 

EXAMPLES:: 

 

sage: EllipticCurve('389a').heegner_point(-7).satisfies_kolyvagin_hypothesis() 

True 

sage: EllipticCurve('389a').heegner_point(-7,5).satisfies_kolyvagin_hypothesis() 

True 

sage: EllipticCurve('389a').heegner_point(-7,11).satisfies_kolyvagin_hypothesis() 

False 

""" 

if n is not None: 

n = ZZ(n) 

if n <= 0: raise ValueError("n must be a positive integer") 

return is_kolyvagin_conductor(N=self.level(), E=self.__E, D=self.discriminant(), 

r=None, n=n, c=self.conductor()) 

 

def __hash__(self): 

""" 

The hash value is obtained from the elliptic curve and the Heegner 

point on `X_0(N)`. 

 

EXAMPLES:: 

 

sage: x = EllipticCurve('389a').heegner_point(-7,5) 

sage: hash(x) == hash( (x.curve(), x.heegner_point_on_X0N()) ) 

True 

""" 

return hash((self.__E, self.__x)) 

 

def __eq__(self, right): 

""" 

EXAMPLES:: 

 

sage: y1 = EllipticCurve('389a').heegner_point(-7) 

sage: y5 = EllipticCurve('389a').heegner_point(-7,5) 

sage: y1 == y1 

True 

sage: y5 == y5 

True 

sage: y1 == y5 

False 

sage: y1 == 10 

False 

""" 

return isinstance(right, HeegnerPointOnEllipticCurve) and \ 

(self.__E, self.__x) == (right.__E, right.__x) 

 

def __ne__(self, other): 

""" 

EXAMPLES:: 

 

sage: y1 = EllipticCurve('389a').heegner_point(-7) 

sage: y5 = EllipticCurve('389a').heegner_point(-7,5) 

sage: y1 != y1 

False 

sage: y5 != y5 

False 

sage: y1 != y5 

True 

sage: y1 != 10 

True 

""" 

return not (self == other) 

 

def _repr_(self): 

""" 

Return string representation of this Heegner point. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('389a'); P = E.heegner_point(-7, 97) 

sage: P._repr_() 

'Heegner point of discriminant -7 and conductor 97 on elliptic curve of conductor 389' 

""" 

s = " and conductor %s"%self.conductor() if self.conductor() != 1 else "" 

N = self.__E.conductor() 

return "Heegner point of discriminant %s%s on elliptic curve of conductor %s"%(self.discriminant(), s, N) 

 

def heegner_point_on_X0N(self): 

r""" 

Return Heegner point on `X_0(N)` that maps to this Heegner point on `E`. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('37a'); P = E.heegner_point(-7,5); P 

Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor 37 

sage: P.heegner_point_on_X0N() 

Heegner point 5/74*sqrt(-7) - 11/74 of discriminant -7 and conductor 5 on X_0(37) 

""" 

return self.__x 

 

def map_to_complex_numbers(self, prec=53): 

""" 

Return the point in the subfield `M` of the complex numbers 

(well defined only modulo the period lattice) corresponding to 

this Heegner point. 

 

EXAMPLES: 

 

We compute a nonzero Heegner point over a ring class field on 

a curve of rank 2:: 

 

sage: E = EllipticCurve('389a'); y = E.heegner_point(-7,5) 

sage: y.map_to_complex_numbers() 

1.49979679635196 + 0.369156204821526*I 

sage: y.map_to_complex_numbers(100) 

1.4997967963519640592142411892 + 0.36915620482152626830089145962*I 

sage: y.map_to_complex_numbers(10) 

1.5 + 0.37*I 

 

Here we see that the Heegner point is 0 since it lies in the 

lattice:: 

 

sage: E = EllipticCurve('389a'); y = E.heegner_point(-7) 

sage: y.map_to_complex_numbers(10) 

0.0034 - 3.9*I 

sage: y.map_to_complex_numbers() 

4.71844785465692e-15 - 3.94347540310330*I 

sage: E.period_lattice().basis() 

(2.49021256085505, 1.97173770155165*I) 

sage: 2*E.period_lattice().basis()[1] 

3.94347540310330*I 

 

You can also directly coerce to the complex field:: 

 

sage: E = EllipticCurve('389a'); y = E.heegner_point(-7) 

sage: z = ComplexField(100)(y); z # real part approx. 0 

-... - 3.9434754031032964088448153963*I 

sage: E.period_lattice().elliptic_exponential(z) 

(0.00000000000000000000000000000 : 1.0000000000000000000000000000 : 0.00000000000000000000000000000) 

""" 

phi = self.__E.modular_parametrization() 

tau = self.heegner_point_on_X0N().tau() 

return phi.map_to_complex_numbers(tau, prec) 

 

def _complex_mpfr_field_(self, C): 

""" 

Used internally for coercing Heegner point to a complex field. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('37a'); y = E.heegner_point(-7) 

sage: CC(y) # indirect doctest 

0.929592715285395 - 1.22569469099340*I 

sage: ComplexField(100)(y) 

0.92959271528539567440519934446 - 1.2256946909933950304271124159*I 

""" 

phi = self.__E.modular_parametrization() 

tau = C(self.heegner_point_on_X0N().tau()) 

return phi.map_to_complex_numbers(tau) 

 

@cached_method 

def kolyvagin_point(self): 

""" 

Return the Kolyvagin point corresponding to this Heegner 

point. 

 

This is the point obtained by applying the Kolyvagin 

operator `J_c I_c` in the group ring of the Galois group to 

this Heegner point. It is a point that defines an element 

of `H^1(K, E[n])`, under certain hypotheses on `n`. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('37a1'); y = E.heegner_point(-7); y 

Heegner point of discriminant -7 on elliptic curve of conductor 37 

sage: P = y.kolyvagin_point(); P 

Kolyvagin point of discriminant -7 on elliptic curve of conductor 37 

sage: P.numerical_approx() # abs tol 1e-15 

(-3.36910401903861e-16 - 2.22076195576076e-16*I : 3.33066907387547e-16 + 2.22076195576075e-16*I : 1.00000000000000) 

""" 

return KolyvaginPoint(self) 

 

@cached_method 

def _trace_index(self, *args, **kwds): 

""" 

Return index of the trace of this Heegner point down to `K` in 

the group of `K`-rational points. 

 

IMPORTANT: See the help for ``E=self.curve(); E.index?`` for 

the inputs to this function and more details about what is 

computed. In particular, the returned index can be off at 2. 

 

OUTPUT: 

 

- ``Integer`` -- returns an integer 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('77a1') 

sage: P = E.heegner_point(-19); y = P._trace_numerical_conductor_1(); [c.real() for c in y] 

[-1.2...e-16, -1.00000000000000, 1.00000000000000] 

sage: -2*E.gens()[0] 

(0 : -1 : 1) 

sage: P._trace_index() 

2 

 

sage: P = E.heegner_point(-68); P 

Heegner point of discriminant -68 on elliptic curve of conductor 77 

sage: N(P) 

(0.219223593595584 - 1.87443160153148*I : -1.34232921921325 - 1.52356748877889*I : 1.00000000000000) 

sage: P._trace_index() 

0 

""" 

if self.conductor() != 1: 

raise ValueError("conductor of Heegner point must be 1") 

i = self.__E.heegner_index(self.discriminant(), *args, **kwds) 

lower = i.lower().round() 

upper = i.upper().round() 

if lower == upper: 

return lower 

# here we would say raise precision somehow. 

raise NotImplementedError("unable to compute index") 

 

def curve(self): 

""" 

Return the elliptic curve on which this is a Heegner point. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('389a'); P = E.heegner_point(-7, 5) 

sage: P.curve() 

Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field 

sage: P.curve() is E 

True 

""" 

return self.__E 

 

@cached_method 

def quadratic_form(self): 

""" 

Return the integral primitive positive definite binary 

quadratic form associated to this Heegner point. 

 

 

EXAMPLES:: 

 

sage: EllipticCurve('389a').heegner_point(-7, 5).quadratic_form() 

389*x^2 + 147*x*y + 14*y^2 

 

sage: P = EllipticCurve('389a').heegner_point(-7, 5, (778,925,275)); P 

Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor 389 

sage: P.quadratic_form() 

778*x^2 + 925*x*y + 275*y^2 

""" 

return self.__x.quadratic_form() 

 

@cached_method 

def numerical_approx(self, prec=53, algorithm=None): 

""" 

Return a numerical approximation to this Heegner point 

computed using a working precision of prec bits. 

 

.. WARNING:: 

 

The answer is *not* provably correct to prec bits! A 

priori, due to rounding and other errors, it is possible that 

not a single digit is correct. 

 

INPUT: 

 

- prec -- (default: ``None``) the working precision 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('37a'); P = E.heegner_point(-7); P 

Heegner point of discriminant -7 on elliptic curve of conductor 37 

sage: P.numerical_approx() # abs tol 1e-15 

(-3.36910401903861e-16 - 2.22076195576076e-16*I : 3.33066907387547e-16 + 2.22076195576075e-16*I : 1.00000000000000) 

sage: P.numerical_approx(10) # expect random digits 

(0.0030 - 0.0028*I : -0.0030 + 0.0028*I : 1.0) 

sage: P.numerical_approx(100)[0] # expect random digits 

8.4...e-31 + 6.0...e-31*I 

sage: E = EllipticCurve('37a'); P = E.heegner_point(-40); P 

Heegner point of discriminant -40 on elliptic curve of conductor 37 

sage: P.numerical_approx() # abs tol 1e-14 

(-3.15940603400359e-16 + 1.41421356237309*I : 1.00000000000000 - 1.41421356237309*I : 1.00000000000000) 

 

A rank 2 curve, where all Heegner points of conductor 1 are 0:: 

 

sage: E = EllipticCurve('389a'); E.rank() 

2 

sage: P = E.heegner_point(-7); P 

Heegner point of discriminant -7 on elliptic curve of conductor 389 

sage: P.numerical_approx() 

(0.000000000000000 : 1.00000000000000 : 0.000000000000000) 

 

However, Heegner points of bigger conductor are often nonzero:: 

 

sage: E = EllipticCurve('389a'); P = E.heegner_point(-7, 5); P 

Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor 389 

sage: numerical_approx(P) 

(0.675507556926806 + 0.344749649302635*I : -0.377142931401887 + 0.843366227137146*I : 1.00000000000000) 

sage: P.numerical_approx() 

(0.6755075569268... + 0.3447496493026...*I : -0.3771429314018... + 0.8433662271371...*I : 1.00000000000000) 

sage: E.heegner_point(-7, 11).numerical_approx() 

(0.1795583794118... + 0.02035501750912...*I : -0.5573941377055... + 0.2738940831635...*I : 1.00000000000000) 

sage: E.heegner_point(-7, 13).numerical_approx() 

(1.034302915374... - 3.302744319777...*I : 1.323937875767... + 6.908264226850...*I : 1.00000000000000) 

 

We find (probably) the definining polynomial of the 

`x`-coordinate of `P`, which defines a class field. The shape of 

the discriminant below is strong confirmation -- but not proof 

-- that this polynomial is correct:: 

 

sage: f = P.numerical_approx(70)[0].algdep(6); f 

1225*x^6 + 1750*x^5 - 21675*x^4 - 380*x^3 + 110180*x^2 - 129720*x + 48771 

sage: f.discriminant().factor() 

2^6 * 3^2 * 5^11 * 7^4 * 13^2 * 19^6 * 199^2 * 719^2 * 26161^2 

""" 

tau = ComplexField(prec)(self.tau()) 

E = self.curve() 

return E.modular_parametrization()(tau) 

 

def tau(self): 

r""" 

Return `\tau` in the upper half plane that maps via the 

modular parametrization to this Heegner point. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('389a'); P = E.heegner_point(-7, 5) 

sage: P.tau() 

5/778*sqrt_minus_7 - 147/778 

""" 

return self.heegner_point_on_X0N().tau() 

 

@cached_method 

def x_poly_exact(self, prec=53, algorithm='lll'): 

""" 

Return irreducible polynomial over the rational numbers 

satisfied by the `x` coordinate of this Heegner point. A 

ValueError is raised if the precision is clearly insignificant 

to define a point on the curve. 

 

.. WARNING:: 

 

It is in theory possible for this function to not raise a 

ValueError, find a polynomial, but via some very unlikely 

coincidence that point is not actually this Heegner point. 

 

INPUT: 

 

- ``prec`` -- integer (default: 53) 

 

- ``algorithm`` -- 'conjugates' or 'lll' (default); if 

'conjugates', compute numerically all the 

conjugates ``y[i]`` of the Heegner point and construct 

the characteristic polynomial as the product 

`f(X)=(X-y[i])`. If 'lll', compute only one of the 

conjugates ``y[0]``, then uses the LLL algorithm to 

guess `f(X)`. 

 

 

EXAMPLES: 

 

We compute some `x`-coordinate polynomials of some conductor 1 

Heegner points:: 

 

sage: E = EllipticCurve('37a') 

sage: v = E.heegner_discriminants_list(10) 

sage: [E.heegner_point(D).x_poly_exact() for D in v] 

[x, x, x^2 + 2, x^5 - x^4 + x^3 + x^2 - 2*x + 1, x - 6, x^7 - 2*x^6 + 9*x^5 - 10*x^4 - x^3 + 8*x^2 - 5*x + 1, x^3 + 5*x^2 + 10*x + 4, x^4 - 10*x^3 + 10*x^2 + 12*x - 12, x^8 - 5*x^7 + 7*x^6 + 13*x^5 - 10*x^4 - 4*x^3 + x^2 - 5*x + 7, x^6 - 2*x^5 + 11*x^4 - 24*x^3 + 30*x^2 - 16*x + 4] 

 

 

We compute `x`-coordinate polynomials for some Heegner points 

of conductor bigger than 1 on a rank 2 curve:: 

 

sage: E = EllipticCurve('389a'); P = E.heegner_point(-7, 5); P 

Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor 389 

sage: P.x_poly_exact() 

Traceback (most recent call last): 

... 

ValueError: insufficient precision to determine Heegner point (fails discriminant test) 

sage: P.x_poly_exact(75) 

x^6 + 10/7*x^5 - 867/49*x^4 - 76/245*x^3 + 3148/35*x^2 - 25944/245*x + 48771/1225 

sage: E.heegner_point(-7,11).x_poly_exact(300) 

x^10 + 282527/52441*x^9 + 27049007420/2750058481*x^8 - 22058564794/2750058481*x^7 - 140054237301/2750058481*x^6 + 696429998952/30250643291*x^5 + 2791387923058/30250643291*x^4 - 3148473886134/30250643291*x^3 + 1359454055022/30250643291*x^2 - 250620385365/30250643291*x + 181599685425/332757076201 

 

Here we compute a Heegner point of conductor 5 on a rank 3 curve:: 

 

sage: E = EllipticCurve('5077a'); P = E.heegner_point(-7,5); P 

Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor 5077 

sage: P.x_poly_exact(300) 

x^6 + 1108754853727159228/72351048803252547*x^5 + 88875505551184048168/1953478317687818769*x^4 - 2216200271166098662132/3255797196146364615*x^3 + 14941627504168839449851/9767391588439093845*x^2 - 3456417460183342963918/3255797196146364615*x + 1306572835857500500459/5426328660243941025 

""" 

n = self.ring_class_field().degree_over_K() 

 

if algorithm == 'lll': 

P = self.numerical_approx(prec) 

g = None 

for e in [1,2]: # is there a condition under which we should not bother trying e=1? 

f = P[0].algdep(e*n) 

 

# If f is correct, then disc(f) = m^2 * (a product of primes dividing D*c). 

# To check this, we divide out the primes dividing D*c, then 

# check that the resulting cofactor is a perfect square. 

F = f.factor() 

if len(F) == 1: 

f = F[0][0] 

if self._check_poly_discriminant(f): 

g = f 

break 

 

if g is None: 

raise ValueError("insufficient precision to determine Heegner point (fails discriminant test)") 

f = g 

f = f/f.leading_coefficient() 

 

elif algorithm == 'conjugates': 

 

raise NotImplementedError 

 

return f 

 

def _check_poly_discriminant(self, f): 

""" 

Return ``True`` if the prime to `Dc` part of the discriminant of 

each factor of the polynomial `f` is plus or minus a square. 

This is used for verifying that a polynomial is likely to 

define a subfield of a specific ring class field. 

 

INPUT: 

 

- `f` -- a polynomial 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('389a'); P = E.heegner_point(-7, 5); P 

Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor 389 

sage: R.<x> = QQ[] 

sage: P._check_poly_discriminant(x^2 - 5) 

True 

sage: P._check_poly_discriminant(x^2 - 19) 

False 

sage: P._check_poly_discriminant((x^2 - 19)*(x^2-5)) 

False 

""" 

if f.is_irreducible(): 

disc = f.discriminant() 

(D, c) = (self.discriminant(), self.conductor()) 

for p in D.prime_divisors() + c.prime_divisors(): 

disc = disc // (p**disc.valuation(p)) 

if disc < 0: disc = -disc 

return disc.is_square() 

else: 

for g,_ in f.factor(): 

if not self._check_poly_discriminant(g): 

return False 

return True 

 

 

def point_exact(self, prec=53, algorithm='lll', var='a', optimize=False): 

""" 

Return exact point on the elliptic curve over a number field 

defined by computing this Heegner point to the given number of 

bits of precision. A ValueError is raised if the precision 

is clearly insignificant to define a point on the curve. 

 

.. WARNING:: 

 

It is in theory possible for this function to not raise a 

ValueError, find a point on the curve, but via some very 

unlikely coincidence that point is not actually this Heegner 

point. 

 

.. WARNING:: 

 

Currently we make an arbitrary choice of `y`-coordinate for 

the lift of the `x`-coordinate. 

 

INPUT: 

 

- ``prec`` -- integer (default: 53) 

 

- ``algorithm`` -- see the description of the algorithm 

parameter for the ``x_poly_exact`` method. 

