Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

# -*- coding: utf-8 -*- 

""" 

L-series for elliptic curves 

 

AUTHORS: 

 

- Simon Spicer (2014-08-15) - Added LFunctionZeroSum class interface method 

 

- Jeroen Demeyer (2013-10-17) - Compute L series with arbitrary precision 

instead of floats. 

 

- William Stein et al. (2005 and later) 

 

""" 

#***************************************************************************** 

# Copyright (C) 2005 William Stein 

# Copyright (C) 2013 Jeroen Demeyer 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# as published by the Free Software Foundation; either version 2 of 

# the License, or (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from six.moves import range 

 

from sage.structure.sage_object import SageObject 

from sage.rings.all import RealField, RationalField 

from math import sqrt, exp, log, ceil 

import sage.functions.exp_integral as exp_integral 

from sage.misc.all import verbose 

 

class Lseries_ell(SageObject): 

""" 

An elliptic curve `L`-series. 

""" 

def __init__(self, E): 

r""" 

Create an elliptic curve `L`-series. 

 

EXAMPLES:: 

 

sage: EllipticCurve([1..5]).lseries() 

Complex L-series of the Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5 over Rational Field 

""" 

self.__E = E 

 

def elliptic_curve(self): 

r""" 

Return the elliptic curve that this `L`-series is attached to. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('389a') 

sage: L = E.lseries() 

sage: L.elliptic_curve () 

Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field 

""" 

return self.__E 

 

def taylor_series(self, a=1, prec=53, series_prec=6, var='z'): 

r""" 

Return the Taylor series of this `L`-series about `a` to 

the given precision (in bits) and the number of terms. 

 

The output is a series in ``var``, where you should view ``var`` as 

equal to `s-a`. Thus this function returns the formal power 

series whose coefficients are `L^{(n)}(a)/n!`. 

 

INPUT: 

 

- ``a`` -- complex number 

- ``prec`` -- integer, precision in bits (default 53) 

- ``series_prec`` -- integer (default 6) 

- ``var`` -- variable (default 'z') 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('389a') 

sage: L = E.lseries() 

sage: L.taylor_series(series_prec=3) 

-1.27685190980159e-23 + (7.23588070754027e-24)*z + 0.759316500288427*z^2 + O(z^3) # 32-bit 

-2.72911738151096e-23 + (1.54658247036311e-23)*z + 0.759316500288427*z^2 + O(z^3) # 64-bit 

""" 

D = self.dokchitser(prec) 

return D.taylor_series(a, series_prec, var) 

 

def _repr_(self): 

r""" 

Return string representation of this `L`-series. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('37a') 

sage: L = E.lseries() 

sage: L._repr_() 

'Complex L-series of the Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field' 

""" 

return "Complex L-series of the %s"%self.__E 

 

def dokchitser(self, prec=53, 

max_imaginary_part=0, 

max_asymp_coeffs=40, 

algorithm='gp'): 

r""" 

Return interface to Tim Dokchitser's program for computing 

with the `L`-series of this elliptic curve; this provides a way 

to compute Taylor expansions and higher derivatives of 

`L`-series. 

 

INPUT: 

 

- ``prec`` -- integer (bits precision) 

 

- ``max_imaginary_part`` -- real number 

 

- ``max_asymp_coeffs`` -- integer 

 

- ``algorithm`` -- string: 'gp' or 'magma' 

 

.. note:: 

 

If algorithm='magma', then the precision is in digits rather 

than bits and the object returned is a Magma L-series, which has 

different functionality from the Sage L-series. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('37a') 

sage: L = E.lseries().dokchitser() 

sage: L(2) 

0.381575408260711 

sage: L = E.lseries().dokchitser(algorithm='magma') # optional - magma 

sage: L.Evaluate(2) # optional - magma 

0.38157540826071121129371040958008663667709753398892116 

 

If the curve has too large a conductor, it isn't possible to 

compute with the `L`-series using this command. Instead a 

``RuntimeError`` is raised:: 

 

sage: e = EllipticCurve([1,1,0,-63900,-1964465932632]) 

sage: L = e.lseries().dokchitser(15) 

Traceback (most recent call last): 

... 