 

- ``var`` -- string (default: 'a') 

 

- ``optimize`` -- book (default; False) if ``True``, try to 

optimize defining polynomial for the number field that 

the point is defined over. Off by default, since this 

can be very expensive. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('389a'); P = E.heegner_point(-7, 5); P 

Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor 389 

sage: z = P.point_exact(100, optimize=True) 

sage: z[1].charpoly() 

x^12 + 6*x^11 + 90089/1715*x^10 + 71224/343*x^9 + 52563964/588245*x^8 - 483814934/588245*x^7 - 156744579/16807*x^6 - 2041518032/84035*x^5 + 1259355443184/14706125*x^4 + 3094420220918/14706125*x^3 + 123060442043827/367653125*x^2 + 82963044474852/367653125*x + 211679465261391/1838265625 

sage: f = P.numerical_approx(500)[1].algdep(12); f / f.leading_coefficient() 

x^12 + 6*x^11 + 90089/1715*x^10 + 71224/343*x^9 + 52563964/588245*x^8 - 483814934/588245*x^7 - 156744579/16807*x^6 - 2041518032/84035*x^5 + 1259355443184/14706125*x^4 + 3094420220918/14706125*x^3 + 123060442043827/367653125*x^2 + 82963044474852/367653125*x + 211679465261391/1838265625 

 

sage: E = EllipticCurve('5077a') 

sage: P = E.heegner_point(-7) 

sage: P.point_exact(prec=100) 

(0 : 1 : 0) 

""" 

E = self.__E 

if self.numerical_approx(prec)[-1] == 0: 

return E(0) 

f = self.x_poly_exact(prec, algorithm=algorithm) 

if f.degree() == 1: 

v = E.lift_x(-f[0], all=True) 

if len(v) > 0: 

return v[0] 

 

g, d = make_monic(f) 

K = rings.NumberField(g, var) 

x = K.gen() / d 

if optimize: 

KO, from_KO, to_KO = K.optimized_representation() 

K = KO 

x = to_KO(x) 

if K.degree() < 2 * self.ring_class_field().degree_over_K(): 

M = rings.QuadraticField(self.discriminant(),'b') 

KD = K.composite_fields(M, names='a')[0] 

phi = K.embeddings(KD)[0] 

x = phi(x) 

K = KD.change_names(names=var) 

x = K.structure()[1](x) 

a1,a2,a3,a4,a6 = E.a_invariants() 

R = K['Y']; Y = R.gen() 

g = Y**2 + a1*x*Y + a3*Y - (x**3 + a2*x**2 + a4*x + a6) 

F = g.factor() # this takes a long time 

if len(F) == 1 and F[0][0] == 2: 

# reducible -- 1 factor squared 

y = F[0][0] 

L = K 

elif len(F) == 2: 

# reducible -- 2 factors 

y0 = -F[0][0][0] 

# y1 = -F[1][0][0] 

# Figure out which of y0 or y1 is right by 

# P = self.numerical_approx(prec) 

# TODO: finish this -- have to do some thing numerical 

y = y0 

L = K 

else: 

# TODO -- is there an issue with choice of root? 

# irreducible 

gg, dd = make_monic(g) 

M = K.extension(gg, names='b') 

y = M.gen()/dd 

x = M(x) 

L = M.absolute_field(names = var) 

phi = L.structure()[1] 

x = phi(x) 

y = phi(y) 

 

EL = E.change_ring(L) 

P = EL.point((x,y,1), check=False) 

return P 

 

@cached_method 

def conjugates_over_K(self): 

r""" 

Return the `Gal(K_c/K)` conjugates of this Heegner point. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('77a') 

sage: y = E.heegner_point(-52,5); y 

Heegner point of discriminant -52 and conductor 5 on elliptic curve of conductor 77 

sage: print([z.quadratic_form() for z in y.conjugates_over_K()]) 

[77*x^2 + 52*x*y + 13*y^2, 154*x^2 + 206*x*y + 71*y^2, 539*x^2 + 822*x*y + 314*y^2, 847*x^2 + 1284*x*y + 487*y^2, 1001*x^2 + 52*x*y + y^2, 1078*x^2 + 822*x*y + 157*y^2, 1309*x^2 + 360*x*y + 25*y^2, 1309*x^2 + 2054*x*y + 806*y^2, 1463*x^2 + 976*x*y + 163*y^2, 2233*x^2 + 2824*x*y + 893*y^2, 2387*x^2 + 2054*x*y + 442*y^2, 3619*x^2 + 3286*x*y + 746*y^2] 

sage: y.quadratic_form() 

77*x^2 + 52*x*y + 13*y^2 

""" 

H = heegner_points(self.level(), self.discriminant(), self.conductor()) 

E = self.curve() 

beta = self.quadratic_form()[1] 

return tuple([z.map_to_curve(E) for z in H.points(beta)]) 

 

def _numerical_approx_conjugates_over_QQ(self, prec=53): 

""" 

Return a list v of the numerical approximations to precision 

prec of the conjugates of this Heegner point, and their 

complex conjugates. 

 

INPUT: 

 

- ``prec`` -- positive integer (default: 53) 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('37a') 

sage: y = E.heegner_point(-7,3); y 

Heegner point of discriminant -7 and conductor 3 on elliptic curve of conductor 37 

sage: y._numerical_approx_conjugates_over_QQ() 

[(-1.89564392373896 - 0.444771808762067*I : -1.50000000000000 + 2.13102976222246*I : 1.00000000000000), ...] 

sage: y._numerical_approx_conjugates_over_QQ(prec=10) 

[(-1.9 - 0.44*I : -1.5 + 2.1*I : 1.0), ... 

(1.4 + 0.0024*I : -1.7 - 0.0046*I : 1.0)] 

""" 

v = [] 

for z in self.conjugates_over_K(): 

m = z.numerical_approx(prec) 

v.append(m) 

v.append(m.curve().point([w.conjugate() for w in m], check=False)) 

v.sort() 

return v 

 

def _numerical_approx_xy_poly(self, prec=53): 

r""" 

Return polynomials with real floating point coefficients got 

by taking the real part of the product of `X - \alpha` over 

the numerical approximations `\alpha` to the conjugates of 

this Heegner point. The first polynomial runs through the 

`x`-coordinates and the second through the `y`-coordinates. 

 

INPUT: 

 

- ``prec`` -- positive integer (default: 53) 

 

OUTPUT: 

 

- 2-tuple of polynomials with floating point coefficients 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('37a') 

sage: y = E.heegner_point(-7,3); y 

Heegner point of discriminant -7 and conductor 3 on elliptic curve of conductor 37 

sage: y._numerical_approx_xy_poly() # rel tol 1e-14 

(X^8 + 6.00000000000000*X^7 + 8.99999999999998*X^6 - 12.0000000000000*X^5 - 42.0000000000000*X^4 - 17.9999999999999*X^3 + 36.0000000000001*X^2 + 35.9999999999999*X + 8.99999999999995, X^8 + 12.0000000000000*X^7 + 72.0000000000000*X^6 + 270.000000000000*X^5 + 678.000000000001*X^4 + 1152.00000000000*X^3 + 1269.00000000000*X^2 + 810.000000000002*X + 225.000000000001) 

""" 

v = self._numerical_approx_conjugates_over_QQ(prec) 

R = ComplexField(prec)['X'] 

S = RealField(prec)['X'] 

X = R.gen() 

fx = prod(X-a[0] for a in v) 

fx = S([b.real() for b in fx]) 

fy = prod(X-c[1] for c in v) 

fy = S([d.real() for d in fy]) 

return fx, fy 

 

def _xy_poly_nearby(self, prec=53, max_error=10**(-10)): 

""" 

Return polynomials with rational coefficients that for sufficiently 

tight bounds are the characteristic polynomial of the x and y 

coordinate of this Heegner point. 

 

INPUT: 

 

- ``prec`` -- positive integer (default: 53) 

 

- ``max_error`` -- very small floating point number 

 

OUTPUT: 

 

- 2-tuple of polynomials with rational coefficients 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('37a') 

sage: y = E.heegner_point(-7,3); y 

Heegner point of discriminant -7 and conductor 3 on elliptic curve of conductor 37 

sage: y._xy_poly_nearby() 

[X^8 + 6*X^7 + 9*X^6 - 12*X^5 - 42*X^4 - 18*X^3 + 36*X^2 + 36*X + 9, 

X^8 + 12*X^7 + 72*X^6 + 270*X^5 + 678*X^4 + 1152*X^3 + 1269*X^2 + 810*X + 225] 

 

 

""" 

v = self._numerical_approx_xy_poly(prec) 

return [nearby_rational_poly(g, max_error=max_error) for g in v] 

 

def _xy_poly_simplest(self, prec=53, prec2=None): 

""" 

Return polynomials with rational coefficients that for 

sufficiently tight bounds are the characteristic polynomial of 

the x and y coordinate of this Heegner point. 

 

INPUT: 

 

- ``prec`` -- positive integer (default: 53) 

 

- ``prec2`` -- passed into simplest_rational_poly function 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('37a'); y = E.heegner_point(-7,3) 

sage: y._xy_poly_simplest() 

[X^8 + 6*X^7 + 9*X^6 - 12*X^5 - 42*X^4 - 18*X^3 + 36*X^2 + 36*X + 9, 

X^8 + 12*X^7 + 72*X^6 + 270*X^5 + 678*X^4 + 1152*X^3 + 1269*X^2 + 810*X + 225] 

""" 

v = self._numerical_approx_xy_poly(prec) 

if prec2 is None: prec2 = max(2, prec - 20) 

return [simplest_rational_poly(g,prec2) for g in v] 

 

@cached_method 

def _square_roots_mod_2N_of_D_mod_4N(self): 

""" 

Return the square roots of `D` modulo `4N` all reduced mod `2N`, 

without multiplicity. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('37a'); P = E.heegner_point(-40); P 

Heegner point of discriminant -40 on elliptic curve of conductor 37 

sage: P._square_roots_mod_2N_of_D_mod_4N() 

[16, 58] 

sage: parent(P._square_roots_mod_2N_of_D_mod_4N()[0]) 

Ring of integers modulo 74 

""" 

N = self.__E.conductor() 

R = Integers(4*N) 

m = 2*N 

return sorted( set([a%m for a in R(self.discriminant()).sqrt(all=True)]) ) 

 

def _trace_numerical_conductor_1(self, prec=53): 

""" 

Return numerical approximation using ``prec`` terms of working 

precision to the trace down to the quadratic imaginary field 

`K` of this Heegner point. 

 

INPUT: 

 

- `prec` -- bits precision (default: 53) 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('57a1') 

sage: P = E.heegner_point(-8); P 

Heegner point of discriminant -8 on elliptic curve of conductor 57 

sage: P._trace_numerical_conductor_1() # approx. (1 : 0 : 1) 

(1.00000000000000 + ...e-16*I : ...e-16 - ...e-16*I : 1.00000000000000) 

sage: P = E(2,1) # a generator 

sage: E([1,0]).height() 

0.150298370947295 

sage: P.height() 

0.0375745927368238 

sage: E.heegner_index(-8) 

2.0000? 

sage: E.torsion_order() 

1 

sage: 2*P 

(1 : 0 : 1) 

""" 

if self.conductor() != 1: 

raise ValueError("conductor must be 1") 

R, U = self._good_tau_representatives() 

E = self.__E 

phi = E.modular_parametrization() 

C = rings.ComplexField(prec) 

F = E.change_ring(C) 

s = 0 

for u, weight in U: 

P = phi(C(self._qf_to_tau(u))) 

z = F.point(list(P),check=False) 

if abs(weight) == 2: 

t = F.point(z,check=False) + F.point(tuple([x.conjugate() for x in z]), check=False) 

if weight < 0: 

s -= t 

else: 

s += t 

else: 

if weight < 0: 

s -= z 

else: 

s += z 

return s 

 

@cached_method 

def _good_tau_representatives(self): 

""" 

Return good upper half plane representatives for Heegner points. 

 

ALGORITHM: This is Algorithm 3.5 in Watkins's paper. 

 

EXAMPLES:: 

 

sage: P = EllipticCurve('389a1').heegner_point(-7) 

sage: P._good_tau_representatives() 

([(1, 1, 2)], [((389, 185, 22), 1)]) 

""" 

if self.conductor() != 1: raise NotImplementedError 

E = self.__E 

SDN = self._square_roots_mod_2N_of_D_mod_4N() 

beta = SDN[0] 

U = [] 

R = [] 

N = self.__E.conductor() 

D = self.discriminant() 

h = self.ring_class_field().degree_over_K() 

divs = D.gcd(N).divisors() 

a = 1 

while True: 

for b in SDN: 

b = b.lift() 

# todo (optimize) -- replace for over all s with for over solution 

# set that can be found quickly. 

y = ZZ((b*b - D)/(4*N)) 

for s in Integers(a): 

if N*s*s + b*s + y == 0: 

s = s.lift() 

f = (a*N, b+2*N*s, ZZ( ((b + 2*N*s)**2 - D)/(4*a*N)) ) 

for d in divs: 

Q = d * prod(p**k for p,k in N.factor() if (b-beta)%(p**k)!=0) 

g = self._qf_atkin_lehner_act(Q, f) 

gbar = (ZZ(g[0]/N), -g[1], g[2]*N) 

g = self._qf_reduce(g) 

gbar = self._qf_reduce(gbar) 

if g in R or gbar in R: 

continue 

R.append(g) 

if g != gbar: 

R.append(gbar) 

epsilon_Q = prod([E.root_number(q) for q in Q.prime_divisors()]) 

if g == gbar: 

# weight is epsilon_Q 

weight = epsilon_Q 

else: 

# weight is 2*epsilon_Q 

weight = 2*epsilon_Q 

U.append((f,weight)) 

if len(R) == h: 

return R, U 

assert len(R) < h, "bug -- too many quadratic forms" 

a += 1 

 

def _qf_to_tau(self, f): 

r""" 

Function used internally that given a quadratic form 

`f=(A,B,C)`, return `\tau` in the upper half plane with 

`A\tau^2 + B \tau + C = 0`. Here `A>0` and `\gcd(A,B,C)=1`. 

Also, `\tau` has discriminant `D=B^2-4AC`. In fact, `\tau = 

(-B + \sqrt{D})/(2A)`. 

 

INPUT: 

 

- `f` -- binary quadratic form 

 

EXAMPLES:: 

 

sage: P = EllipticCurve('57a1').heegner_point(-8) 

sage: R, U = P._good_tau_representatives() 

sage: f = U[0][0]; f 

(57, 26, 3) 

sage: P._qf_to_tau(f) 

1/114*sqrt_minus_8 - 13/57 

""" 

c = self.conductor() 

A,B,_ = f 

alpha = c * self.quadratic_field().gen() # this is sqrt(D) = sqrt(c^2*disc(K)) 

return (-B + alpha)/(2*A) 

 

def _qf_from_tau(self, tau): 

r""" 

Return quadratic form associated to a given `\tau` in the upper 

half plane. 

 

INPUT: 

 

- `\tau` -- quadratic element of the upper half plane 

 

EXAMPLES:: 

 

sage: P = EllipticCurve('57a1').heegner_point(-8) 

sage: R, U = P._good_tau_representatives() 

sage: f = U[0][0]; f 

(57, 26, 3) 

sage: tau = P._qf_to_tau(f); tau 

1/114*sqrt_minus_8 - 13/57 

sage: P._qf_from_tau(tau) 

(57, 26, 3) 

""" 

g = tau.minpoly() 

g *= g.denominator() 

return (ZZ(g[2]), ZZ(g[1]), ZZ(g[0])) 

 

 

def _qf_atkin_lehner_act(self, Q, f): 

r""" 

Given a positive integer `Q` with `Q | N` and `\gcd(Q, N/Q) = 

1`, we compute the quadratic form corresponding to the image 

of the `tau` corresponding to `f` under the Atkin-Lehner 

operator `W_Q`. 

 

We do this by letting `u,v` be integers such that 

`u Q^2 - v N = Q`, and using that `W_Q` sends `\tau` 

to `( (u Q \tau + v) / (N \tau + Q) ) / Q`. 

 

INPUT: 

 

- `Q` -- integer that divides the level `N` 

 

- `f` -- quadratic form 

 

OUTPUT: 

 

- quadratic form 

 

EXAMPLES:: 

 

sage: P = EllipticCurve('57a1').heegner_point(-8) 

sage: R, U = P._good_tau_representatives() 

sage: f = U[0][0]; f 

(57, 26, 3) 

sage: P._qf_atkin_lehner_act(3, f) 

(1938, 1204, 187) 

sage: g = P._qf_atkin_lehner_act(19, f); g 

(114, -64, 9) 

sage: h = P._qf_atkin_lehner_act(19, g); h 

(7353, -4762, 771) 

sage: BinaryQF(f).reduced_form() == BinaryQF(h).reduced_form() 

True 

""" 

N = self.__E.conductor() 

g, u, v = xgcd(Q*Q, -N) 

assert g == Q 

tau = self._qf_to_tau(f) 

tau2 = ((u*Q*tau + v) / (N*tau + Q)) 

return self._qf_from_tau(tau2) 

 

 

def _qf_reduce(self, f): 

""" 

Given a binary quadratic form `f` represented as a 3-tuple 

(A,B,C), return the reduced binary quadratic form equivalent 

to `f`, represented in the same way. 

 

EXAMPLES:: 

 

sage: P = EllipticCurve('57a1').heegner_point(-8) 

sage: R, U = P._good_tau_representatives() 

sage: f = U[0][0]; f 

(57, 26, 3) 

sage: P._qf_reduce(f) 

(1, 0, 2) 

""" 

return tuple(BinaryQF(f).reduced_form()) 

 

def kolyvagin_cohomology_class(self, n=None): 

""" 

Return the Kolyvagin class associated to this Heegner point. 

 

INPUT: 

 

- `n` -- positive integer that divides the gcd of `a_p` 

and `p+1` for all `p` dividing the conductor. If `n` is 

``None``, choose the largest valid `n`. 

 

EXAMPLES:: 

 

sage: y = EllipticCurve('389a').heegner_point(-7,5) 

sage: y.kolyvagin_cohomology_class(3) 

Kolyvagin cohomology class c(5) in H^1(K,E[3]) 

""" 

return KolyvaginCohomologyClassEn(self.kolyvagin_point(), n) 

 

######################################################################################### 

# Kolyvagin Points P_c 

######################################################################################### 

class KolyvaginPoint(HeegnerPoint): 

""" 

A Kolyvagin point. 

 

EXAMPLES: 

 

We create a few Kolyvagin points:: 

 

sage: EllipticCurve('11a1').kolyvagin_point(-7) 

Kolyvagin point of discriminant -7 on elliptic curve of conductor 11 

sage: EllipticCurve('37a1').kolyvagin_point(-7) 

Kolyvagin point of discriminant -7 on elliptic curve of conductor 37 

sage: EllipticCurve('37a1').kolyvagin_point(-67) 

Kolyvagin point of discriminant -67 on elliptic curve of conductor 37 

sage: EllipticCurve('389a1').kolyvagin_point(-7, 5) 

Kolyvagin point of discriminant -7 and conductor 5 on elliptic curve of conductor 389 

 

One can also associated a Kolyvagin point to a Heegner point:: 

 

sage: y = EllipticCurve('37a1').heegner_point(-7); y 

Heegner point of discriminant -7 on elliptic curve of conductor 37 

sage: y.kolyvagin_point() 

Kolyvagin point of discriminant -7 on elliptic curve of conductor 37 

 

TESTS:: 

 

sage: y = EllipticCurve('37a1').heegner_point(-7) 

sage: type(y) 

<class 'sage.schemes.elliptic_curves.heegner.HeegnerPointOnEllipticCurve'> 

sage: loads(dumps(y)) == y 

True 

""" 

def __init__(self, heegner_point): 

""" 

Create a Kolyvagin point. 