RuntimeError: Unable to create L-series, due to precision or other limits in PARI. 

""" 

if algorithm == 'magma': 

from sage.interfaces.all import magma 

return magma(self.__E).LSeries(Precision = prec) 

 

from sage.lfunctions.all import Dokchitser 

key = (prec, max_imaginary_part, max_asymp_coeffs) 

try: 

return self.__dokchitser[key] 

except KeyError: 

pass 

except AttributeError: 

self.__dokchitser = {} 

L = Dokchitser(conductor = self.__E.conductor(), 

gammaV = [0,1], 

weight = 2, 

eps = self.__E.root_number(), 

poles = [], 

prec = prec) 

gp = L.gp() 

s = 'e = ellinit(%s);'%list(self.__E.minimal_model().a_invariants()) 

s += 'a(k) = ellak(e, k);' 

L.init_coeffs('a(k)', 1, pari_precode = s, 

max_imaginary_part=max_imaginary_part, 

max_asymp_coeffs=max_asymp_coeffs) 

L.rename('Dokchitser L-function associated to %s'%self.__E) 

self.__dokchitser[key] = L 

return L 

 

def sympow(self, n, prec): 

r""" 

Return `L( Sym^{(n)}(E, \text{edge}))` to ``prec`` digits 

of precision. 

 

INPUT: 

 

- ``n`` -- integer 

 

- ``prec`` -- integer 

 

OUTPUT: 

 

- string -- real number to prec digits of precision as a string. 

 

.. note:: 

 

Before using this function for the first time for 

a given ``n``, you may have to type ``sympow('-new_data <n>')``, 

where ``<n>`` is replaced by your value of ``n``. This 

command takes a long time to run. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('37a') 

sage: a = E.lseries().sympow(2,16) # not tested - requires precomputing "sympow('-new_data 2')" 

sage: a # not tested 

'2.492262044273650E+00' 

sage: RR(a) # not tested 

2.49226204427365 

""" 

from sage.lfunctions.sympow import sympow 

return sympow.L(self.__E, n, prec) 

 

def sympow_derivs(self, n, prec, d): 

r""" 

Return 0-th to `d`-th derivatives of `L( Sym^{(n)}(E, 

\text{edge}))` to ``prec`` digits of precision. 

 

INPUT: 

 

- n -- integer 

 

- prec -- integer 

 

- d -- integer 

 

OUTPUT: 

 

- a string, exactly as output by sympow 

 

.. NOTE:: 

 

To use this function you may have to run a few commands 

like ``sympow('-new_data 1d2')``, each which takes a few 

minutes. If this function fails it will indicate what 

commands have to be run. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('37a') 

sage: print(E.lseries().sympow_derivs(1,16,2)) # not tested -- requires precomputing "sympow('-new_data 2')" 

sympow 1.018 RELEASE (c) Mark Watkins --- see README and COPYING for details 

Minimal model of curve is [0,0,1,-1,0] 

At 37: Inertia Group is C1 MULTIPLICATIVE REDUCTION 

Conductor is 37 

sp 1: Conductor at 37 is 1+0, root number is 1 

sp 1: Euler factor at 37 is 1+1*x 

1st sym power conductor is 37, global root number is -1 

NT 1d0: 35 

NT 1d1: 32 

NT 1d2: 28 

Maximal number of terms is 35 

Done with small primes 1049 

Computed: 1d0 1d1 1d2 

Checked out: 1d1 

1n0: 3.837774351482055E-01 

1w0: 3.777214305638848E-01 

1n1: 3.059997738340522E-01 

1w1: 3.059997738340524E-01 

1n2: 1.519054910249753E-01 

1w2: 1.545605024269432E-01 

""" 

from sage.lfunctions.sympow import sympow 

return sympow.Lderivs(self.__E, n, prec, d) 

 

def zeros(self, n): 

r""" 

Return the imaginary parts of the first `n` nontrivial zeros 

on the critical line of the `L`-function in the upper half 

plane, as 32-bit reals. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('37a') 

sage: E.lseries().zeros(2) 

[0.000000000, 5.00317001] 

 

sage: a = E.lseries().zeros(20) # long time 

sage: point([(1,x) for x in a]) # graph (long time) 

Graphics object consisting of 1 graphics primitive 

 

AUTHOR: 

-- Uses Rubinstein's L-functions calculator. 