 

INPUT: 

 

- ``heegner_point`` -- a Heegner point on some elliptic curve 

 

EXAMPLES: 

 

We directly construct a Kolyvagin point from the KolyvaginPoint class:: 

 

sage: y = EllipticCurve('37a1').heegner_point(-7) 

sage: sage.schemes.elliptic_curves.heegner.KolyvaginPoint(y) 

Kolyvagin point of discriminant -7 on elliptic curve of conductor 37 

""" 

if not heegner_point.satisfies_kolyvagin_hypothesis(): 

raise ValueError("Heegner point does not satisfy Kolyvagin hypothesis") 

self.__heegner_point = heegner_point 

HeegnerPoint.__init__(self, heegner_point.level(), heegner_point.discriminant(), 

heegner_point.conductor()) 

 

def satisfies_kolyvagin_hypothesis(self, n=None): 

r""" 

Return ``True`` if this Kolyvagin point satisfies the Heegner 

hypothesis for `n`, so that it defines a Galois equivariant 

element of `E(K_c)/n E(K_c)`. 

 

EXAMPLES:: 

 

sage: y = EllipticCurve('389a').heegner_point(-7,5); P = y.kolyvagin_point() 

sage: P.kolyvagin_cohomology_class(3) 

Kolyvagin cohomology class c(5) in H^1(K,E[3]) 

sage: P.satisfies_kolyvagin_hypothesis(3) 

True 

sage: P.satisfies_kolyvagin_hypothesis(5) 

False 

sage: P.satisfies_kolyvagin_hypothesis(7) 

False 

sage: P.satisfies_kolyvagin_hypothesis(11) 

False 

""" 

return self.__heegner_point.satisfies_kolyvagin_hypothesis(n) 

 

def curve(self): 

r""" 

Return the elliptic curve over `\QQ` on which this Kolyvagin 

point sits. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('37a1'); P = E.kolyvagin_point(-67, 3) 

sage: P.curve() 

Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field 

""" 

return self.__heegner_point.curve() 

 

def heegner_point(self): 

""" 

This Kolyvagin point `P_c` is associated to some Heegner point 

`y_c` via Kolyvagin's construction. This function returns that 

point `y_c`. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('37a1') 

sage: P = E.kolyvagin_point(-67); P 

Kolyvagin point of discriminant -67 on elliptic curve of conductor 37 

sage: y = P.heegner_point(); y 

Heegner point of discriminant -67 on elliptic curve of conductor 37 

sage: y.kolyvagin_point() is P 

True 

""" 

return self.__heegner_point 

 

def _repr_(self): 

""" 

Return string representation of this Kolyvagin point. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('37a1'); P = E.kolyvagin_point(-67,7); P._repr_() 

'Kolyvagin point of discriminant -67 and conductor 7 on elliptic curve of conductor 37' 

""" 

s = repr(self.__heegner_point) 

return s.replace('Heegner','Kolyvagin') 

 

def index(self, *args, **kwds): 

""" 

Return index of this Kolyvagin point in the full group of 

$K_c$ rational points on $E$. 

 

When the conductor is 1, this is computed numerically using 

the Gross-Zagier formula and explicit point search, and it may 

be off by $2$. See the documentation for ``E.heegner_index``, 

where `E` is the curve attached to ``self``. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('37a1'); P = E.kolyvagin_point(-67); P.index() 

6 

""" 

if self.conductor() == 1: 

return self.__heegner_point._trace_index(*args, **kwds) 

raise NotImplementedError 

 

def numerical_approx(self, prec=53): 

""" 

Return a numerical approximation to this Kolyvagin point using 

prec bits of working precision. 

 

INPUT: 

 

- ``prec`` -- precision in bits (default: 53) 

 

EXAMPLES:: 

 

sage: P = EllipticCurve('37a1').kolyvagin_point(-7); P 

Kolyvagin point of discriminant -7 on elliptic curve of conductor 37 

sage: P.numerical_approx() # approx. (0 : 0 : 1) 

(...e-16 - ...e-16*I : ...e-16 + ...e-16*I : 1.00000000000000) 

sage: P.numerical_approx(100)[0].abs() < 2.0^-99 

True 

 

sage: P = EllipticCurve('389a1').kolyvagin_point(-7, 5); P 

Kolyvagin point of discriminant -7 and conductor 5 on elliptic curve of conductor 389 

 

Numerical approximation is only implemented for points of conductor 1:: 

 

sage: P.numerical_approx() 

Traceback (most recent call last): 

... 

NotImplementedError 

""" 

if self.conductor() == 1: 

return self.__heegner_point._trace_numerical_conductor_1(prec) 

raise NotImplementedError 

 

def point_exact(self, prec=53): 

""" 

INPUT: 

 

- ``prec`` -- precision in bits (default: 53) 

 

EXAMPLES: 

 

A rank 1 curve:: 

 

sage: E = EllipticCurve('37a1'); P = E.kolyvagin_point(-67) 

sage: P.point_exact() 

(6 : -15 : 1) 

sage: P.point_exact(40) 

(6 : -15 : 1) 

sage: P.point_exact(20) 

Traceback (most recent call last): 

... 

RuntimeError: insufficient precision to find exact point 

 

A rank 0 curve:: 

 

sage: E = EllipticCurve('11a1'); P = E.kolyvagin_point(-7) 

sage: P.point_exact() 

(-1/2*sqrt_minus_7 + 1/2 : -2*sqrt_minus_7 - 2 : 1) 

 

A rank 2 curve:: 

 

sage: E = EllipticCurve('389a1'); P = E.kolyvagin_point(-7) 

sage: P.point_exact() 

(0 : 1 : 0) 

 

""" 

if self.conductor() == 1: 

# the result is a point defined over K in the conductor 1 case, which is easier. 

P = self.numerical_approx(prec) 

 

E = self.curve() 

if P[2] == 0: 

return E(0) 

 

if E.root_number() == -1: 

return self._recognize_point_over_QQ(P, 2*self.index()) 

else: 

# root number +1. We use algdep to recognize the x 

# coordinate, stick it in the appropriate quadratic 

# field, then make sure that we got the right 

# embedding, and if not fix things so we do. 

x = P[0] 

C = x.parent() 

f = x.algdep(2) 

K = self.quadratic_field() 

roots = [r[0] for r in f.roots(K)] 

if len(roots) == 0: 

raise RuntimeError("insufficient precision to find exact point") 

if len(roots) == 1: 

X = roots[0] 

else: 

d = [abs(C(r) - x) for r in roots] 

if d[0] == d[1]: 

raise RuntimeError("insufficient precision to distinguish roots") 

if d[0] < d[1]: 

X = roots[0] 

else: 

X = roots[1] 

F = E.change_ring(K) 

Q = F.lift_x(X, all=True) 

if len(Q) == 1: 

return Q[0] 

if len(Q) == 0: 

raise RuntimeError("insufficient precision") 

y = P[1] 

d = [abs(C(r[1])-y) for r in Q] 

if d[0] == d[1]: 

raise RuntimeError("insufficient precision to distinguish roots") 

if d[0] < d[1]: 

return Q[0] 

else: 

return Q[1] 

 

else: 

raise NotImplementedError 

 

def plot(self, prec=53, *args, **kwds): 

r""" 

Plot a Kolyvagin point `P_1` if it is defined over the 

rational numbers. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('37a'); P = E.heegner_point(-11).kolyvagin_point() 

sage: P.plot(prec=30, pointsize=50, rgbcolor='red') + E.plot() 

Graphics object consisting of 3 graphics primitives 

""" 

if self.conductor() != 1: 

raise NotImplementedError 

 

E = self.curve() 

if E.root_number() == -1: 

P = self.numerical_approx(prec=prec) 

from sage.plot.all import point, Graphics 

if not P: 

# point at infinity 

return Graphics() 

return point((P[0].real(), P[1].real()),*args, **kwds) 

else: 

raise NotImplementedError 

 

 

@cached_method 

def trace_to_real_numerical(self, prec=53): 

""" 

Return the trace of this Kolyvagin point down to the real 

numbers, computed numerically using prec bits of working 

precision. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('37a1'); P = E.kolyvagin_point(-67) 

sage: PP = P.numerical_approx() 

sage: [c.real() for c in PP] 

[6.00000000000000, -15.0000000000000, 1.00000000000000] 

sage: all([c.imag().abs() < 1e-14 for c in PP]) 

True 

sage: P.trace_to_real_numerical() 

(1.61355529131986 : -2.18446840788880 : 1.00000000000000) 

sage: P.trace_to_real_numerical(prec=80) # abs tol 1e-21 

(1.6135552913198573127230 : -2.1844684078888023289187 : 1.0000000000000000000000) 

 

""" 

# Compute numerical approximation of P in E(K). 

P = self.numerical_approx(prec=prec) 

# Trace this numerical approximation down to E(Q) (numerically). 

E = P.curve() 

if self.curve().root_number() == -1: 

R = 2*P 

else: 

R = P + E.point([x.conjugate() for x in P],check=False) 

F = self.curve().change_ring(rings.RealField(prec)) 

return F.point([x.real() for x in R], check=False) 

 

@cached_method 

def _trace_exact_conductor_1(self, prec=53): 

r""" 

Return the trace from `K` to `\QQ` of this Kolyvagin point in 

the case of conductor 1, computed using prec bits of 

precision, then approximated using some algorithm (e.g., 

continued fractions). If the precision is not enough to 

determine a point on the curve, then a RuntimeError is raised. 

Even if the precision determines a point, there is no guarantee 

that it is correct. 

 

EXAMPLES: 

 

A Kolyvagin point on a rank 1 curve:: 

 

sage: E = EllipticCurve('37a1'); P = E.kolyvagin_point(-67) 

sage: P.trace_to_real_numerical() 

(1.61355529131986 : -2.18446840788880 : 1.00000000000000) 

sage: P._trace_exact_conductor_1() # the actual point we're reducing 

(1357/841 : -53277/24389 : 1) 

sage: (P._trace_exact_conductor_1().height() / E.regulator()).sqrt() 

12.0000000000000 

""" 

if not self.conductor() == 1: 

raise ValueError("the conductor must be 1") 

 

P = self.trace_to_real_numerical(prec) 

return self._recognize_point_over_QQ(P, 2*self.index()) 

 

def _recognize_point_over_QQ(self, P, n): 

""" 

Used internally when computing an exact point on an elliptic curve. 

 

INPUT: 

 

- `P` -- numerical approximation for a point on `E` 

 

- `n` -- upper bound on divisibility index of `P` in group `E(\QQ)` 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('43a'); P = E.heegner_point(-20).kolyvagin_point() 

sage: PP = P.numerical_approx(); PP 

(...e-16 : -1.00000000000000 : 1.00000000000000) 

sage: P._recognize_point_over_QQ(PP, 4) 

(0 : -1 : 1) 

""" 

# Here is where we *should* implement the "method of Cremona 

# etc" mentioned in Watkins' article... which involves local 

# heights. 

E = self.curve() # over Q 

v = sum([list(n*w) for w in E.gens()] + [list(w) for w in E.torsion_points()], []) 

# note -- we do not claim to prove anything, so making up a factor of 100 is fine. 

max_denominator = 100*max([z.denominator() for z in v]) 

try: 

# the coercion below also checks if point is on elliptic curve 

return E([x.real().nearby_rational(max_denominator=max_denominator) for x in P]) 

except TypeError: 

raise RuntimeError("insufficient precision to find exact point") 

 

def mod(self, p, prec=53): 

r""" 

Return the trace of the reduction `Q` modulo a prime over `p` of this 

Kolyvagin point as an element of `E(\GF{p})`, where 

`p` is any prime that is inert in `K` that is coprime to `NDc`. 

 

The point `Q` is only well defined up to an element of 

`(p+1) E(\GF{p})`, i.e., it gives a well defined element 

of the abelian group `E(\GF{p}) / (p+1) E(\GF{p})`. 

 

See [SteinToward]_, Proposition 5.4 for a proof of the above 

well-definedness assertion. 

 

EXAMPLES: 

 

A Kolyvagin point on a rank 1 curve:: 

 

sage: E = EllipticCurve('37a1'); P = E.kolyvagin_point(-67) 

sage: P.mod(2) 

(1 : 1 : 1) 

sage: P.mod(3) 

(1 : 0 : 1) 

sage: P.mod(5) 

(2 : 2 : 1) 

sage: P.mod(7) 

(6 : 0 : 1) 

sage: P.trace_to_real_numerical() 

(1.61355529131986 : -2.18446840788880 : 1.00000000000000) 

sage: P._trace_exact_conductor_1() # the actual point we're reducing 

(1357/841 : -53277/24389 : 1) 

sage: (P._trace_exact_conductor_1().height() / E.regulator()).sqrt() 

12.0000000000000 

 

Here the Kolyvagin point is a torsion point (since `E` has 

rank 1), and we reduce it modulo several primes.:: 

 

sage: E = EllipticCurve('11a1'); P = E.kolyvagin_point(-7) 

sage: P.mod(3,70) # long time (4s on sage.math, 2013) 

(1 : 2 : 1) 

sage: P.mod(5,70) 

(1 : 4 : 1) 

sage: P.mod(7,70) 

Traceback (most recent call last): 

... 

ValueError: p must be coprime to conductors and discriminant 

sage: P.mod(11,70) 

Traceback (most recent call last): 

... 

ValueError: p must be coprime to conductors and discriminant 

sage: P.mod(13,70) 

(3 : 4 : 1) 

 

REFERENCES: 

 

.. [SteinToward] Stein, "Toward a Generalization of the Gross-Zagier Conjecture", Int Math Res Notices (2011), :doi:`10.1093/imrn/rnq075` 

""" 

# check preconditions 

p = ZZ(p) 

if not p.is_prime(): 

raise ValueError("p must be prime") 

E = self.curve() 

D = self.discriminant() 

if (E.conductor() * D * self.conductor()) % p == 0: 

raise ValueError("p must be coprime to conductors and discriminant") 

K = self.heegner_point().quadratic_field() 

if len(K.factor(p)) != 1: 

raise ValueError("p must be inert") 

 

# do actual calculation 

if self.conductor() == 1: 

 

P = self._trace_exact_conductor_1(prec = prec) 

return E.change_ring(GF(p))(P) 

 

else: 

 

raise NotImplementedError 

 

## def congruent_rational_point(self, n, prec=53): 

## r""" 

## Let `P` be this Kolyvagin point. Determine whether there is a 

## point `z` in `E(\QQ)` such that `z - P \in n E(K_c)`, where `K_c` 

## is the ring class field over which this Kolyvagin point is defined. 

## If `z` exists return `z`. Otherwise return None. 

## 

## INPUT: 

## 

## - `n` -- positive integer 

## 

## - ``prec`` -- positive integer (default: 53) 

## 

## 

## EXAMPLES:: 

## 

## """ 

## raise NotImplementedError 

 

 

def kolyvagin_cohomology_class(self, n=None): 

""" 

INPUT: 

 

- `n` -- positive integer that divides the gcd of `a_p` 

and `p+1` for all `p` dividing the conductor. If `n` is 

``None``, choose the largest valid `n`. 

 

EXAMPLES:: 

 

sage: y = EllipticCurve('389a').heegner_point(-7,5) 

sage: P = y.kolyvagin_point() 

sage: P.kolyvagin_cohomology_class(3) 

Kolyvagin cohomology class c(5) in H^1(K,E[3]) 

 

sage: y = EllipticCurve('37a').heegner_point(-7,5).kolyvagin_point() 

sage: y.kolyvagin_cohomology_class() 

Kolyvagin cohomology class c(5) in H^1(K,E[2]) 

""" 

return KolyvaginCohomologyClassEn(self, n) 

 

 

class KolyvaginCohomologyClass(SageObject): 

""" 

A Kolyvagin cohomology class in `H^1(K,E[n])` or `H^1(K,E)[n]` 

attached to a Heegner point. 

 

EXAMPLES:: 

 

sage: y = EllipticCurve('37a').heegner_point(-7) 

sage: c = y.kolyvagin_cohomology_class(3); c 

Kolyvagin cohomology class c(1) in H^1(K,E[3]) 

sage: type(c) 

<class 'sage.schemes.elliptic_curves.heegner.KolyvaginCohomologyClassEn'> 

sage: loads(dumps(c)) == c 

True 

sage: y.kolyvagin_cohomology_class(5) 

Kolyvagin cohomology class c(1) in H^1(K,E[5]) 

""" 

def __init__(self, kolyvagin_point, n): 

""" 

 

EXAMPLES:: 

 

sage: y = EllipticCurve('389a').heegner_point(-7,5) 

sage: y.kolyvagin_cohomology_class(3) 

Kolyvagin cohomology class c(5) in H^1(K,E[3]) 

""" 

if n is None: 

c = kolyvagin_point.conductor() 

E = kolyvagin_point.curve() 

n = gcd([(p+1).gcd(E.ap(p)) for p in c.prime_divisors()]) 

 

if not kolyvagin_point.satisfies_kolyvagin_hypothesis(n): 

raise ValueError("Kolyvagin point does not satisfy Kolyvagin hypothesis for %s"%n) 

self.__kolyvagin_point = kolyvagin_point 

self.__n = n 

 

def __eq__(self, other): 

""" 

EXAMPLES:: 

 

sage: y = EllipticCurve('37a').heegner_point(-7) 

sage: c = y.kolyvagin_cohomology_class(3) 

sage: c == y.kolyvagin_cohomology_class(3) 

True 

sage: c == y.kolyvagin_cohomology_class(5) 

False 

 

This does not mean that c is nonzero (!) -- it just means c is not the number 0:: 

 

sage: c == 0 

False 

""" 

return isinstance(other, KolyvaginCohomologyClass) and \ 

self.__kolyvagin_point == other.__kolyvagin_point and \ 

self.__n == other.__n 

 

def __ne__(self, other): 

""" 

EXAMPLES:: 

 

sage: y = EllipticCurve('37a').heegner_point(-7) 

sage: c = y.kolyvagin_cohomology_class(3) 

sage: c != y.kolyvagin_cohomology_class(3) 

False 

sage: c != y.kolyvagin_cohomology_class(5) 

True 

""" 

return not (self == other) 

 

def n(self): 

""" 

Return the integer `n` so that this is a cohomology class in 

`H^1(K,E[n])` or `H^1(K,E)[n]`. 

 

EXAMPLES:: 

 

sage: y = EllipticCurve('37a').heegner_point(-7) 

sage: t = y.kolyvagin_cohomology_class(3); t 

Kolyvagin cohomology class c(1) in H^1(K,E[3]) 

sage: t.n() 

3 

""" 

return self.__n 

 

def conductor(self): 

r""" 

Return the integer `c` such that this cohomology class is associated 

to the Heegner point `y_c`. 

 

EXAMPLES:: 

 

sage: y = EllipticCurve('37a').heegner_point(-7,5) 

sage: t = y.kolyvagin_cohomology_class() 

sage: t.conductor() 

5 

""" 

return self.__kolyvagin_point.conductor() 

 

def kolyvagin_point(self): 

""" 

Return the Kolyvagin point `P_c` to which this cohomology 

class is associated. 