""" 

from sage.lfunctions.lcalc import lcalc 

return lcalc.zeros(n, L=self.__E) 

 

def zeros_in_interval(self, x, y, stepsize): 

r""" 

Return the imaginary parts of (most of) the nontrivial zeros 

on the critical line `\Re(s)=1` with positive imaginary part 

between ``x`` and ``y``, along with a technical quantity for each. 

 

INPUT: 

 

- ``x``-- positive floating point number 

- ``y``-- positive floating point number 

- ``stepsize`` -- positive floating point number 

 

OUTPUT: 

 

- list of pairs ``(zero, S(T))``. 

 

Rubinstein writes: The first column outputs the imaginary part 

of the zero, the second column a quantity related to ``S(T)`` (it 

increases roughly by 2 whenever a sign change, i.e. pair of 

zeros, is missed). Higher up the critical strip you should use 

a smaller stepsize so as not to miss zeros. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('37a') 

sage: E.lseries().zeros_in_interval(6, 10, 0.1) # long time 

[(6.87039122, 0.248922780), (8.01433081, -0.140168533), (9.93309835, -0.129943029)] 

""" 

from sage.lfunctions.lcalc import lcalc 

return lcalc.zeros_in_interval(x, y, stepsize, L=self.__E) 

 

def values_along_line(self, s0, s1, number_samples): 

r""" 

Return values of `L(E, s)` at ``number_samples`` 

equally-spaced sample points along the line from `s_0` to 

`s_1` in the complex plane. 

 

.. note:: 

 

The `L`-series is normalized so that the center of the 

critical strip is 1. 

 

INPUT: 

 

- ``s0``, ``s1`` -- complex numbers 

- ``number_samples`` -- integer 

 

OUTPUT: 

 

list -- list of pairs (`s`, `L(E,s)`), where the `s` are 

equally spaced sampled points on the line from 

``s0`` to ``s1``. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('37a') 

sage: E.lseries().values_along_line(1, 0.5 + 20*I, 5) 

[(0.500000000, ...), 

(0.400000000 + 4.00000000*I, 3.31920245 - 2.60028054*I), 

(0.300000000 + 8.00000000*I, -0.886341185 - 0.422640337*I), 

(0.200000000 + 12.0000000*I, -3.50558936 - 0.108531690*I), 

(0.100000000 + 16.0000000*I, -3.87043288 - 1.88049411*I)] 

 

""" 

from sage.lfunctions.lcalc import lcalc 

return lcalc.values_along_line(s0-RationalField()('1/2'), 

s1-RationalField()('1/2'), 

number_samples, L=self.__E) 

 

def twist_values(self, s, dmin, dmax): 

r""" 

Return values of `L(E, s, \chi_d)` for each quadratic 

character `\chi_d` for `d_{\min} \leq d \leq d_{\max}`. 

 

.. note:: 

 

The L-series is normalized so that the center of the 

critical strip is 1. 

 

INPUT: 

 

- ``s`` -- complex numbers 

 

- ``dmin`` -- integer 

 

- ``dmax`` -- integer 

 

OUTPUT: 

 

- list of pairs `(d, L(E, s, \chi_d))` 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('37a') 

sage: vals = E.lseries().twist_values(1, -12, -4) 

sage: vals # abs tol 1e-15 

[(-11, 1.47824342), (-8, 8.9590946e-18), (-7, 1.85307619), (-4, 2.45138938)] 

sage: F = E.quadratic_twist(-8) 

sage: F.rank() 

1 

sage: F = E.quadratic_twist(-7) 

sage: F.rank() 

0 

""" 

from sage.lfunctions.lcalc import lcalc 

return lcalc.twist_values(s - RationalField()('1/2'), dmin, dmax, L=self.__E) 

 

def twist_zeros(self, n, dmin, dmax): 

r""" 

Return first `n` real parts of nontrivial zeros of 

`L(E,s,\chi_d)` for each quadratic character `\chi_d` with 

`d_{\min} \leq d \leq d_{\max}`. 

 

.. note:: 

 

The L-series is normalized so that the center of the 

critical strip is 1. 

 

INPUT: 

 

- ``n`` -- integer 

 

- ``dmin`` -- integer 

 

- ``dmax`` -- integer 

 

OUTPUT: 

 

- dict -- keys are the discriminants `d`, and 

values are list of corresponding zeros. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('37a') 

sage: E.lseries().twist_zeros(3, -4, -3) # long time 

{-4: [1.60813783, 2.96144840, 3.89751747], -3: [2.06170900, 3.48216881, 4.45853219]} 

""" 

from sage.lfunctions.lcalc import lcalc 

return lcalc.twist_zeros(n, dmin, dmax, L=self.__E) 

 

def at1(self, k=None, prec=None): 

r""" 

Compute `L(E,1)` using `k` terms of the series for `L(E,1)` as 

explained in Section 7.5.3 of Henri Cohen's book *A Course in 

Computational Algebraic Number Theory*. If the argument `k` 

is not specified, then it defaults to `\sqrt{N}`, where `N` is 

the conductor. 

 

INPUT: 

 

- ``k`` -- number of terms of the series. If zero or ``None``, 

use `k = \sqrt{N}`, where `N` is the conductor. 

 

- ``prec`` -- numerical precision in bits. If zero or ``None``, 

use a reasonable automatic default. 

 

OUTPUT: 

 

A tuple of real numbers ``(L, err)`` where ``L`` is an 

approximation for `L(E,1)` and ``err`` is a bound on the error 

in the approximation. 

 

This function is disjoint from the PARI ``elllseries`` 

command, which is for a similar purpose. To use that command 

(via the PARI C library), simply type 

``E.pari_mincurve().elllseries(1)``. 

 

ALGORITHM: 

 

- Compute the root number eps. If it is -1, return 0. 

 

- Compute the Fourier coefficients `a_n`, for `n` up to and 

including `k`. 

 

- Compute the sum 

 

.. MATH:: 

 

2 \cdot \sum_{n=1}^{k} \frac{a_n}{n} \cdot \exp(-2*pi*n/\sqrt{N}), 

 

where `N` is the conductor of `E`. 

 

- Compute a bound on the tail end of the series, which is 

 

.. MATH:: 

 

2 e^{-2 \pi (k+1) / \sqrt{N}} / (1 - e^{-2 \pi/\sqrt{N}}). 

 

For a proof see [Grigov-Jorza-Patrascu-Patrikis-Stein]. 

 

EXAMPLES:: 

 

sage: L, err = EllipticCurve('11a1').lseries().at1() 

sage: L, err 

(0.253804, 0.000181444) 

sage: parent(L) 

Real Field with 24 bits of precision 

sage: E = EllipticCurve('37b') 

sage: E.lseries().at1() 

(0.7257177, 0.000800697) 

sage: E.lseries().at1(100) 

(0.7256810619361527823362055410263965487367603361763, 1.52469e-45) 

sage: L,err = E.lseries().at1(100, prec=128) 

sage: L 

0.72568106193615278233620554102639654873 

sage: parent(L) 

Real Field with 128 bits of precision 

sage: err 

1.70693e-37 

sage: parent(err) 

Real Field with 24 bits of precision and rounding RNDU 

 

Rank 1 through 3 elliptic curves:: 