 

EXAMPLES:: 

 

sage: y = EllipticCurve('37a').heegner_point(-7,5) 

sage: t = y.kolyvagin_cohomology_class() 

sage: t.kolyvagin_point() 

Kolyvagin point of discriminant -7 and conductor 5 on elliptic curve of conductor 37 

""" 

return self.__kolyvagin_point 

 

def heegner_point(self): 

""" 

Return the Heegner point `y_c` to which this cohomology class 

is associated. 

 

EXAMPLES:: 

 

sage: y = EllipticCurve('37a').heegner_point(-7,5) 

sage: t = y.kolyvagin_cohomology_class() 

sage: t.heegner_point() 

Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor 37 

""" 

return self.__kolyvagin_point.heegner_point() 

 

class KolyvaginCohomologyClassEn(KolyvaginCohomologyClass): 

""" 

 

EXAMPLES: 

 

""" 

def _repr_(self): 

""" 

 

EXAMPLES:: 

 

sage: y = EllipticCurve('37a').heegner_point(-7,5) 

sage: t = y.kolyvagin_cohomology_class() 

sage: t._repr_() 

'Kolyvagin cohomology class c(5) in H^1(K,E[2])' 

""" 

return "Kolyvagin cohomology class c(%s) in H^1(K,E[%s])"%( 

self.conductor(), self.n()) 

 

 

############################################################################# 

# Reduction of Heegner points using Quaternion Algebras 

# 

# This section contains implementations of algorithms for computing 

# information about reduction modulo primes of Heegner points using 

# quaternion algebras. Some of this code could later be moved to the 

# quaternion algebras code, but it is too immature and not general 

# enough at present for that. 

############################################################################# 

 

class HeegnerQuatAlg(SageObject): 

r""" 

Heegner points viewed as supersingular points on the modular curve 

`X_0(N)/\mathbf{F}_{\ell}`. 

 

EXAMPLES:: 

 

sage: H = heegner_points(11).reduce_mod(13); H 

Heegner points on X_0(11) over F_13 

sage: type(H) 

<class 'sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg'> 

sage: loads(dumps(H)) == H 

True 

""" 

def __init__(self, level, ell): 

r""" 

INPUT: 

 

- ``level`` -- the level (a positive integer) 

 

- `\ell` -- the characteristic, a prime coprime to the level 

 

EXAMPLES:: 

 

sage: sage.schemes.elliptic_curves.heegner.HeegnerQuatAlg(11, 13) 

Heegner points on X_0(11) over F_13 

""" 

level = ZZ(level); ell = ZZ(ell) 

if not ell.is_prime(): 

raise ValueError("ell must be prime") 

if level.gcd(ell) != 1: 

raise ValueError("level and ell must be coprime") 

self.__level = level 

self.__ell = ell 

 

def __eq__(self, other): 

""" 

EXAMPLES:: 

 

sage: H = heegner_points(11).reduce_mod(3) 

sage: H == heegner_points(11).reduce_mod(3) 

True 

sage: H == heegner_points(11).reduce_mod(5) 

False 

sage: H == 0 

False 

""" 

return isinstance(other, HeegnerQuatAlg) and self.__level == other.__level \ 

and self.__ell == other.__ell 

 

def __ne__(self, other): 

""" 

EXAMPLES:: 

 

sage: H = heegner_points(11).reduce_mod(3) 

sage: H != heegner_points(11).reduce_mod(3) 

False 

sage: H != heegner_points(11).reduce_mod(5) 

True 

sage: H != 0 

True 

""" 

return not (self == other) 

 

def _repr_(self): 

""" 

Return string representation. 

 

EXAMPLES:: 

 

sage: heegner_points(11).reduce_mod(13)._repr_() 

'Heegner points on X_0(11) over F_13' 

""" 

return "Heegner points on X_0(%s) over F_%s"%( 

self.__level, self.__ell) 

 

def level(self): 

""" 

Return the level. 

 

EXAMPLES:: 

 

sage: heegner_points(11).reduce_mod(3).level() 

11 

""" 

return self.__level 

 

def ell(self): 

r""" 

Return the prime `\ell` modulo which we are working. 

 

EXAMPLES:: 

 

sage: heegner_points(11).reduce_mod(3).ell() 

3 

""" 

return self.__ell 

 

def satisfies_heegner_hypothesis(self, D, c=ZZ(1)): 

r""" 

The fundamental discriminant `D` must be coprime to `N\ell`, 

and must define a quadratic imaginary field `K` in which `\ell` 

is inert. Also, all primes dividing `N` must split in `K`, 

and `c` must be squarefree and coprime to `ND\ell`. 

 

INPUT: 

 

- `D` -- negative integer 

 

- `c` -- positive integer (default: 1) 

 

OUTPUT: 

 

- bool 

 

EXAMPLES:: 

 

sage: H = heegner_points(11).reduce_mod(7) 

sage: H.satisfies_heegner_hypothesis(-5) 

False 

sage: H.satisfies_heegner_hypothesis(-7) 

False 

sage: H.satisfies_heegner_hypothesis(-8) 

True 

sage: [D for D in [-1,-2..-100] if H.satisfies_heegner_hypothesis(D)] 

[-8, -39, -43, -51, -79, -95] 

""" 

D = ZZ(D); c = ZZ(c) 

if gcd(c*D, self.__level*self.__ell) != 1 or gcd(c,D) != 1: 

return False 

if not satisfies_weak_heegner_hypothesis(self.__level, D): 

return False 

if not is_inert(D, self.__ell): 

return False 

return True 

 

def heegner_discriminants(self, n=5): 

r""" 

Return the first `n` negative fundamental discriminants 

coprime to `N\ell` such that `\ell` is inert in the 

corresponding quadratic imaginary field and that field 

satisfies the Heegner hypothesis, and `N` is the level. 

 

INPUT: 

 

- `n` -- positive integer (default: 5) 

 

OUTPUT: 

 

- list 

 

EXAMPLES:: 

 

sage: H = heegner_points(11).reduce_mod(3) 

sage: H.heegner_discriminants() 

[-7, -19, -40, -43, -52] 

sage: H.heegner_discriminants(10) 

[-7, -19, -40, -43, -52, -79, -127, -139, -151, -184] 

""" 

v = [] 

D = ZZ(-5) 

while len(v) < n: 

if self.satisfies_heegner_hypothesis(D): 

v.append(D) 

D -= 1 

return v 

 

def heegner_conductors(self, D, n=5): 

r""" 

Return the first `n` negative fundamental discriminants 

coprime to `N\ell` such that `\ell` is inert in the 

corresponding quadratic imaginary field and that field 

satisfies the Heegner hypothesis. 

 

INPUT: 

 

- `D` -- negative integer; a fundamental Heegner 

discriminant 

 

- `n` -- positive integer (default: 5) 

 

OUTPUT: 

 

- list 

 

EXAMPLES:: 

 

sage: H = heegner_points(11).reduce_mod(3) 

sage: H.heegner_conductors(-7) 

[1, 2, 4, 5, 8] 

sage: H.heegner_conductors(-7, 10) 

[1, 2, 4, 5, 8, 10, 13, 16, 17, 19] 

""" 

v = [ZZ(1)] 

c = ZZ(2) 

while len(v) < n: 

if self.satisfies_heegner_hypothesis(D, c): 

v.append(c) 

c += 1 

return v 

 

 

def optimal_embeddings(self, D, c, R): 

""" 

INPUT: 

 

- `D` -- negative fundamental discriminant 

 

- `c` -- integer coprime 

 

- `R` -- Eichler order 

 

EXAMPLES:: 

 

sage: H = heegner_points(11).reduce_mod(3) 

sage: R = H.left_orders()[0] 

sage: H.optimal_embeddings(-7, 1, R) 

[Embedding sending sqrt(-7) to i - j - k, 

Embedding sending sqrt(-7) to -i + j + k] 

sage: H.optimal_embeddings(-7, 2, R) 

[Embedding sending 2*sqrt(-7) to 5*i - k, 

Embedding sending 2*sqrt(-7) to -5*i + k, 

Embedding sending 2*sqrt(-7) to 2*i - 2*j - 2*k, 

Embedding sending 2*sqrt(-7) to -2*i + 2*j + 2*k] 

""" 

Q, G = R.ternary_quadratic_form(include_basis=True) 

n = -D*c*c 

reps = Q.representation_vector_list(n+1)[-1] 

 

# The representatives give elements in terms of the 

# subspace's basis such that the embedding is given by 

# phi(c*sqrt(D)) = beta 

E = [] 

for r in reps: 

beta = sum(G[i]*r[i] for i in range(len(G))) 

phi = HeegnerQuatAlgEmbedding(D, c, R, beta) 

E.append(phi) 

return E 

 

@cached_method 

def brandt_module(self): 

""" 

Return the Brandt module of right ideal classes that we 

used to represent the set of supersingular points on 

the modular curve. 

 

EXAMPLES:: 

 

sage: heegner_points(11).reduce_mod(3).brandt_module() 

Brandt module of dimension 2 of level 3*11 of weight 2 over Rational Field 

""" 

from sage.modular.quatalg.all import BrandtModule 

return BrandtModule(self.__ell, self.__level) 

 

@cached_method 

def quaternion_algebra(self): 

""" 

Return the rational quaternion algebra used to implement self. 

 

EXAMPLES:: 

 

sage: heegner_points(389).reduce_mod(7).quaternion_algebra() 

Quaternion Algebra (-1, -7) with base ring Rational Field 

""" 

return self.brandt_module().quaternion_algebra() 

 

def right_ideals(self): 

""" 

Return representative right ideals in the Brandt module. 

 

EXAMPLES:: 

 

sage: heegner_points(11).reduce_mod(3).right_ideals() 

(Fractional ideal (2 + 2*j + 28*k, 2*i + 26*k, 4*j + 12*k, 44*k), 

Fractional ideal (2 + 2*j + 28*k, 2*i + 4*j + 38*k, 8*j + 24*k, 88*k)) 

""" 

return self.brandt_module().right_ideals() 

 

@cached_method 

def left_orders(self): 

""" 

Return the left orders associated to the representative right 

ideals in the Brandt module. 

 

EXAMPLES:: 

 

sage: heegner_points(11).reduce_mod(3).left_orders() 

[Order of Quaternion Algebra (-1, -3) with base ring Rational Field with basis (1/2 + 1/2*j + 7*k, 1/2*i + 13/2*k, j + 3*k, 11*k), 

Order of Quaternion Algebra (-1, -3) with base ring Rational Field with basis (1/2 + 1/2*j + 7*k, 1/4*i + 1/2*j + 63/4*k, j + 14*k, 22*k)] 

""" 

return [I.left_order() for I in self.right_ideals()] 

 

@cached_method 

def heegner_divisor(self, D, c=ZZ(1)): 

r""" 

Return Heegner divisor as an element of the Brandt module 

corresponding to the discriminant `D` and conductor `c`, which 

both must be coprime to `N\ell`. 

 

More precisely, we compute the sum of the reductions of the 

`\textrm{Gal}(K_1/K)`-conjugates of each choice of `y_1`, 

where the choice comes from choosing the ideal `\mathcal{N}`. 

Then we apply the Hecke operator `T_c` to this sum. 

 

INPUT: 

 

- `D` -- discriminant (negative integer) 

 

- `c` -- conductor (positive integer) 

 

OUTPUT: 

 

- Brandt module element 

 

EXAMPLES:: 

 

sage: H = heegner_points(11).reduce_mod(7) 

sage: H.heegner_discriminants() 

[-8, -39, -43, -51, -79] 

sage: H.heegner_divisor(-8) 

(1, 0, 0, 1, 0, 0) 

sage: H.heegner_divisor(-39) 

(1, 2, 2, 1, 2, 0) 

sage: H.heegner_divisor(-43) 

(1, 0, 0, 1, 0, 0) 

sage: H.heegner_divisor(-51) 

(1, 0, 0, 1, 0, 2) 

sage: H.heegner_divisor(-79) 

(3, 2, 2, 3, 0, 0) 

 

sage: sum(H.heegner_divisor(-39).element()) 

8 

sage: QuadraticField(-39,'a').class_number() 

4 

""" 

if not self.satisfies_heegner_hypothesis(D, c): 

raise ValueError("D and c must be coprime to N and ell") 

 

B = self.brandt_module() 

 

if c > 1: 

# Just apply T_c to divisor for c=1 

z = self.heegner_divisor(D) 

return B.hecke_operator(c)(z) 

 

n = -D 

v = [0]*B.degree() 

for i, R in enumerate(self.left_orders()): 

Q = R.ternary_quadratic_form() 

a = Q.theta_series(n+1)[n] 

if a > 0: 

reps = Q.representation_vector_list(n+1)[-1] 

k = len([r for r in reps if gcd(r) == 1]) 

assert k%2 == 0 

v[i] += k/2 

return B(v) 

 

@cached_method 

def modp_splitting_data(self, p): 

r""" 

Return mod `p` splitting data for the quaternion algebra at the 

unramified prime `p`. This is a pair of `2\times 2` matrices 

`A`, `B` over the finite field `\GF{p}` such that if the 

quaternion algebra has generators `i, j, k`, then the 

homomorphism sending `i` to `A` and `j` to `B` maps any 

maximal order homomorphically onto the ring of `2\times 2` matrices. 

 

Because of how the homomorphism is defined, we must assume that the 

prime `p` is odd. 

 

INPUT: 

 

- `p` -- unramified odd prime 

 

OUTPUT: 

 

- 2-tuple of matrices over finite field 

 

EXAMPLES:: 

 

sage: H = heegner_points(11).reduce_mod(7) 

sage: H.quaternion_algebra() 

Quaternion Algebra (-1, -7) with base ring Rational Field 

sage: I, J = H.modp_splitting_data(13) 

sage: I 

[ 0 12] 

[ 1 0] 

sage: J 

[7 3] 

[3 6] 

sage: I^2 

[12 0] 

[ 0 12] 

sage: J^2 

[6 0] 

[0 6] 

sage: I*J == -J*I 

True 

 

The following is a good test because of the asserts in the code:: 

 

sage: v = [H.modp_splitting_data(p) for p in primes(13,200)] 

 

Some edge cases:: 

 

sage: H.modp_splitting_data(11) 

( 

[ 0 10] [6 1] 

[ 1 0], [1 5] 

) 

 

Proper error handling:: 

 

sage: H.modp_splitting_data(7) 

Traceback (most recent call last): 

... 

ValueError: p (=7) must be an unramified prime 

 

sage: H.modp_splitting_data(2) 

Traceback (most recent call last): 

... 

ValueError: p must be odd 

""" 

p = ZZ(p) 

if not p.is_prime(): 

raise ValueError("p (=%s) must be prime"%p) 

if p == 2: 

raise ValueError("p must be odd") 

Q = self.quaternion_algebra() 

if Q.discriminant() % p == 0: 

raise ValueError("p (=%s) must be an unramified prime"%p) 

i, j, k = Q.gens() 

F = GF(p) 

i2 = F(i*i) 

j2 = F(j*j) 

M = MatrixSpace(F, 2) 

I = M([0,i2,1,0]) 

i2inv = 1/i2 

a = None 

#for b in reversed(list(F)): 

for b in list(F): 

if not b: continue 

c = j2 + i2inv * b*b 

if c.is_square(): 

a = -c.sqrt() 

break 

assert a is not None, "bug in that no splitting solution found" 

J = M([a,b,(j2-a*a)/b, -a]) 

assert I*J == -J*I, "bug in that I,J do not skew commute" 

return I, J 

 

def modp_splitting_map(self, p): 

r""" 

Return (algebra) map from the (`p`-integral) quaternion algebra to 

the set of `2\times 2` matrices over `\GF{p}`. 

 

INPUT: 

 

- `p` -- prime number 

 

EXAMPLES:: 

 

sage: H = heegner_points(11).reduce_mod(7) 

sage: f = H.modp_splitting_map(13) 

sage: B = H.quaternion_algebra(); B 

Quaternion Algebra (-1, -7) with base ring Rational Field 

sage: i,j,k = H.quaternion_algebra().gens() 

sage: a = 2+i-j+3*k; b = 7+2*i-4*j+k 

sage: f(a*b) 

[12 3] 

[10 5] 

sage: f(a)*f(b) 

[12 3] 

[10 5] 

""" 

I, J = self.modp_splitting_data(p) 

K = I*J 

F = I.base_ring() 

def phi(q): 

v = [F(a) for a in q.coefficient_tuple()] 

return v[0] + I*v[1] + J*v[2] + K*v[3] 

return phi 

 

def cyclic_subideal_p1(self, I, c): 

r""" 

Compute dictionary mapping 2-tuples that defined normalized 

elements of `P^1(\ZZ/c\ZZ)` 

 

INPUT: 

 

- `I` -- right ideal of Eichler order or in quaternion algebra 

 

- `c` -- square free integer (currently must be odd prime 

and coprime to level, discriminant, characteristic, 

etc. 

 

OUTPUT: 

 

- dictionary mapping 2-tuples (u,v) to ideals 

 

EXAMPLES:: 

 

sage: H = heegner_points(11).reduce_mod(7) 

sage: I = H.brandt_module().right_ideals()[0] 

sage: sorted(H.cyclic_subideal_p1(I,3).items()) 

[((0, 1), 

Fractional ideal (2 + 2*j + 32*k, 2*i + 8*j + 82*k, 12*j + 60*k, 132*k)), 

((1, 0), 

Fractional ideal (2 + 10*j + 28*k, 2*i + 4*j + 62*k, 12*j + 60*k, 132*k)), 

((1, 1), 

Fractional ideal (2 + 2*j + 76*k, 2*i + 4*j + 106*k, 12*j + 60*k, 132*k)), 

((1, 2), 

Fractional ideal (2 + 10*j + 116*k, 2*i + 8*j + 38*k, 12*j + 60*k, 132*k))] 

sage: len(H.cyclic_subideal_p1(I,17)) 

18 

""" 

c = ZZ(c) 

if not c.is_prime(): 

raise NotImplementedError("currently c must be prime") 

if c == 2: 

raise NotImplementedError("currently c must be odd") 

phi = self.modp_splitting_map(c) 

B = self.brandt_module() 

P1 = P1List(c) 

ans = {} 

# Actually they are submodules despite the name below. 

for J in B.cyclic_submodules(I, c): 

B = J.basis() 

V = phi(B[0]).kernel() 

for i in [1,2,3]: 

V = V.intersection(phi(B[i]).kernel()) 

b = V.basis() 

assert len(b) == 1, "common kernel must have dimension 1" 

uv = P1.normalize(ZZ(b[0][0])%c, ZZ(b[0][1])%c) 

ans[uv] = J 

assert len(ans) == c+1 

return ans 

 

@cached_method 

def galois_group_over_hilbert_class_field(self, D, c): 

""" 

Return the Galois group of the extension of ring class fields 

`K_c` over the Hilbert class field `K_{1}` of the quadratic 

imaginary field of discriminant `D`. 