 

sage: E = EllipticCurve('37a1') 

sage: E.lseries().at1() 

(0.0000000, 0.000000) 

sage: E = EllipticCurve('389a1') 

sage: E.lseries().at1() 

(-0.001769566, 0.00911776) 

sage: E = EllipticCurve('5077a1') 

sage: E.lseries().at1() 

(0.0000000, 0.000000) 

""" 

sqrtN = sqrt(self.__E.conductor()) 

if k: 

k = int(k) 

else: 

k = int(ceil(sqrtN)) 

 

if prec: 

prec = int(prec) 

else: 

# Use the same precision as deriv_at1() below for 

# consistency 

prec = int(9.065*k/sqrtN + 1.443*log(k)) + 12 

R = RealField(prec) 

# Compute error term with bounded precision of 24 bits and 

# round towards +infinity 

Rerror = RealField(24, rnd='RNDU') 

 

if self.__E.root_number() == -1: 

return (R.zero(), Rerror.zero()) 

 

an = self.__E.anlist(k) # list of Sage Integers 

pi = R.pi() 

sqrtN = R(self.__E.conductor()).sqrt() 

 

z = (-2*pi/sqrtN).exp() 

zpow = z 

# Compute series sum and accumulate floating point errors 

L = R.zero() 

error = Rerror.zero() 

 

for n in range(1, k + 1): 

term = (zpow * an[n])/n 

zpow *= z 

L += term 

# We express relative error in units of epsilon, where 

# epsilon is a number divided by 2^precision. 

# Instead of multiplying the error by 2 after the loop 

# (to account for L *= 2), we already multiply it now. 

# 

# For multiplication and division, the relative error 

# in epsilons is bounded by (1+e)^n - 1, where n is the 

# number of operations (assuming exact inputs). 

# exp(x) additionally multiplies this error by abs(x) and 

# adds one epsilon. The inputs pi and sqrtN each contribute 

# another epsilon. 

# Assuming that 2*pi/sqrtN <= 2, the relative error for z is 

# 7 epsilon. This implies a relative error of (8n-1) epsilon 

# for zpow. We add 2 for the computation of term and 1/2 to 

# compensate for the approximation (1+e)^n = 1+ne. 

# 

# The error of the addition is at most half an ulp of the 

# result. 

# 

# Multiplying everything by two gives: 

error += term.epsilon(Rerror)*(16*n + 3) + L.ulp(Rerror) 

L *= 2 

 

# Add series error (we use (-2)/(z-1) instead of 2/(1-z) 

# because this causes 1/(1-z) to be rounded up) 

error += ((-2)*Rerror(zpow)) / Rerror(z - 1) 

return (L, error) 

 

def deriv_at1(self, k=None, prec=None): 

r""" 

Compute `L'(E,1)` using `k` terms of the series for `L'(E,1)`, 

under the assumption that `L(E,1) = 0`. 

 

The algorithm used is from Section 7.5.3 of Henri Cohen's book 

*A Course in Computational Algebraic Number Theory*. 

 

INPUT: 

 

- ``k`` -- number of terms of the series. If zero or ``None``, 

use `k = \sqrt{N}`, where `N` is the conductor. 

 

- ``prec`` -- numerical precision in bits. If zero or ``None``, 

use a reasonable automatic default. 

 

OUTPUT: 

 

A tuple of real numbers ``(L1, err)`` where ``L1`` is an 

approximation for `L'(E,1)` and ``err`` is a bound on the error 

in the approximation. 

 

.. WARNING:: 

 

This function only makes sense if `L(E)` has positive order 

of vanishing at 1, or equivalently if `L(E,1) = 0`. 

 

ALGORITHM: 

 

- Compute the root number eps. If it is 1, return 0. 

 

- Compute the Fourier coefficients `a_n`, for `n` up to and 

including `k`. 

 

- Compute the sum 

 

.. MATH:: 

 

2 \cdot \sum_{n=1}^{k} (a_n / n) \cdot E_1(2 \pi n/\sqrt{N}), 

 

where `N` is the conductor of `E`, and `E_1` is the 

exponential integral function. 

 

- Compute a bound on the tail end of the series, which is 

 

.. MATH:: 

 

2 e^{-2 \pi (k+1) / \sqrt{N}} / (1 - e^{-2 \pi/\sqrt{N}}). 

 

For a proof see [Grigorov-Jorza-Patrascu-Patrikis-Stein]. This 

is exactly the same as the bound for the approximation to 

`L(E,1)` produced by :meth:`at1`. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve('37a') 

sage: E.lseries().deriv_at1() 

(0.3059866, 0.000801045) 

sage: E.lseries().deriv_at1(100) 

(0.3059997738340523018204836833216764744526377745903, 1.52493e-45) 

sage: E.lseries().deriv_at1(1000) 

(0.305999773834052301820483683321676474452637774590771998..., 2.75031e-449) 

 

With less numerical precision, the error is bounded by numerical accuracy:: 

 

sage: L,err = E.lseries().deriv_at1(100, prec=64) 

sage: L,err 

(0.305999773834052302, 5.55318e-18) 

sage: parent(L) 

Real Field with 64 bits of precision 

sage: parent(err) 

Real Field with 24 bits of precision and rounding RNDU 

 

Rank 2 and rank 3 elliptic curves:: 

 

sage: E = EllipticCurve('389a1') 

sage: E.lseries().deriv_at1() 

(0.0000000, 0.000000) 

sage: E = EllipticCurve((1, 0, 1, -131, 558)) # curve 59450i1 

sage: E.lseries().deriv_at1() 

(-0.00010911444, 0.142428) 

sage: E.lseries().deriv_at1(4000) 

(6.990...e-50, 1.31318e-43) 

""" 

sqrtN = sqrt(self.__E.conductor()) 

if k: 

k = int(k) 

else: 

k = int(ceil(sqrtN)) 

 

if prec: 

prec = int(prec) 

else: 

# Estimate number of bits for the computation, based on error 

# estimate below (the denominator of that error is close enough 

# to 1 that we can ignore it). 

# 9.065 = 2*Pi/log(2) 

# 1.443 = 1/log(2) 

# 12 is an arbitrary extra number of bits (it is chosen 

# such that the precision is 24 bits when the conductor 

# equals 11 and k is the default value 4) 

prec = int(9.065*k/sqrtN + 1.443*log(k)) + 12 

R = RealField(prec) 

# Compute error term with bounded precision of 24 bits and 

# round towards +infinity 

Rerror = RealField(24, rnd='RNDU') 

 

if self.__E.root_number() == 1: 

# Order of vanishing at 1 of L(E) is even and assumed to be 

# positive, so L'(E,1) = 0. 

return (R.zero(), Rerror.zero()) 

 

an = self.__E.anlist(k) # list of Sage Integers 

pi = R.pi() 

sqrtN = R(self.__E.conductor()).sqrt() 

v = exp_integral.exponential_integral_1(2*pi/sqrtN, k) 

 

# Compute series sum and accumulate floating point errors 

L = R.zero() 

error = Rerror.zero() 

# Sum of |an[n]|/n 

sumann = Rerror.zero() 

 

for n in range(1, k + 1): 

term = (v[n-1] * an[n])/n 

L += term 

error += term.epsilon(Rerror)*5 + L.ulp(Rerror) 

sumann += Rerror(an[n].abs())/n 

L *= 2 

 

# Add error term for exponential_integral_1() errors. 

# Absolute error for 2*v[i] is 4*max(1, v[0])*2^-prec 

if v[0] > 1.0: 

sumann *= Rerror(v[0]) 

error += (sumann >> (prec - 2)) 

 

# Add series error (we use (-2)/(z-1) instead of 2/(1-z) 

# because this causes 1/(1-z) to be rounded up) 

z = (-2*pi/sqrtN).exp() 

zpow = ((-2*(k+1))*pi/sqrtN).exp() 

error += ((-2)*Rerror(zpow)) / Rerror(z - 1) 

return (L, error) 

 

def __call__(self, s): 

r""" 

Returns the value of the L-series of the elliptic curve E at s, where s 

must be a real number. 