 

INPUT: 

 

- `D` -- fundamental discriminant 

 

- `c` -- conductor (square-free integer) 

 

EXAMPLES:: 

 

sage: N = 37; D = -7; ell = 17; c = 41; p = 3 

sage: H = heegner_points(N).reduce_mod(ell) 

sage: H.galois_group_over_hilbert_class_field(D, c) 

Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 41 over Hilbert class field of QQ[sqrt(-7)] 

""" 

Kc = heegner_points(self.level(), D, c).ring_class_field() 

K1 = heegner_points(self.level(), D, 1).ring_class_field() 

return Kc.galois_group(K1) 

 

@cached_method 

def galois_group_over_quadratic_field(self, D, c): 

""" 

Return the Galois group of the extension of ring class fields 

`K_c` over the quadratic imaginary field `K` of discriminant `D`. 

 

INPUT: 

 

- `D` -- fundamental discriminant 

 

- `c` -- conductor (square-free integer) 

 

EXAMPLES:: 

 

sage: N = 37; D = -7; ell = 17; c = 41; p = 3 

sage: H = heegner_points(N).reduce_mod(ell) 

sage: H.galois_group_over_quadratic_field(D, c) 

Galois group of Ring class field extension of QQ[sqrt(-7)] of conductor 41 over Number Field in sqrt_minus_7 with defining polynomial x^2 + 7 

 

""" 

Kc = heegner_points(self.level(), D, c).ring_class_field() 

return Kc.galois_group(Kc.quadratic_field()) 

 

@cached_method 

def quadratic_field(self, D): 

""" 

Return our fixed choice of quadratic imaginary field of 

discriminant `D`. 

 

INPUT: 

 

- `D` -- fundamental discriminant 

 

OUTPUT: 

 

- a quadratic number field 

 

EXAMPLES:: 

 

sage: H = heegner_points(389).reduce_mod(5) 

sage: H.quadratic_field(-7) 

Number Field in sqrt_minus_7 with defining polynomial x^2 + 7 

""" 

Kc = heegner_points(self.level(), D, 1).ring_class_field() 

return Kc.quadratic_field() 

 

@cached_method 

def kolyvagin_cyclic_subideals(self, I, p, alpha_quaternion): 

r""" 

Return list of pairs `(J, n)` where `J` runs through the 

cyclic subideals of `I` of index `(\ZZ/p\ZZ)^2`, and `J \sim 

\alpha^n(J_0)` for some fixed choice of cyclic subideal `J_0`. 

 

INPUT: 

 

- `I` -- right ideal of the quaternion algebra 

 

- `p` -- prime number 

 

- ``alpha_quaternion`` -- image in the quaternion algebra 

of generator `\alpha` for 

`(\mathcal{O}_K / c\mathcal{O}_K)^* / (\ZZ/c\ZZ)^*`. 

 

OUTPUT: 

 

- list of 2-tuples 

 

EXAMPLES:: 

 

sage: N = 37; D = -7; ell = 17; c=5 

sage: H = heegner_points(N).reduce_mod(ell) 

sage: B = H.brandt_module(); I = B.right_ideals()[32] 

sage: f = H.optimal_embeddings(D, 1, I.left_order())[1] 

sage: g = H.kolyvagin_generators(f.domain().number_field(), c) 

sage: alpha_quaternion = f(g[0]); alpha_quaternion 

1 - 5/128*i - 77/192*j + 137/384*k 

sage: H.kolyvagin_cyclic_subideals(I, 5, alpha_quaternion) 

[(Fractional ideal (2 + 874/3*j + 128356/3*k, 2*i + 932/3*j + 198806/3*k, 2560/3*j + 33280/3*k, 94720*k), 0), (Fractional ideal (2 + 462*j + 82892*k, 2*i + 932/3*j + 141974/3*k, 2560/3*j + 33280/3*k, 94720*k), 1), (Fractional ideal (2 + 2410/3*j + 261988/3*k, 2*i + 652*j + 89650*k, 2560/3*j + 33280/3*k, 94720*k), 2), (Fractional ideal (2 + 2410/3*j + 91492/3*k, 2*i + 1444/3*j + 148630/3*k, 2560/3*j + 33280/3*k, 94720*k), 3), (Fractional ideal (2 + 874/3*j + 71524/3*k, 2*i + 2468/3*j + 275606/3*k, 2560/3*j + 33280/3*k, 94720*k), 4), (Fractional ideal (2 + 462*j + 63948*k, 2*i + 2468/3*j + 218774/3*k, 2560/3*j + 33280/3*k, 94720*k), 5)] 

""" 

X = I.cyclic_right_subideals(p, alpha_quaternion) 

return [(J, i) for i, J in enumerate(X)] 

 

@cached_method 

def kolyvagin_generator(self, K, p): 

r""" 

Return element in `K` that maps to the multiplicative generator 

for the quotient group 

 

`(\mathcal{O}_K / p \mathcal{O}_K)^* / (\ZZ/p\ZZ)^*` 

 

of the form `\sqrt{D}+n` with `n\geq 1` minimal. 

 

INPUT: 

 

- `K` -- quadratic imaginary field 

 

- `p` -- inert prime 

 

EXAMPLES:: 

 

sage: N = 37; D = -7; ell = 17; p=5 

sage: H = heegner_points(N).reduce_mod(ell) 

sage: B = H.brandt_module(); I = B.right_ideals()[32] 

sage: f = H.optimal_embeddings(D, 1, I.left_order())[0] 

sage: H.kolyvagin_generator(f.domain().number_field(), 5) 

a + 1 

 

This function requires that p be prime, but kolyvagin_generators works in general:: 

 

sage: H.kolyvagin_generator(f.domain().number_field(), 5*17) 

Traceback (most recent call last): 

... 

NotImplementedError: p must be prime 

sage: H.kolyvagin_generators(f.domain().number_field(), 5*17) 

[-34*a + 1, 35*a + 106] 

""" 

p = ZZ(p) 

if not p.is_prime(): 

raise NotImplementedError("p must be prime") 

if K.discriminant() % p == 0: 

raise ValueError("p must be unramified") 

if len(K.factor(p)) != 1: 

raise ValueError("p must be inert") 

 

F = K.residue_field(p) 

a = F.gen() 

assert a*a == K.discriminant(), "bug: we assumed generator of finite field must be square root of discriminant, but for some reason this is not true" 

for n in range(1,p): 

if (a + n).multiplicative_order() % (p*p-1) == 0: 

return K.gen() + n 

raise RuntimeError("there is a bug in kolyvagin_generator") 

 

@cached_method 

def kolyvagin_generators(self, K, c): 

r""" 

Return elements in `\mathcal{O}_K` that map to multiplicative generators 

for the factors of the quotient group 

 

`(\mathcal{O}_K / c \mathcal{O}_K)^* / (\ZZ/c\ZZ)^*` 

 

corresponding to the prime divisors of c. Each generator is 

of the form `\sqrt{D}+n` with `n\geq 1` minimal. 

 

INPUT: 

 

- `K` -- quadratic imaginary field 

 

- `c` -- square free product of inert prime 

 

EXAMPLES:: 

 

sage: N = 37; D = -7; ell = 17; p=5 

sage: H = heegner_points(N).reduce_mod(ell) 

sage: B = H.brandt_module(); I = B.right_ideals()[32] 

sage: f = H.optimal_embeddings(D, 1, I.left_order())[0] 

sage: H.kolyvagin_generators(f.domain().number_field(), 5*17) 

[-34*a + 1, 35*a + 106] 

""" 

v = [] 

F = ZZ(c).factor() 

from sage.rings.integer_ring import crt_basis 

B = crt_basis([x[0] for x in F]) 

for i, (p, e) in enumerate(F): 

if e > 1: 

raise ValueError("c must be square free") 

alpha = self.kolyvagin_generator(K, p) 

# Now we use the Chinese Remainder Theorem to make an element 

# of O_K that equals alpha modulo p and equals 1 modulo 

# all other prime divisors of c. 

Z = [1]*len(B) 

Z[i] = alpha[0] 

a0 = sum([Z[j]*B[j] for j in range(len(B))]) 

Z = [0]*len(B) 

Z[i] = alpha[1] 

a1 = sum([Z[j]*B[j] for j in range(len(B))]) 

v.append(alpha.parent()([a0,a1])) 

return v 

 

@cached_method 

def kolyvagin_sigma_operator(self, D, c, r, bound=None): 

""" 

Return the action of the Kolyvagin sigma operator on the `r`-th 

basis vector. 

 

INPUT: 

 

- `D` -- fundamental discriminant 

 

- `c` -- conductor (square-free integer, need not be prime) 

 

- `r` -- nonnegative integer 

 

- ``bound`` -- (default: ``None``), if given, controls 

precision of computation of theta series, which could 

impact performance, but does not impact correctness 

 

EXAMPLES: 

 

We first try to verify Kolyvagin's conjecture for a rank 2 

curve by working modulo 5, but we are unlucky with `c=17`:: 

 

sage: N = 389; D = -7; ell = 5; c = 17; q = 3 

sage: H = heegner_points(N).reduce_mod(ell) 

sage: E = EllipticCurve('389a') 

sage: V = H.modp_dual_elliptic_curve_factor(E, q, 5) # long time (4s on sage.math, 2012) 

sage: k118 = H.kolyvagin_sigma_operator(D, c, 118) 

sage: k104 = H.kolyvagin_sigma_operator(D, c, 104) 

sage: [b.dot_product(k104.element().change_ring(GF(3))) for b in V.basis()] # long time 

[0, 0] 

sage: [b.dot_product(k118.element().change_ring(GF(3))) for b in V.basis()] # long time 

[0, 0] 

 

Next we try again with `c=41` and this does work, in that we 

get something nonzero, when dotting with V:: 

 

sage: c = 41 

sage: k118 = H.kolyvagin_sigma_operator(D, c, 118) 

sage: k104 = H.kolyvagin_sigma_operator(D, c, 104) 

sage: [b.dot_product(k118.element().change_ring(GF(3))) for b in V.basis()] # long time 

[2, 0] 

sage: [b.dot_product(k104.element().change_ring(GF(3))) for b in V.basis()] # long time 

[1, 0] 

 

By the way, the above is the first ever provable verification 

of Kolyvagin's conjecture for any curve of rank at least 2. 

 

Another example, but where the curve has rank 1:: 

 

sage: N = 37; D = -7; ell = 17; c = 41; q = 3 

sage: H = heegner_points(N).reduce_mod(ell) 

sage: H.heegner_divisor(D,1).element().nonzero_positions() 

[32, 51] 

sage: k32 = H.kolyvagin_sigma_operator(D, c, 32); k32 

(17, 12, 33, 33, 49, 108, 3, 0, 0, 33, 37, 49, 33, 33, 59, 54, 21, 30, 0, 0, 29, 12, 41, 38, 33, 15, 0, 0, 4, 0, 7, 0, 0, 0, 0, 34, 26, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

sage: k51 = H.kolyvagin_sigma_operator(D, c, 51); k51 

(5, 13, 0, 0, 14, 0, 21, 0, 0, 0, 29, 0, 0, 45, 0, 6, 0, 40, 0, 61, 0, 0, 40, 32, 0, 9, 0, 0, 0, 0, 17, 0, 0, 0, 77, 40, 2, 10, 18, 0, 0, 61, 19, 45, 26, 80, 61, 35, 35, 19, 1, 0) 

sage: V = H.modp_dual_elliptic_curve_factor(EllipticCurve('37a'), q, 5); V 

Vector space of degree 52 and dimension 2 over Ring of integers modulo 3 

Basis matrix: 

2 x 52 dense matrix over Ring of integers modulo 3 

sage: [b.dot_product(k32.element().change_ring(GF(q))) for b in V.basis()] 

[2, 2] 

sage: [b.dot_product(k51.element().change_ring(GF(q))) for b in V.basis()] 

[1, 1] 

 

An example with `c` a product of two primes:: 

 

sage: N = 389; D = -7; ell = 5; q = 3 

sage: H = heegner_points(N).reduce_mod(ell) 

sage: V = H.modp_dual_elliptic_curve_factor(EllipticCurve('389a'), q, 5) 

sage: k = H.kolyvagin_sigma_operator(D, 17*41, 104) # long time 

sage: k # long time 

(990, 656, 219, ..., 246, 534, 1254) 

sage: [b.dot_product(k.element().change_ring(GF(3))) for b in V.basis()] # long time (but only because depends on something slow) 

[0, 0] 

""" 

B = self.brandt_module() 

RI = B.right_ideals() 

 

f = self.optimal_embeddings(D, 1, RI[r].left_order())[0] 

alphas = self.kolyvagin_generators(f.domain().number_field(), c) 

alpha_quaternions = [f(x) for x in alphas] 

 

if bound is None: 

bound = B.dimension() // 2 + 5 

theta_dict = B._theta_dict(bound) 

 

c = ZZ(c) 

J_lists = [] 

F = c.factor() 

I = RI[r] 

for i, (p, e) in enumerate(F): 

if e > 1: raise ValueError("c must be square free") 

X = I.cyclic_right_subideals(p, alpha_quaternions[i]) 

J_lists.append(dict(enumerate(X))) 

 

ans = [0]*B.dimension() 

from sage.misc.mrange import cartesian_product_iterator 

for v in cartesian_product_iterator([range(1,p+1) for p,_ in F]): 

J = J_lists[0][v[0]] 

for i in range(1,len(J_lists)): 

J = J.intersection(J_lists[i][v[i]]) 

J_theta = tuple(J.theta_series_vector(bound)) 

d = theta_dict[J_theta] 

j = None 

if len(d) == 1: 

j = d[0] 

else: 

for z in d: 

if RI[z].is_equivalent(J, 0): 

j = z 

# we found the right j 

break 

if j is None: 

raise RuntimeError("bug finding equivalent ideal") 

ans[j] += prod(v) 

return B(ans) 

 

@cached_method 

def modp_dual_elliptic_curve_factor(self, E, p, bound=10): 

""" 

Return the factor of the Brandt module space modulo `p` 

corresponding to the elliptic curve `E`, cut out using 

Hecke operators up to ``bound``. 

 

INPUT: 

 

- `E` -- elliptic curve of conductor equal to the level of self 

 

- `p` -- prime number 

 

- `bound` -- positive integer (default: 10) 

 

EXAMPLES:: 

 

sage: N = 37; D = -7; ell = 17; c = 41; q = 3 

sage: H = heegner_points(N).reduce_mod(ell) 

sage: V = H.modp_dual_elliptic_curve_factor(EllipticCurve('37a'), q, 5); V 

Vector space of degree 52 and dimension 2 over Ring of integers modulo 3 

Basis matrix: 

2 x 52 dense matrix over Ring of integers modulo 3 

""" 

if E.conductor() != self.level(): 

raise ValueError("conductor of E must equal level of self") 

p = ZZ(p) 

if not p.is_prime(): 

raise ValueError("p (=%s) must be prime"%p) 

bad = self.__level * self.__ell 

 

V = None 

q = ZZ(2) 

B = self.brandt_module() 

F = GF(p) 

while q <= bound and (V is None or V.dimension() > 2): 

verbose("q = %s"%q) 

if bad % q != 0: 

T = B._compute_hecke_matrix_directly(q).change_ring(F).transpose() 

if V is None: 

V = (T - E.ap(q)).kernel() 

else: 

t = T.restrict(V) 

W = (t - E.ap(q)).kernel() 

V = (W.basis_matrix() * V.basis_matrix()).row_space() 

q = q.next_prime() 

return V 

 

@cached_method 

def rational_kolyvagin_divisor(self, D, c): 

r""" 

Return the Kolyvagin divisor as an element of the Brandt module 

corresponding to the discriminant `D` and conductor `c`, which 

both must be coprime to `N\ell`. 

 

INPUT: 

 

- `D` -- discriminant (negative integer) 

 

- `c` -- conductor (positive integer) 

 

 

OUTPUT: 

 

- Brandt module element (or tuple of them) 

 

EXAMPLES:: 

 

sage: N = 389; D = -7; ell = 5; c = 17; q = 3 

sage: H = heegner_points(N).reduce_mod(ell) 

sage: k = H.rational_kolyvagin_divisor(D, c); k # long time (5s on sage.math, 2013) 

(2, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 4, 0, 0, 9, 11, 0, 6, 0, 0, 7, 0, 0, 0, 0, 14, 12, 13, 15, 17, 0, 0, 0, 0, 8, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

sage: V = H.modp_dual_elliptic_curve_factor(EllipticCurve('389a'), q, 2) 

sage: [b.dot_product(k.element().change_ring(GF(q))) for b in V.basis()] # long time 

[0, 0] 

sage: k = H.rational_kolyvagin_divisor(D, 59) 

sage: [b.dot_product(k.element().change_ring(GF(q))) for b in V.basis()] 

[2, 0] 

""" 

if not self.satisfies_heegner_hypothesis(D, c): 

raise ValueError("D and c must be coprime to N and ell") 

 

hd = self.heegner_divisor(D) 

v = hd.element() 

if class_number(D) != 1: 

raise NotImplementedError("class number greater than 1 not implemented") 

i = min(v.nonzero_positions()) 

return self.kolyvagin_sigma_operator(D, c, i) 

 

#w = 0 

#for i, a in six.iteritems(v.dict()): 

# w += a * self.kolyvagin_sigma_operator(D, c, i) 

# return w 

 

@cached_method 

def kolyvagin_point_on_curve(self, D, c, E, p, bound=10): 

r""" 

Compute image of the Kolyvagin divisor `P_c` in 

`E(\GF{\ell^2}) / p E(\GF{\ell^2})`. 

 

Note that this image is by definition only well defined up to 

scalars. However, doing multiple computations will always 

yield the same result, and working modulo different `\ell` is 

compatible (since we always choose the same generator for 

`\textrm{Gal}(K_c/K_1)`). 

 

INPUT: 

 

- `D` -- fundamental negative discriminant 

 

- `c` -- conductor 

 

- `E` -- elliptic curve of conductor the level of self 

 

- `p` -- odd prime number such that we consider image in 

`E(\GF{\ell^2}) / p E(\GF{\ell^2})` 

 

- ``bound`` -- integer (default: 10) 

 

EXAMPLES:: 

 

sage: N = 37; D = -7; ell = 17; c = 41; p = 3 

sage: H = heegner_points(N).reduce_mod(ell) 

sage: H.kolyvagin_point_on_curve(D, c, EllipticCurve('37a'), p) 

[2, 2] 

""" 

k = self.rational_kolyvagin_divisor(D, c) 

V = self.modp_dual_elliptic_curve_factor(E, p, bound) 

return [b.dot_product(k.element().change_ring(GF(p))) for b in V.basis()] 

 

def kolyvagin_reduction_data(E, q, first_only=True): 

r""" 

Given an elliptic curve of positive rank and a prime `q`, this 

function returns data about how to use Kolyvagin's `q`-torsion 

Heegner point Euler system to do computations with this curve. 