 

.. NOTE:: 

 

If the conductor of the curve is large, say `>10^{12}`, 

then this function will take a very long time, since it 

uses an `O(\sqrt{N})` algorithm. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve([1,2,3,4,5]) 

sage: L = E.lseries() 

sage: L(1) 

0.000000000000000 

sage: L(1.1) 

0.285491007678148 

sage: L(1.1 + I) 

0.174851377216615 + 0.816965038124457*I 

""" 

return self.dokchitser()(s) 

 

def L1_vanishes(self): 

r""" 

Returns whether or not `L(E,1) = 0`. The result is provably 

correct if the Manin constant of the associated optimal 

quotient is <= 2. This hypothesis on the Manin constant 

is true for all curves of conductor <= 40000 (by Cremona) and 

all semistable curves (i.e., squarefree conductor). 

 

ALGORITHM: see :meth:`L_ratio`. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve([0, -1, 1, -10, -20]) # 11A = X_0(11) 

sage: E.lseries().L1_vanishes() 

False 

sage: E = EllipticCurve([0, -1, 1, 0, 0]) # X_1(11) 

sage: E.lseries().L1_vanishes() 

False 

sage: E = EllipticCurve([0, 0, 1, -1, 0]) # 37A (rank 1) 

sage: E.lseries().L1_vanishes() 

True 

sage: E = EllipticCurve([0, 1, 1, -2, 0]) # 389A (rank 2) 

sage: E.lseries().L1_vanishes() 

True 

sage: E = EllipticCurve([0, 0, 1, -38, 90]) # 361A (CM curve)) 

sage: E.lseries().L1_vanishes() 

True 

sage: E = EllipticCurve([0,-1,1,-2,-1]) # 141C (13-isogeny) 

sage: E.lseries().L1_vanishes() 

False 

 

AUTHOR: William Stein, 2005-04-20. 

""" 

return self.L_ratio() == 0 

 

def L_ratio(self): 

r""" 

Returns the ratio `L(E,1)/\Omega` as an exact rational 

number. The result is *provably* correct if the Manin 

constant of the associated optimal quotient is `\leq 2`. This 

hypothesis on the Manin constant is true for all semistable 

curves (i.e., squarefree conductor), by a theorem of Mazur 

from his *Rational Isogenies of Prime Degree* paper. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve([0, -1, 1, -10, -20]) # 11A = X_0(11) 

sage: E.lseries().L_ratio() 

1/5 

sage: E = EllipticCurve([0, -1, 1, 0, 0]) # X_1(11) 

sage: E.lseries().L_ratio() 

1/25 

sage: E = EllipticCurve([0, 0, 1, -1, 0]) # 37A (rank 1) 

sage: E.lseries().L_ratio() 

0 

sage: E = EllipticCurve([0, 1, 1, -2, 0]) # 389A (rank 2) 

sage: E.lseries().L_ratio() 

0 

sage: E = EllipticCurve([0, 0, 1, -38, 90]) # 361A (CM curve)) 

sage: E.lseries().L_ratio() 

0 

sage: E = EllipticCurve([0,-1,1,-2,-1]) # 141C (13-isogeny) 

sage: E.lseries().L_ratio() 

1 

sage: E = EllipticCurve(RationalField(), [1, 0, 0, 1/24624, 1/886464]) 

sage: E.lseries().L_ratio() 

2 

 

See :trac:`3651` and :trac:`15299`:: 

 

sage: EllipticCurve([0,0,0,-193^2,0]).sha().an() 

4 

sage: EllipticCurve([1, 0, 1, -131, 558]).sha().an() # long time 

1.00000000000000 

 

ALGORITHM: Compute the root number. If it is -1 then `L(E,s)` 

vanishes to odd order at 1, hence vanishes. If it is +1, use 

a result about modular symbols and Mazur's *Rational Isogenies* 

paper to determine a provably correct bound (assuming Manin 

constant is <= 2) so that we can determine whether `L(E,1) = 0`. 