See the precise description of the output below. 

 

INPUT: 

 

- `E` -- elliptic curve over `\QQ` of rank 1 or 2 

 

- `q` -- an odd prime that does not divide the order of the 

rational torsion subgroup of `E` 

 

- ``first_only`` -- bool (default: ``True``) whether two only return 

the first prime that one can work modulo to get data about 

the Euler system 

 

OUTPUT in the rank 1 case or when the default flag ``first_only=True``: 

 

- `\ell` -- first good odd prime satisfying the Kolyvagin 

condition that `q` divides \gcd(a_{\ell},\ell+1)` and the 

reduction map is surjective to `E(\GF{\ell}) / q 

E(\GF{\ell})` 

 

- `D` -- discriminant of the first quadratic imaginary field 

`K` that satisfies the Heegner hypothesis for `E` such that 

both `\ell` is inert in `K`, and the twist `E^D` has analytic 

rank `\leq 1` 

 

- `h_D` -- the class number of `K` 

 

- the dimension of the Brandt module `B(\ell,N)`, where `N` is 

the conductor of `E` 

 

OUTPUT in the rank 2 case: 

 

- `\ell_1` -- first prime (as above in the rank 1 case) where 

reduction map is surjective 

 

- `\ell_2` -- second prime (as above) where reduction map is 

surjective 

 

- `D` -- discriminant of the first quadratic imaginary field 

`K` that satisfies the Heegner hypothesis for `E` such that 

both `\ell_1` and `\ell_2` are simultaneously inert in `K`, 

and the twist `E^D` has analytic rank `\leq 1` 

 

- `h_D` -- the class number of `K` 

 

- the dimension of the Brandt module `B(\ell_1,N)`, where `N` is 

the conductor of `E` 

 

- the dimension of the Brandt module `B(\ell_2,N)` 

 

 

EXAMPLES: 

 

Import this function:: 

 

sage: from sage.schemes.elliptic_curves.heegner import kolyvagin_reduction_data 

 

A rank 1 example:: 

 

sage: kolyvagin_reduction_data(EllipticCurve('37a1'),3) 

(17, -7, 1, 52) 

 

A rank 3 example:: 

 

sage: kolyvagin_reduction_data(EllipticCurve('5077a1'),3) 

(11, -47, 5, 4234) 

sage: H = heegner_points(5077, -47) 

sage: [c for c in H.kolyvagin_conductors(2,10,EllipticCurve('5077a1'),3) if c%11] 

[667, 943, 1189, 2461] 

sage: factor(667) 

23 * 29 

 

 

A rank 4 example (the first Kolyvagin class that we could try to 

compute would be `P_{23\cdot 29\cdot 41}`, and would require 

working in a space of dimension 293060 (so prohibitive at 

present):: 

 

sage: E = elliptic_curves.rank(4)[0] 

sage: kolyvagin_reduction_data(E,3) # long time 

(11, -71, 7, 293060) 

sage: H = heegner_points(293060, -71) 

sage: H.kolyvagin_conductors(1,4,E,3) 

[11, 17, 23, 41] 

 

The first rank 2 example:: 

 

sage: kolyvagin_reduction_data(EllipticCurve('389a'),3) 

(5, -7, 1, 130) 

sage: kolyvagin_reduction_data(EllipticCurve('389a'),3, first_only=False) 

(5, 17, -7, 1, 130, 520) 

 

A large `q = 7`:: 

 

sage: kolyvagin_reduction_data(EllipticCurve('1143c1'),7, first_only=False) 

(13, 83, -59, 3, 1536, 10496) 

 

Additive reduction:: 

 

sage: kolyvagin_reduction_data(EllipticCurve('2350g1'),5, first_only=False) 

(19, 239, -311, 19, 6480, 85680) 

""" 

from .ell_generic import is_EllipticCurve 

if not is_EllipticCurve(E): 

raise TypeError("E must be an elliptic curve") 

 

q = ZZ(q) 

if not q.is_prime(): 

raise ValueError("q must be a prime") 

 

if q.gcd(E.torsion_order()) != 1: 

raise NotImplementedError("q must be coprime to torsion") 

 

N = E.conductor() 

r = E.rank() 

 

if r == 0: 

raise ValueError("E must have positive rank") 

 

if E.rank() == 1: 

first_only = True 

 

from sage.modular.quatalg.all import BrandtModule 

 

def twist_is_minimal(D): 

# return True if the quadratic twist E^D has analytic rank <= 1 

return E.quadratic_twist(D).analytic_rank() <= 1 

 

def red(P, ell): 

# reduce the point P on the elliptic curve modulo ell 

w = list(P) 

d = lcm([a.denominator() for a in w]) 

return E.change_ring(GF(ell))([d*a for a in w]) 

 

 

def best_heegner_D(ell_1, ell_2): 

# return the first Heegner D satisfy all hypothesis such that 

# both ell_1 and ell_2 are inert 

D = -5 

while True: 

if is_fundamental_discriminant(D) and \ 

D%ell_1 and D%ell_2 and \ 

E.satisfies_heegner_hypothesis(D) and \ 

is_inert(D, ell_1) and is_inert(D, ell_2) and \ 

twist_is_minimal(D): 

return D 

D -= 1 

 

if first_only: 

# find first prime ell with various conditions 

# such that reduction is surjective to E(F_ell)/q. 

ell = ZZ(3) 

while True: 

while N % ell == 0 or gcd(ell+1,E.ap(ell)) % q != 0: 

ell = ell.next_prime() 

# determine if mod ell reduction is surjective, using 

# partly that it is a lemma that E(F_ell)/q is cyclic. 

m = ZZ(E.Np(ell) / q) 

for P in E.gens(): 

if red(P,ell) * m != 0: 

# bingo, is surjective 

D = best_heegner_D(ell,ell) 

return (ell, D, class_number(D), BrandtModule(ell,N).dimension()) 

# end for 

ell = ell.next_prime() 

 

if E.rank() != 2: 

raise ValueError("if first_only is not True, then the curve E must have rank 1 or 2") 

 

P, Q = E.gens() 

def kernel_of_reduction(ell): 

# return list of reps for the kernel as a subgroup of the map 

# E(Q) / q E(Q) ----> E(F_ell) / q E(F_ell) 

m = ZZ(E.Np(ell) / q) 

A = [a*P + b*Q for a in range(q) for b in range(q)] 

return [z for z in A if red(z,ell) * m == 0] 

 

# compute first good odd prime 

ell_1 = ZZ(3) 

while True: 

while N % ell_1 == 0 or gcd(ell_1+1,E.ap(ell_1)) % q != 0: 

ell_1 = ell_1.next_prime() 

# compute kernel of reduction modulo ell_1 

G1 = set(kernel_of_reduction(ell_1)) 

if len(G1) == q: break 

ell_1 = ell_1.next_prime() 

 

# compute next good odd prime with distinct kernel of order q 

ell_2 = ell_1.next_prime() 

while True: 

while N % ell_2 == 0 or gcd(ell_2+1,E.ap(ell_2)) % q != 0: 

ell_2 = ell_2.next_prime() 

G2 = set(kernel_of_reduction(ell_2)) 

if G1 != G2 and len(G2) == q: 

break 

ell_2 = ell_2.next_prime() 

 

# Find smallest D where both ell_1 and ell_2 are inert 

D = best_heegner_D(ell_1, ell_2) 

return (ell_1, ell_2, D, class_number(D), 

BrandtModule(ell_1,N).dimension(), 

BrandtModule(ell_2,N).dimension()) 

 

class HeegnerQuatAlgEmbedding(SageObject): 

r""" 

The homomorphism `\mathcal{O} \to R`, where `\mathcal{O}` is the 

order of conductor `c` in the quadratic field of discriminant `D`, 

and `R` is an Eichler order in a quaternion algebra. 

 

EXAMPLES:: 

 

sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0] 

sage: f = H.optimal_embeddings(-7, 2, R)[1]; f 

Embedding sending 2*sqrt(-7) to -5*i + k 

sage: type(f) 

<class 'sage.schemes.elliptic_curves.heegner.HeegnerQuatAlgEmbedding'> 

sage: loads(dumps(f)) == f 

True 

""" 

def __init__(self, D, c, R, beta): 

r""" 

INPUT: 

 

- `D` -- negative fundamental discriminant 

 

- `c` -- positive integer coprime to `D` 

 

- `R` -- Eichler order in a rational quaternion algebra 

 

- `\beta` -- element of `R` such that the homomorphism 

sends `c\sqrt{D}` to `\beta` 

 

EXAMPLES:: 

 

sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0] 

sage: i,j,k = H.quaternion_algebra().gens() 

sage: import sage.schemes.elliptic_curves.heegner as heegner 

sage: heegner.HeegnerQuatAlgEmbedding(-7, 2, R, -5*i+k) 

Embedding sending 2*sqrt(-7) to -5*i + k 

""" 

self.__D = D 

self.__c = c 

self.__R = R 

self.__beta = beta 

 

def __eq__(self, other): 

""" 

EXAMPLES:: 

 

sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0] 

sage: f = H.optimal_embeddings(-7, 2, R)[0] 

sage: f == H.optimal_embeddings(-7, 2, R)[0] 

True 

sage: f == H.optimal_embeddings(-7, 2, R)[1] 

False 

sage: f == 0 

False 

""" 

return isinstance(other, HeegnerQuatAlgEmbedding) and \ 

self.__D == other.__D and \ 

self.__c == other.__c and \ 

self.__R == other.__R and \ 

self.__beta == other.__beta 

 

def __ne__(self, other): 

""" 

EXAMPLES:: 

 

sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0] 

sage: f = H.optimal_embeddings(-7, 2, R)[0] 

sage: f != H.optimal_embeddings(-7, 2, R)[0] 

False 

sage: f != H.optimal_embeddings(-7, 2, R)[1] 

True 

sage: f != 0 

True 

""" 

return not (self == other) 

 

def __call__(self, x): 

""" 

Return image of `x` under this embedding. 

 

INPUT: 

 

- `x` -- element of the quadratic order 

 

EXAMPLES:: 

 

sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0] 

sage: f = H.optimal_embeddings(-7, 1, R)[1]; f 

Embedding sending sqrt(-7) to -i + j + k 

sage: a = f.domain_gen(); a^2 

-7 

sage: f(2 + 3*a) 

2 - 3*i + 3*j + 3*k 

sage: 2 + 3*f(a) 

2 - 3*i + 3*j + 3*k 

sage: f(a)^2 

-7 

""" 

v = self.domain().number_field()(x).vector() 

w = v * self.matrix() 

z = self.codomain().quaternion_algebra()(w) 

# There is no notion of an "element of an order" implemented 

# for quaternion algebras right now. All elements are 

# elements of the ambient rational quaternion algebra. 

return z 

 

@cached_method 

def matrix(self): 

r""" 

Return matrix over `\QQ` of this morphism, with respect to the 

basis 1, `c\sqrt{D}` of the domain and the basis `1,i,j,k` of 

the ambient rational quaternion algebra (which contains the 

domain). 

 

EXAMPLES:: 

 

sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0] 

sage: f = H.optimal_embeddings(-7, 1, R)[1]; f 

Embedding sending sqrt(-7) to -i + j + k 

sage: f.matrix() 

[ 1 0 0 0] 

[ 0 -1 1 1] 

sage: f.conjugate().matrix() 

[ 1 0 0 0] 

[ 0 1 -1 -1] 

""" 

return matrix(QQ,2,4,[[1,0,0,0], self.__beta.coefficient_tuple()]) 

 

@cached_method 

def domain(self): 

""" 

Return the domain of this embedding. 

 

EXAMPLES:: 

 

sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0] 

sage: H.optimal_embeddings(-7, 2, R)[0].domain() 

Order in Number Field in a with defining polynomial x^2 + 7 

""" 

R, a = quadratic_order(self.__D, self.__c) 

 

# The following assumption is used, e.g., in the __call__ 

# method. I know that it is satisfied by the current 

# implementation. But somebody might someday annoying change 

# the implementation, and we want to catch that if it were to 

# ever happen. 

 

assert R.basis() == [1, a], "an assumption about construction of orders is violated" 

self.__domain_gen = a 

return R 

 

def domain_gen(self): 

r""" 

Return the specific generator `c \sqrt{D}` for the domain 

order. 

 

EXAMPLES:: 

 

sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0] 

sage: f = H.optimal_embeddings(-7, 2, R)[0] 

sage: f.domain_gen() 

2*a 

sage: f.domain_gen()^2 

-28 

""" 

self.domain() 

return self.__domain_gen 

 

def domain_conductor(self): 

""" 

Return the conductor of the domain. 

 

EXAMPLES:: 

 

sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0] 

sage: H.optimal_embeddings(-7, 2, R)[0].domain_conductor() 

2 

""" 

return self.__c 

 

def beta(self): 

r""" 

Return the element `\beta` in the quaternion algebra order 

that `c\sqrt{D}` maps to. 

 

EXAMPLES:: 

 

sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0] 

sage: H.optimal_embeddings(-7, 2, R)[1].beta() 

-5*i + k 

""" 

return self.__beta 

 

def codomain(self): 

""" 

Return the codomain of this embedding. 

 

EXAMPLES:: 

 

sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0] 

sage: H.optimal_embeddings(-7, 2, R)[0].codomain() 

Order of Quaternion Algebra (-1, -3) with base ring Rational Field with basis (1/2 + 1/2*j + 7*k, 1/2*i + 13/2*k, j + 3*k, 11*k) 

""" 

return self.__R 

 

@cached_method 

def _repr_(self): 

""" 

Return string representation of this embedding. 

 

EXAMPLES:: 

 

sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0] 

sage: f = H.optimal_embeddings(-7, 2, R)[1]; f._repr_() 

'Embedding sending 2*sqrt(-7) to -5*i + k' 

""" 

a = '%ssqrt(%s)'%('%s*'%self.__c if self.__c > 1 else '', self.__D) 

return "Embedding sending %s to %s"%(a, self.__beta) 

 

def conjugate(self): 

""" 

Return the conjugate of this embedding, which is also an 

embedding. 

 

EXAMPLES:: 

 

sage: H = heegner_points(11).reduce_mod(3); R = H.left_orders()[0] 

sage: f = H.optimal_embeddings(-7, 2, R)[1] 

sage: f.conjugate() 

Embedding sending 2*sqrt(-7) to 5*i - k 

sage: f 

Embedding sending 2*sqrt(-7) to -5*i + k 

""" 

return HeegnerQuatAlgEmbedding(self.__D, self.__c, 

self.__R, self.__beta.conjugate()) 

 

 

############################################################################# 

# Utility Functions 

############################################################################# 

 

def quadratic_order(D, c, names='a'): 

""" 

Return order of conductor `c` in quadratic field with fundamental 

discriminant `D`. 

 

INPUT: 

 

- `D` -- fundamental discriminant 

 

- `c` -- conductor 

 

- ``names`` -- string (default: 'a') 

 

OUTPUT: 

 

- order `R` of conductor `c` in an imaginary quadratic field 

 

- the element `c\sqrt{D}` as an element of `R` 

 

The generator for the field is named 'a' by default. 

 

EXAMPLES:: 

 

sage: sage.schemes.elliptic_curves.heegner.quadratic_order(-7,3) 

(Order in Number Field in a with defining polynomial x^2 + 7, 3*a) 

sage: sage.schemes.elliptic_curves.heegner.quadratic_order(-7,3,'alpha') 

(Order in Number Field in alpha with defining polynomial x^2 + 7, 3*alpha) 

""" 

K = QuadraticField(D, names) 

sqrtD = K.gen(0) 

t = sqrtD * c 

R = K.order([t]) 

return R, R(t) 

 

def class_number(D): 

""" 

Return the class number of the quadratic field with fundamental 

discriminant `D`. 

 

INPUT: 

 

- `D` -- integer 

 

EXAMPLES:: 

 

sage: sage.schemes.elliptic_curves.heegner.class_number(-20) 

2 

sage: sage.schemes.elliptic_curves.heegner.class_number(-23) 

3 

sage: sage.schemes.elliptic_curves.heegner.class_number(-163) 

1 

 

A ValueError is raised when `D` is not a fundamental 

discriminant:: 

 

sage: sage.schemes.elliptic_curves.heegner.class_number(-5) 

Traceback (most recent call last): 

... 

ValueError: D (=-5) must be a fundamental discriminant 

""" 

if not number_field.is_fundamental_discriminant(D): 

raise ValueError("D (=%s) must be a fundamental discriminant"%D) 

return QuadraticField(D,'a').class_number() 

 

def is_inert(D, p): 

r""" 

Return ``True`` if p is an inert prime in the field `\QQ(\sqrt{D})`. 

 

INPUT: 

 

- `D` -- fundamental discriminant 

 

- `p` -- prime integer 

 

EXAMPLES:: 

 

sage: sage.schemes.elliptic_curves.heegner.is_inert(-7,3) 

True 

sage: sage.schemes.elliptic_curves.heegner.is_inert(-7,7) 

False 

sage: sage.schemes.elliptic_curves.heegner.is_inert(-7,11) 

False 

""" 

K = QuadraticField(D,'a') 

F = K.factor(p) 

return len(F) == 1 and F[0][1] == 1 

 

def is_split(D, p): 

r""" 

Return ``True`` if p is a split prime in the field `\QQ(\sqrt{D})`. 

 

INPUT: 

 

- `D` -- fundamental discriminant 

 

- `p` -- prime integer 

 

EXAMPLES:: 

 

sage: sage.schemes.elliptic_curves.heegner.is_split(-7,3) 

False 

sage: sage.schemes.elliptic_curves.heegner.is_split(-7,7) 

False 

sage: sage.schemes.elliptic_curves.heegner.is_split(-7,11) 

True 

""" 

K = QuadraticField(D,'a') 

F = K.factor(p) 

return len(F) == 2 

 

def is_ramified(D, p): 

r""" 

Return ``True`` if p is a ramified prime in the field `\QQ(\sqrt{D})`. 

 

INPUT: 

 

- `D` -- fundamental discriminant 

 

- `p` -- prime integer 

 

EXAMPLES:: 

 

sage: sage.schemes.elliptic_curves.heegner.is_ramified(-7,2) 

False 

sage: sage.schemes.elliptic_curves.heegner.is_ramified(-7,7) 

True 

sage: sage.schemes.elliptic_curves.heegner.is_ramified(-1,2) 

True 

""" 

return QuadraticField(D,'a').discriminant() % p == 0 

 

def nearby_rational_poly(f, **kwds): 

r""" 

Return a polynomial whose coefficients are rational numbers close 

to the coefficients of `f`. 

 

INPUT: 

 

- `f` -- polynomial with real floating point entries 

 

- ``**kwds`` -- passed on to ``nearby_rational`` method 

 

EXAMPLES:: 

 

sage: R.<x> = RR[] 

sage: sage.schemes.elliptic_curves.heegner.nearby_rational_poly(2.1*x^2 + 3.5*x - 1.2, max_error=10e-16) 

21/10*X^2 + 7/2*X - 6/5 

sage: sage.schemes.elliptic_curves.heegner.nearby_rational_poly(2.1*x^2 + 3.5*x - 1.2, max_error=10e-17) 

4728779608739021/2251799813685248*X^2 + 7/2*X - 5404319552844595/4503599627370496 

sage: RR(4728779608739021/2251799813685248 - 21/10) 

8.88178419700125e-17 

""" 

R = QQ['X'] 

return R([a.nearby_rational(**kwds) for a in f]) 

 

def simplest_rational_poly(f, prec): 

""" 

Return a polynomial whose coefficients are as simple as possible 

rationals that are also close to the coefficients of f. 

 

INPUT: 

 

- `f` -- polynomial with real floating point entries 

 

- ``prec`` -- positive integer 

 

EXAMPLES:: 

 

sage: R.<x> = RR[] 

sage: sage.schemes.elliptic_curves.heegner.simplest_rational_poly(2.1*x^2 + 3.5*x - 1.2, 53) 

21/10*X^2 + 7/2*X - 6/5 

""" 

R = QQ['X'] 

Z = RealField(prec) 

return R([Z(a).simplest_rational() for a in f]) 

 

def satisfies_weak_heegner_hypothesis(N, D): 

r""" 

Check that `D` satisfies the weak Heegner hypothesis relative to `N`. 

This is all that is needed to define Heegner points. 

 

The condition is that `D<0` is a fundamental discriminant and that 

each unramified prime dividing `N` splits in `K=\QQ(\sqrt{D})` and 

each ramified prime exactly divides `N`. We also do not require 

that `D<-4`. 

 

INPUT: 

 

- `N` -- positive integer 

 

- `D` -- negative integer 

 

EXAMPLES:: 

 

sage: s = sage.schemes.elliptic_curves.heegner.satisfies_weak_heegner_hypothesis 

sage: s(37,-7) 

True 

sage: s(37,-37) 

False 

sage: s(37,-37*4) 

True 

sage: s(100,-4) 

False 

sage: [D for D in [-1,-2,..,-40] if s(37,D)] 

[-3, -4, -7, -11, -40] 

sage: [D for D in [-1,-2,..,-100] if s(37,D)] 

[-3, -4, -7, -11, -40, -47, -67, -71, -83, -84, -95] 

sage: EllipticCurve('37a').heegner_discriminants_list(10) 

[-7, -11, -40, -47, -67, -71, -83, -84, -95, -104] 

""" 

if not number_field.is_fundamental_discriminant(D): 

return False 

if D >= 0: return False 

for p, e in N.factor(): 

if D % p == 0: 

if e > 1: 

return False 

elif D.kronecker(p) != 1: 

return False 

return True 

 

def make_monic(f): 

r""" 

``make_monic`` returns a monic integral polynomial `g` and an 

integer `d` such that if `\alpha` is a root of `g` then a root of 

`f` is `\alpha/d`. 

 

INPUT: 

 

- f -- polynomial over the rational numbers 

 

EXAMPLES:: 

 

sage: R.<x> = QQ[] 

sage: sage.schemes.elliptic_curves.heegner.make_monic(3*x^3 + 14*x^2 - 7*x + 5) 

(x^3 + 14*x^2 - 21*x + 45, 3) 

 

In this example we verify that make_monic does what we claim it does:: 

 

sage: K.<a> = NumberField(x^3 + 17*x - 3) 

sage: f = (a/7+2/3).minpoly(); f 

x^3 - 2*x^2 + 247/147*x - 4967/9261 

sage: g, d = sage.schemes.elliptic_curves.heegner.make_monic(f) 

sage: g 

x^3 - 18522*x^2 + 144110421*x - 426000323007 

sage: d 

9261 

sage: K.<b> = NumberField(g) 

sage: (b/d).minpoly() 

x^3 - 2*x^2 + 247/147*x - 4967/9261 

""" 

# make f monic 

n = f.degree() 

f = f / f.leading_coefficient() 

# find lcm of denominators 

d = lcm([b.denominator() for b in f.list() if b]) 

x = f.variables()[0] 

g = (d**n) * f(x/d) 

return g, d 

 

 

##################################################################### 

# Elliptic curve methods 

# Everywhere self below is an elliptic curve over QQ. 

##################################################################### 

 

def ell_heegner_point(self, D, c=ZZ(1), f=None, check=True): 

""" 

Returns the Heegner point on this curve associated to the 

quadratic imaginary field `K=\QQ(\sqrt{D})`. 

 

If the optional parameter `c` is given, returns the higher Heegner 

point associated to the order of conductor `c`. 

 

INPUT: 

 

- `D` -- a Heegner discriminant 

 

- `c` -- (default: 1) conductor, must be coprime to `DN` 

 

- `f` -- binary quadratic form or 3-tuple `(A,B,C)` of coefficients 

of `AX^2 + BXY + CY^2` 

 

- ``check`` -- bool (default: ``True``) 

 

OUTPUT: 

 

The Heegner point `y_c`. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('37a') 

sage: E.heegner_discriminants_list(10) 

[-7, -11, -40, -47, -67, -71, -83, -84, -95, -104] 

sage: P = E.heegner_point(-7); P # indirect doctest 

Heegner point of discriminant -7 on elliptic curve of conductor 37 

sage: P.point_exact() 

(0 : 0 : 1) 

sage: P.curve() 

Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field 

sage: P = E.heegner_point(-40).point_exact(); P 

(a : -a + 1 : 1) 

sage: P = E.heegner_point(-47).point_exact(); P 

(a : a^4 + a - 1 : 1) 

sage: P[0].parent() 

Number Field in a with defining polynomial x^5 - x^4 + x^3 + x^2 - 2*x + 1 

 

Working out the details manually:: 

 

sage: P = E.heegner_point(-47).numerical_approx(prec=200) 

sage: f = algdep(P[0], 5); f 

x^5 - x^4 + x^3 + x^2 - 2*x + 1 

sage: f.discriminant().factor() 

47^2 

 

The Heegner hypothesis is checked:: 

 

sage: E = EllipticCurve('389a'); P = E.heegner_point(-5,7); 

Traceback (most recent call last): 

... 

ValueError: N (=389) and D (=-5) must satisfy the Heegner hypothesis 

 

We can specify the quadratic form:: 

 

sage: P = EllipticCurve('389a').heegner_point(-7, 5, (778,925,275)); P 

Heegner point of discriminant -7 and conductor 5 on elliptic curve of conductor 389 

sage: P.quadratic_form() 

778*x^2 + 925*x*y + 275*y^2 

""" 

y = HeegnerPointOnX0N(self.conductor(), D, c, f, check=check) 

return y.map_to_curve(self) 

 

def kolyvagin_point(self, D, c=ZZ(1), check=True): 

""" 

Returns the Kolyvagin point on this curve associated to the 

quadratic imaginary field `K=\QQ(\sqrt{D})` and conductor `c`. 

 

INPUT: 

 

- `D` -- a Heegner discriminant 

 

- `c` -- (default: 1) conductor, must be coprime to `DN` 

 

- ``check`` -- bool (default: ``True``) 

 

 

OUTPUT: 

 

The Kolyvagin point `P` of conductor `c`. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('37a1') 

sage: P = E.kolyvagin_point(-67); P 

Kolyvagin point of discriminant -67 on elliptic curve of conductor 37 

sage: P.numerical_approx() # abs tol 1e-14 

(6.00000000000000 : -15.0000000000000 : 1.00000000000000) 

sage: P.index() 

6 

sage: g = E((0,-1,1)) # a generator 

sage: E.regulator() == E.regulator_of_points([g]) 

True 

sage: 6*g 

(6 : -15 : 1) 

 

""" 

return self.heegner_point(D,c,check=check).kolyvagin_point() 

 

def ell_heegner_discriminants(self, bound): 

""" 

Return the list of self's Heegner discriminants between -1 and 

-bound. 

 

INPUT: 

 

 

- ``bound (int)`` - upper bound for -discriminant 

 

 

OUTPUT: The list of Heegner discriminants between -1 and -bound for 

the given elliptic curve. 

 

EXAMPLES:: 

 

sage: E=EllipticCurve('11a') 

sage: E.heegner_discriminants(30) # indirect doctest 

[-7, -8, -19, -24] 

""" 

return [-D for D in range(1, bound) 

if self.satisfies_heegner_hypothesis(-D)] 

 

 

def ell_heegner_discriminants_list(self, n): 

""" 

Return the list of self's first `n` Heegner discriminants smaller 

than -5. 

 

INPUT: 

 

- ``n (int)`` - the number of discriminants to 

compute 

 

 

OUTPUT: The list of the first n Heegner discriminants smaller than 

-5 for the given elliptic curve. 

 

EXAMPLES:: 

 

sage: E=EllipticCurve('11a') 

sage: E.heegner_discriminants_list(4) # indirect doctest 

[-7, -8, -19, -24] 

""" 

v = [] 

D = -5 

while len(v) < n: 

while not self.satisfies_heegner_hypothesis(D): 

D -= 1 

v.append(D) 

D -= 1 

return v 

 

def heegner_point_height(self, D, prec=2, check_rank=True): 

r""" 

Use the Gross-Zagier formula to compute the Neron-Tate canonical 

height over `K` of the Heegner point corresponding to `D`, as an 

interval (it is computed to some precision using `L`-functions). 

 

If the curve has rank at least 2, then the returned height is the 

exact Sage integer 0. 

 

INPUT: 

 

 

- ``D (int)`` - fundamental discriminant (=/= -3, -4) 

 

- ``prec (int)`` - (default: 2), use `prec \cdot \sqrt(N) + 20` 

terms of `L`-series in computations, where `N` is the 

conductor. 

 

- ``check_rank`` - whether to check if the rank is at least 2 by 

computing the Mordell-Weil rank directly. 

 

 

OUTPUT: Interval that contains the height of the Heegner point. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('11a') 

sage: E.heegner_point_height(-7) 

0.22227? 

 

Some higher rank examples:: 

 

sage: E = EllipticCurve('389a') 

sage: E.heegner_point_height(-7) 

0 

sage: E = EllipticCurve('5077a') 

sage: E.heegner_point_height(-7) 

0 

sage: E.heegner_point_height(-7,check_rank=False) 

0.0000? 

""" 

 

if not self.satisfies_heegner_hypothesis(D): 

raise ArithmeticError("Discriminant (=%s) must be a fundamental discriminant that satisfies the Heegner hypothesis."%D) 

 

if check_rank and self.rank() >= 2: 

return ZZ(0) 

 

if D == -3 or D == -4: 

raise ArithmeticError("Discriminant (=%s) must not be -3 or -4."%D) 

eps = self.root_number() 

L1_vanishes = self.lseries().L1_vanishes() 

 

IR = rings.RealIntervalField(20) # TODO: why 20 bits here? 

 

if eps == 1 and L1_vanishes: 

return IR(0) # rank even hence >= 2, so Heegner point is torsion. 

 

RR = rings.RealField() 

from math import sqrt 

 

alpha = RR(sqrt(abs(D)))/(2*self.period_lattice().complex_area()) 

F = self.quadratic_twist(D) 

E = self 

k_E = prec*sqrt(E.conductor()) + 20 

k_F = prec*sqrt(F.conductor()) + 20 

 

MIN_ERR = RR('1e-6') # we assume that regulator and 

# discriminant, etc., computed to this accuracy (which is easily the case). 

# this should be made more intelligent / rigorous relative 

# to the rest of the system. 

 

if eps == 1: # E has even rank 

LF1, err_F = F.lseries().deriv_at1(k_F) 

LE1, err_E = E.lseries().at1(k_E) 

err_F = max(err_F, MIN_ERR) 

err_E = max(err_E, MIN_ERR) 

return IR(alpha-MIN_ERR,alpha+MIN_ERR) * IR(LE1-err_E,LE1+err_E) * IR(LF1-err_F,LF1+err_F) 

 

else: # E has odd rank 

LE1, err_E = E.lseries().deriv_at1(k_E) 

LF1, err_F = F.lseries().at1(k_F) 

err_F = max(err_F, MIN_ERR) 

err_E = max(err_E, MIN_ERR) 

return IR(alpha-MIN_ERR,alpha+MIN_ERR) * IR(LE1-err_E,LE1+err_E) * IR(LF1-err_F,LF1+err_F) 

 

 

def heegner_index(self, D, min_p=2, prec=5, descent_second_limit=12, verbose_mwrank=False, check_rank=True): 

r""" 

Return an interval that contains the index of the Heegner 

point `y_K` in the group of `K`-rational points modulo torsion 

on this elliptic curve, computed using the Gross-Zagier 

formula and/or a point search, or possibly half the index 

if the rank is greater than one. 

 

If the curve has rank > 1, then the returned index is infinity. 

 

.. NOTE:: 

 

If ``min_p`` is bigger than 2 then the index can be off by 

any prime less than ``min_p``. This function returns the 

index divided by `2` exactly when the rank of `E(K)` is 

greater than 1 and `E(\QQ)_{/tor} \oplus E^D(\QQ)_{/tor}` 

has index `2` in `E(K)_{/tor}`, where the second factor 

undergoes a twist. 

 

INPUT: 

 

- ``D (int)`` - Heegner discriminant 

 

- ``min_p (int)`` - (default: 2) only rule out primes 

= min_p dividing the index. 

 

- ``verbose_mwrank (bool)`` - (default: ``False``); print lots of 

mwrank search status information when computing regulator 

 

- ``prec (int)`` - (default: 5), use prec\*sqrt(N) + 

20 terms of L-series in computations, where N is the conductor. 

 

- ``descent_second_limit`` - (default: 12)- used in 2-descent 

when computing regulator of the twist 

 

- ``check_rank`` - whether to check if the rank is at least 2 by 

computing the Mordell-Weil rank directly. 

 

 

OUTPUT: an interval that contains the index, or half the index 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('11a') 

sage: E.heegner_discriminants(50) 

[-7, -8, -19, -24, -35, -39, -40, -43] 

sage: E.heegner_index(-7) 

1.00000? 

 

:: 

 

sage: E = EllipticCurve('37b') 

sage: E.heegner_discriminants(100) 

[-3, -4, -7, -11, -40, -47, -67, -71, -83, -84, -95] 

sage: E.heegner_index(-95) # long time (1 second) 

2.00000? 

 

This tests doing direct computation of the Mordell-Weil group. 

 

:: 

 

sage: EllipticCurve('675b').heegner_index(-11) 

3.0000? 

 

Currently discriminants -3 and -4 are not supported:: 

 

sage: E.heegner_index(-3) 

Traceback (most recent call last): 

... 

ArithmeticError: Discriminant (=-3) must not be -3 or -4. 

 

The curve 681b returns the true index, which is `3`:: 

 

sage: E = EllipticCurve('681b') 

sage: I = E.heegner_index(-8); I 

3.0000? 

 

In fact, whenever the returned index has a denominator of 

`2`, the true index is got by multiplying the returned 

index by `2`. Unfortunately, this is not an if and only if 

condition, i.e., sometimes the index must be multiplied by 

`2` even though the denominator is not `2`. 

 

This example demonstrates the ``descent_second_limit`` option, 

which can be used to fine tune the 2-descent used to compute 

the regulator of the twist:: 

 

sage: E = EllipticCurve([1,-1,0,-1228,-16267]) 

sage: E.heegner_index(-8) 

Traceback (most recent call last): 

... 

RuntimeError: ... 

 

However when we search higher, we find the points we need:: 

 

sage: E.heegner_index(-8, descent_second_limit=16, check_rank=False) 

2.00000? 

 

 

Two higher rank examples (of ranks 2 and 3):: 

 

sage: E = EllipticCurve('389a') 

sage: E.heegner_index(-7) 

+Infinity 

sage: E = EllipticCurve('5077a') 

sage: E.heegner_index(-7) 

+Infinity 

sage: E.heegner_index(-7, check_rank=False) 

0.001? 

sage: E.heegner_index(-7, check_rank=False).lower() == 0 

True 

""" 

if not self.satisfies_heegner_hypothesis(D): 

raise ArithmeticError("Discriminant (=%s) must be a fundamental discriminant that satisfies the Heegner hypothesis."%D) 

 

if check_rank and self.rank() >= 2: 

return rings.infinity 

 

# First compute upper bound on height of Heegner point. 

tm = verbose("computing heegner point height...") 

h0 = self.heegner_point_height(D, prec=prec, check_rank=check_rank) 

if h0 == 0: 

return rings.infinity 

 

# We divide by 2 to get the height **over Q** of the 

# Heegner point on the twist. 

 

ht = h0/2 

verbose('Height of heegner point = %s'%ht, tm) 

 

if self.root_number() == 1: 

F = self.quadratic_twist(D) 

else: 

F = self 

# Now rank(F) > 0 

h = ht.upper() 

verbose("Heegner height bound = %s"%h) 

B = F.CPS_height_bound() 

verbose("CPS bound = %s"%B) 

c = h/(min_p**2) + B 

verbose("Search would have to be up to height = %s"%c) 

 

from .ell_rational_field import _MAX_HEIGHT 

 

IR = rings.RealIntervalField(20) # todo: 20? 

 

a = 1 

if c > _MAX_HEIGHT or F is self: 

verbose("Doing direct computation of MW group.") 

reg = F.regulator(descent_second_limit=descent_second_limit, verbose=verbose_mwrank) 

if F.rank(use_database=True) == 1: 

z = F.gens()[0] 

FK = F.base_extend(QuadraticField(D,'a')) 

z = FK(z) 

if z.is_divisible_by(2): 

a = 2 

else: 

FK_even_tor_pts = [T for T in FK.torsion_subgroup().gens() if T.order()%2==0] 

if len(FK_even_tor_pts) == 2: 

FK_even_tor_pts.append(sum(FK_even_tor_pts)) 

for T in FK_even_tor_pts: 

if (z + T).is_divisible_by(2): 

a = 2; break 

return a*self._adjust_heegner_index(ht/IR(reg)) 

 

# Do naive search to eliminate possibility that Heegner point 

# is divisible by p<min_p, without finding Heegner point. 

verbose("doing point search") 

P = F.point_search(c) 

verbose("done with point search") 

P = [x for x in P if x.order() == rings.infinity] 

a = 1 

if len(P) == 0: 

return IR(1) 

elif len(P) == 1: 

z = P[0] 

FK = F.base_extend(QuadraticField(D,'a')) 

z = FK(z) 

if z.is_divisible_by(2): 

a = 2 

else: 

FK_even_tor_pts = [T for T in FK.torsion_subgroup().gens() if T.order()%2==0] 

if len(FK_even_tor_pts) == 2: 

FK_even_tor_pts.append(sum(FK_even_tor_pts)) 

for T in FK_even_tor_pts: 

if (z + T).is_divisible_by(2): 

a = 2; break 

 

verbose("saturating") 

S, I, reg = F.saturation(P) 

verbose("done saturating") 

return a*self._adjust_heegner_index(ht/IR(reg)) 

 

def _adjust_heegner_index(self, a): 

r""" 

Take the square root of the interval that contains the Heegner 

index. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('11a1') 

sage: a = RIF(sqrt(2))-1.4142135623730951 

sage: E._adjust_heegner_index(a) 

1.?e-8 

""" 

if a.lower() < 0: 

IR = rings.RealIntervalField(20) # todo: 20? 

a = IR((0, a.upper())) 

return a.sqrt() 

 

 

def heegner_index_bound(self, D=0, prec=5, max_height=None): 

r""" 

Assume ``self`` has rank 0. 