 

AUTHOR: William Stein, 2005-04-20. 

""" 

try: 

return self.__lratio 

except AttributeError: 

pass 

 

if not self.__E.is_minimal(): 

self.__lratio = self.__E.minimal_model().lseries().L_ratio() 

return self.__lratio 

 

QQ = RationalField() 

if self.__E.root_number() == -1: 

self.__lratio = QQ.zero() 

return self.__lratio 

 

# Even root number. Decide if L(E,1) = 0. If E is a modular 

# *OPTIMAL* quotient of J_0(N) elliptic curve, we know that T * 

# L(E,1)/omega is an integer n, where T is the order of the 

# image of the rational torsion point (0)-(oo) in E(Q), and 

# omega is the least real Neron period. (This is proved in my 

# Ph.D. thesis, but is probably well known.) We can easily 

# compute omega to very high precision using AGM. So to prove 

# that L(E,1) = 0 we compute T/omega * L(E,1) to sufficient 

# precision to determine it as an integer. If eps is the 

# error in computation of L(E,1), then the error in computing 

# the product is (2T/Omega_E) * eps, and we need this to be 

# less than 0.5, i.e., 

# (2T/Omega_E) * eps < 0.5, 

# so 

# eps < 0.5 * Omega_E / (2T) = Omega_E / (4*T). 

# 

# Since in general E need not be optimal, we have to choose 

# eps = Omega_E/(8*t*B), where t is the exponent of E(Q)_tor, 

# and is a multiple of the degree of an isogeny between E 

# and the optimal curve. 

# 

# NOTES: We *do* have to worry about the Manin constant, since 

# we are using the Neron model to compute omega, not the 

# newform. My theorem replaces the omega above by omega/c, 

# where c is the Manin constant, and the bound must be 

# correspondingly smaller. If the level is square free, then 

# the Manin constant is 1 or 2, so there's no problem (since 

# we took 8 instead of 4 in the denominator). If the level 

# is divisible by a square, then the Manin constant could 

# be a divisible by an arbitrary power of that prime, except 

# that Edixhoven claims the primes that appear are <= 7. 

 

t = self.__E.torsion_subgroup().order() 

omega = self.__E.period_lattice().basis()[0] 

d = self.__E._multiple_of_degree_of_isogeny_to_optimal_curve() 

C = 8*d*t 

eps = omega / C 

 

sqrtN = 2*int(sqrt(self.__E.conductor())) 

k = sqrtN + 10 

while True: 

L1, error_bound = self.at1(k) 

if error_bound < eps: 

n = int(round(L1*C/omega)) 

quo = QQ((n,C)) 

self.__lratio = quo / self.__E.real_components() 

return self.__lratio 

k += sqrtN 

verbose("Increasing precision to %s terms." % k) 

 

def zero_sums(self, N=None): 

r""" 

Return an LFunctionZeroSum class object for efficient computation 

of sums over the zeros of self. This can be used to bound analytic 

rank from above without having to compute with the $L$-series 

directly. 

 

INPUT: 

 

- ``N`` -- (default: None) If not None, the conductor of the 

elliptic curve attached to self. This is passable so that zero 

sum computations can be done on curves for which the conductor 

has been precomputed. 

 

OUTPUT: 

 

A LFunctionZeroSum_EllipticCurve instance. 

 

EXAMPLES:: 

 

sage: E = EllipticCurve("5077a") 

sage: E.lseries().zero_sums() 

Zero sum estimator for L-function attached to Elliptic Curve defined by y^2 + y = x^3 - 7*x + 6 over Rational Field 

""" 

from sage.lfunctions.zero_sums import LFunctionZeroSum 

return LFunctionZeroSum(self.__E, N=N)