 

Return a list `v` of primes such that if an odd prime `p` divides 

the index of the Heegner point in the group of rational points 

modulo torsion, then `p` is in `v`. 

 

If 0 is in the interval of the height of the Heegner point 

computed to the given prec, then this function returns `v = 

0`. This does not mean that the Heegner point is torsion, just 

that it is very likely torsion. 

 

If we obtain no information from a search up to ``max_height``, 

e.g., if the Siksek et al. bound is bigger than ``max_height``, 

then we return `v = -1`. 

 

INPUT: 

 

 

- ``D (int)`` - (default: 0) Heegner discriminant; if 

0, use the first discriminant -4 that satisfies the Heegner 

hypothesis 

 

- ``verbose (bool)`` - (default: ``True``) 

 

- ``prec (int)`` - (default: 5), use `prec \cdot \sqrt(N) + 20` 

terms of `L`-series in computations, where `N` is the conductor. 

 

- ``max_height (float)`` - should be = 21; bound on 

logarithmic naive height used in point searches. Make smaller to 

make this function faster, at the expense of possibly obtaining a 

worse answer. A good range is between 13 and 21. 

 

 

OUTPUT: 

 

 

- ``v`` - list or int (bad primes or 0 or -1) 

 

- ``D`` - the discriminant that was used (this is 

useful if `D` was automatically selected). 

 

- ``exact`` - either False, or the exact Heegner index 

(up to factors of 2) 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('11a1') 

sage: E.heegner_index_bound() 

([2], -7, 2) 

""" 

from .ell_rational_field import _MAX_HEIGHT 

if max_height is None: 

max_height = _MAX_HEIGHT 

else: 

max_height = min(float(max_height), _MAX_HEIGHT) 

if self.root_number() != 1: 

raise RuntimeError("The rank must be 0.") 

 

if D == 0: 

D = -5 

while not self.satisfies_heegner_hypothesis(D): 

D -= 1 

 

# First compute upper bound on Height of Heegner point. 

ht = self.heegner_point_height(D, prec=prec) 

if 0 in ht: 

return 0, D, False 

F = self.quadratic_twist(D) 

h = ht.upper() 

verbose("Heegner height bound = %s"%h) 

B = F.CPS_height_bound() 

verbose("CPS bound = %s"%B) 

if self.two_torsion_rank() == 0: 

H = h 

else: 

H = 4*h 

p = 3 

from sage.all import next_prime 

while True: 

c = H/(2*p**2) + B 

if c < max_height: 

break 

if p > 100: 

break 

p = next_prime(p) 

verbose("Using p = %s"%p) 

 

if c > max_height: 

verbose("No information by searching only up to max_height (=%s)."%c) 

return -1, D, False 

 

verbose("Searching up to height = %s"%c) 

eps = 10e-5 

 

def _bound(P): 

""" 

We will use this function below in two places. It bounds the index 

using a nontrivial point. 

""" 

assert len(P) == 1 

 

S, I, reg = F.saturation(P) 

 

IR = rings.RealIntervalField(20) # todo: 20? 

h = IR(reg-eps,reg+eps) 

ind2 = ht/(h/2) 

verbose("index squared = %s"%ind2) 

ind = ind2.sqrt() 

verbose("index = %s"%ind) 

# Compute upper bound on square root of index. 

if ind.absolute_diameter() < 1: 

t, i = ind.is_int() 

if t: # unique integer in interval, so we've found exact index squared. 

return prime_divisors(i), D, i 

raise RuntimeError("Unable to compute bound for e=%s, D=%s (try increasing precision)"%(self, D)) 

 

# First try a quick search, in case we get lucky and find 

# a generator. 

P = F.point_search(13, rank_bound=1) 

P = [x for x in P if x.order() == rings.infinity] 

if len(P) > 0: 

return _bound(P) 

 

# Do search to eliminate possibility that Heegner point is 

# divisible by primes up to p, without finding Heegner point. 

P = F.point_search(c, rank_bound=1) 

P = [x for x in P if x.order() == rings.infinity] 

if len(P) == 0: 

# We've eliminated the possibility of a divisor up to p. 

return rings.prime_range(3, p), D, False 

else: 

return _bound(P) 

 

 

################################################################################# 

def _heegner_index_in_EK(self, D): 

""" 

Return the index of the sum of `E(\QQ)/tor + E^D(\QQ)/tor` in `E(K)/tor`. 

 

INPUT: 

 

- `D` -- negative integer; the Heegner discriminant 

 

OUTPUT: 

 

a power of 2 -- the given index 

 

EXAMPLES: 

 

We compute the index for a rank 2 curve and found that it is 2:: 

 

sage: E = EllipticCurve('389a') 

sage: E._heegner_index_in_EK(-7) 

2 

 

We explicitly verify in the above example that indeed that 

index is divisible by 2 by writing down a generator of 

`E(\QQ)/tor + E^D(\QQ)/tor` that is divisible by 2 in `E(K)`:: 

 

sage: F = E.quadratic_twist(-7) 

sage: K = QuadraticField(-7,'a') 

sage: G = E.change_ring(K) 

sage: phi = F.change_ring(K).isomorphism_to(G) 

sage: P = G(E(-1,1)) + G((0,-1)) + G(phi(F(14,25))); P 

(-867/3872*a - 3615/3872 : -18003/170368*a - 374575/170368 : 1) 

sage: P.division_points(2) 

[(1/8*a + 5/8 : -5/16*a - 9/16 : 1)] 

 

""" 

# check conditions, then use cache if possible. 

if not self.satisfies_heegner_hypothesis(D): 

raise ValueError("D (=%s) must satisfy the Heegner hypothesis"%D) 

try: 

return self.__heegner_index_in_EK[D] 

except AttributeError: 

self.__heegner_index_in_EK = {} 

except KeyError: 

pass 

 

##################################################################### 

# THE ALGORITHM: 

# 

# For an element P of an abelian group A, let [P] denote the 

# equivalence class of P in the quotient A/A_tor of A by 

# its torsion subgroup. Then for P in E(Q) + E^D(QQ), we 

# have that [P] is divisible by 2 in E(K)/tor if and only 

# there is R in E(K) such that 2*[R] = [P], and this is 

# only if there is R in E(K) and t in E(K)_tor such that 

# 2*R = P + t. 

# 

# Using complex conjugation, one sees that the quotient 

# group E(K)/tor / ( E(Q)/tor + E^D(Q)/tor ) is killed by 2. 

# So to compute the order of this group we run through 

# representatives P for A/(2A) where A = E(Q)/tor + E^D(Q)/tor, 

# and for each we see whether there is a torsion point t in E(K) 

# such that P + t is divisible by 2. Also, we have 

# 2 | P+t <==> 2 | P+n*t for any odd integer n, 

# so we may assume t is of 2-power order. 

##################################################################### 

 

E = self # nice shortcut 

F = E.quadratic_twist(D).minimal_model() 

K = rings.QuadraticField(D, 'a') 

 

# Define a map phi that we'll use to put the points of E^D(QQ) 

# into E(K): 

G = E.change_ring(K) 

G2 = F.change_ring(K) 

phi = G2.isomorphism_to(G) 

 

# Basis for E(Q)/tor oplus E^D(QQ)/tor in E(K): 

basis = [G(z) for z in E.gens()] + [G(phi(z)) for z in F.gens()] 

# Make a list of the 2-power order torsion points in E(K), including 0. 

T = [G(z) for z in G.torsion_subgroup().list() if z.order() == 1 or 

((z.order() % 2 == 0 and len(z.order().factor()) == 1))] 

 

r = len(basis) # rank 

V = rings.QQ**r 

B = [] 

 

# Iterate through reps for A/(2*A) creating vectors in (1/2)*ZZ^r 

for v in rings.GF(2)**r: 

if not v: continue 

P = sum([basis[i] for i in range(r) if v[i]]) 

for t in T: 

if (P+t).is_divisible_by(2): 

B.append(V(v)/2) 

 

A = rings.ZZ**r 

# Take span of our vectors in (1/2)*ZZ^r, along with ZZ^r. This is E(K)/tor. 

W = V.span(B, rings.ZZ) + A 

 

# Compute the index in E(K)/tor of A = E(Q)/tor + E^D(Q)/tor, cache, and return. 

index = A.index_in(W) 

self.__heegner_index_in_EK[D] = index 

return index 

 

def heegner_sha_an(self, D, prec=53): 

r""" 

Return the conjectural (analytic) order of Sha for E over the field `K=\QQ(\sqrt{D})`. 

 

INPUT: 

 

- `D` -- negative integer; the Heegner discriminant 

 

- prec -- integer (default: 53); bits of precision to 

compute analytic order of Sha 

 

OUTPUT: 

 

(floating point number) an approximation to the conjectural order of Sha. 

 

.. NOTE:: 

 

Often you'll want to do ``proof.elliptic_curve(False)`` when 

using this function, since often the twisted elliptic 

curves that come up have enormous conductor, and Sha is 

nontrivial, which makes provably finding the Mordell-Weil 

group using 2-descent difficult. 

 

 

EXAMPLES: 

 

An example where E has conductor 11:: 

 

sage: E = EllipticCurve('11a') 

sage: E.heegner_sha_an(-7) # long time 

1.00000000000000 

 

The cache works:: 

 

sage: E.heegner_sha_an(-7) is E.heegner_sha_an(-7) # long time 

True 

 

Lower precision:: 

 

sage: E.heegner_sha_an(-7,10) # long time 

1.0 

 

Checking that the cache works for any precision:: 

 

sage: E.heegner_sha_an(-7,10) is E.heegner_sha_an(-7,10) # long time 

True 

 

Next we consider a rank 1 curve with nontrivial Sha over the 

quadratic imaginary field `K`; however, there is no Sha for `E` 

over `\QQ` or for the quadratic twist of `E`:: 

 

sage: E = EllipticCurve('37a') 

sage: E.heegner_sha_an(-40) # long time 

4.00000000000000 

sage: E.quadratic_twist(-40).sha().an() # long time 

1 

sage: E.sha().an() # long time 

1 

 

A rank 2 curve:: 

 

sage: E = EllipticCurve('389a') # long time 

sage: E.heegner_sha_an(-7) # long time 

1.00000000000000 

 

If we remove the hypothesis that `E(K)` has rank 1 in Conjecture 

2.3 in [Gross-Zagier, 1986, page 311], then that conjecture is 

false, as the following example shows:: 

 

sage: E = EllipticCurve('65a') # long time 

sage: E.heegner_sha_an(-56) # long time 

1.00000000000000 

sage: E.torsion_order() # long time 

2 

sage: E.tamagawa_product() # long time 

1 

sage: E.quadratic_twist(-56).rank() # long time 

2 

""" 

# check conditions, then return from cache if possible. 

if not self.satisfies_heegner_hypothesis(D): 

raise ValueError("D (=%s) must satisfy the Heegner hypothesis"%D) 

try: 

return self.__heegner_sha_an[(D, prec)] 

except AttributeError: 

self.__heegner_sha_an = {} 

except KeyError: 

pass 

 

# Use the BSD conjecture over the quadratic imaginary K -- 

# see page 311 of [Gross-Zagier, 1986] for the formula. 

E = self # notational convenience 

F = E.quadratic_twist(D).minimal_model() 

K = rings.QuadraticField(D, 'a') 

 

# Compute each of the quantities in BSD 

# - The torsion subgroup over K. 

T = E.change_ring(K).torsion_order() 

 

# - The product of the Tamagawa numbers, which because D is 

# coprime to N is just the square of the product of the 

# Tamagawa numbers over QQ for E. (we square below in the 

# BSD formula) 

cqprod = E.tamagawa_product() 

 

# - The leading term of the L-series, as a product of two 

# other L-series. 

rE = E.rank() 

rF = F.rank() 

L_E = E.lseries().dokchitser(prec).derivative(1, rE) 

L_F = F.lseries().dokchitser(prec).derivative(1, rF) 

# NOTE: The binomial coefficient in the following formula 

# for the leading term in terms of the other two leading 

# terms comes from the product rule for the derivative. 

# You can think this through or just type something like 

# f = function('f',x); g = function('g',x); diff(f*g,6) 

# into Sage to be convinced. 

L = binomial(rE + rF, rE) * (L_E * L_F / factorial(rE+rF) ) 

 

# - ||omega||^2 -- the period. It is twice the volume of the 

# period lattice. See the following paper for a derivation: 

# "Verification of the Birch and Swinnerton-Dyer Conjecture 

# for Specific Elliptic Curves", G. Grigorov, A. Jorza, S. Patrikis, 

# C. Patrascu, W. Stein 

omega = 2 * abs(E.period_lattice().basis_matrix().det()) 

 

# - The regulator. 

# First we compute the regulator of the subgroup E(QQ) + E^D(QQ) 

# of E(K). The factor of 2 in the regulator 

# accounts for the fact that the height over K is twice the 

# height over QQ, i.e., for P in E(QQ) we have h_K(P,P) = 

# 2*h_Q(P,P). See, e.g., equation (6.4) on page 230 of 

# [Gross-Zagier, 1986]. 

Reg_prod = 2**(rE + rF) * E.regulator(precision=prec) * F.regulator(precision=prec) 

# Next we call off to the _heegner_index_in_EK function, which 

# saturates the group E(QQ) + E^D(QQ) in E(K), given us the index, 

# which must be a power of 2, since E(QQ) is the +1 eigenspace for 

# complex conjugation, and E^D(QQ) is the -1 eigenspace. 

ind = self._heegner_index_in_EK(D) 

# Finally, we know the regulator of E(K). 

Reg = Reg_prod / ind**2 

 

# - Square root of the absolute value of the discriminant. This is 

# easy; we just make sure the D passed in is an integer, so we 

# can call sqrt with the chosen precision. 

sqrtD = ZZ(abs(D)).sqrt(prec=prec) 

 

# - Done: Finally, we plug everything into the BSD formula to get the 

# analytic order of Sha. 

sha_an = (L * T**2 * sqrtD) / (omega * Reg * cqprod**2) 

 

# - We cache and return the answer. 

self.__heegner_sha_an[(D, prec)] = sha_an 

return sha_an 

 

def _heegner_forms_list(self, D, beta=None, expected_count=None): 

""" 

Returns a list of quadratic forms corresponding to Heegner points 

with discriminant `D` and a choice of `\beta` a square root of 

`D` mod `4N`. Specifically, given a quadratic form 

`f = Ax^2 + Bxy + Cy^2` we let `\tau_f` be a root of `Ax^2 + Bx + C` 

and the discriminant `\Delta(\tau_f) = \Delta(f) = D` must be 

invariant under multiplication by `N`, the conductor of ``self``. 

 

`\Delta(N\tau_f) = \Delta(\tau_f) = \Delta(f) = D` 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('37a') 

sage: E._heegner_forms_list(-7) 

[37*x^2 + 17*x*y + 2*y^2] 

sage: E._heegner_forms_list(-195) 

[37*x^2 + 29*x*y + 7*y^2, 259*x^2 + 29*x*y + y^2, 111*x^2 + 177*x*y + 71*y^2, 2627*x^2 + 177*x*y + 3*y^2] 

sage: E._heegner_forms_list(-195)[-1].discriminant() 

-195 

sage: len(E._heegner_forms_list(-195)) 

4 

sage: QQ[sqrt(-195)].class_number() 

4 

 

sage: E = EllipticCurve('389a') 

sage: E._heegner_forms_list(-7) 

[389*x^2 + 185*x*y + 22*y^2] 

sage: E._heegner_forms_list(-59) 

[389*x^2 + 313*x*y + 63*y^2, 1167*x^2 + 313*x*y + 21*y^2, 3501*x^2 + 313*x*y + 7*y^2] 

""" 

if expected_count is None: 

expected_count = number_field.QuadraticField(D, 'a').class_number() 

N = self.conductor() 

if beta is None: 

beta = Integers(4*N)(D).sqrt(extend=False) 

else: 

assert beta**2 == Integers(4*N)(D) 

from sage.quadratic_forms.all import BinaryQF 

b = ZZ(beta) % (2*N) 

all = [] 

seen = [] 

# Note: This may give a sub-optimal list of forms. 

while True: 

R = (b**2-D)//(4*N) 

for d in R.divisors(): 

f = BinaryQF([d*N, b, R//d]) 

fr = f.reduced_form() 

if fr not in seen: 

seen.append(fr) 

all.append(f) 

if len(all) == expected_count: 

return all 

b += 2*N 

 

def _heegner_best_tau(self, D, prec=None): 

r""" 

Given a discriminant `D`, find the Heegner point `\tau` in the 

upper half plane with largest imaginary part (which is optimal 

for evaluating the modular parametrization). If the optional 

parameter ``prec`` is given, return `\tau` to ``prec`` bits of 

precision, otherwise return it exactly as a symbolic object. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('37a') 

sage: E._heegner_best_tau(-7) 

1/74*sqrt(-7) - 17/74 

sage: EllipticCurve('389a')._heegner_best_tau(-11) 

1/778*sqrt(-11) - 355/778 

sage: EllipticCurve('389a')._heegner_best_tau(-11, prec=100) 

-0.45629820051413881748071979434 + 0.0042630138693514136878083968338*I 

""" 

# We know that N|A, so A = N is optimal. 

N = self.conductor() 

b = ZZ(Integers(4*N)(D).sqrt(extend=False) % (2*N)) 

# TODO: make sure a different choice of b is not better? 

return (-b + ZZ(D).sqrt(prec=prec)) / (2*N) 

 

def satisfies_heegner_hypothesis(self, D): 

""" 

Returns ``True`` precisely when `D` is a fundamental discriminant that 

satisfies the Heegner hypothesis for this elliptic curve. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('11a1') 

sage: E.satisfies_heegner_hypothesis(-7) 

True 

sage: E.satisfies_heegner_hypothesis(-11) 

False 

""" 

if not number_field.is_fundamental_discriminant(D): 

return False 

D = ZZ(D) 

if D >= 0: return False 

if D.gcd(self.conductor()) != 1: 

return False 

for p, _ in self.conductor().factor(): 

if D.kronecker(p) != 1: 

return False 

return True 

 

 

##################################################################### 

# End of elliptic curve methods. 

#####################################################################