Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

r""" 

Set of homomorphisms between two schemes 

 

For schemes `X` and `Y`, this module implements the set of morphisms 

`Hom(X,Y)`. This is done by :class:`SchemeHomset_generic`. 

 

As a special case, the Hom-sets can also represent the points of a 

scheme. Recall that the `K`-rational points of a scheme `X` over `k` 

can be identified with the set of morphisms `Spec(K) \to X`. In Sage 

the rational points are implemented by such scheme morphisms. This is 

done by :class:`SchemeHomset_points` and its subclasses. 

 

.. note:: 

 

You should not create the Hom-sets manually. Instead, use the 

:meth:`~sage.structure.parent.Hom` method that is inherited by all 

schemes. 

 

AUTHORS: 

 

- William Stein (2006): initial version. 

 

- Volker Braun (2011-08-11): significant improvement and refactoring. 

 

- Ben Hutz (June 2012): added support for projective ring 

""" 

 

 

#***************************************************************************** 

# Copyright (C) 2011 Volker Braun <vbraun.name@gmail.com> 

# Copyright (C) 2006 William Stein <wstein@gmail.com> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# as published by the Free Software Foundation; either version 2 of 

# the License, or (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from __future__ import print_function 

 

from sage.categories.homset import HomsetWithBase 

from sage.structure.factory import UniqueFactory 

 

from sage.rings.all import ZZ, QQ, CommutativeRing 

from sage.arith.all import gcd 

 

from sage.rings.rational_field import is_RationalField 

from sage.rings.finite_rings.finite_field_constructor import is_FiniteField 

from sage.rings.ring import CommutativeRing 

 

from sage.schemes.generic.scheme import AffineScheme, is_AffineScheme 

from sage.schemes.generic.morphism import ( 

SchemeMorphism, 

SchemeMorphism_structure_map, 

SchemeMorphism_spec ) 

 

 

def is_SchemeHomset(H): 

r""" 

Test whether ``H`` is a scheme Hom-set. 

 

EXAMPLES:: 

 

sage: f = Spec(QQ).identity_morphism(); f 

Scheme endomorphism of Spectrum of Rational Field 

Defn: Identity map 

sage: from sage.schemes.generic.homset import is_SchemeHomset 

sage: is_SchemeHomset(f) 

False 

sage: is_SchemeHomset(f.parent()) 

True 

sage: is_SchemeHomset('a string') 

False 

""" 

return isinstance(H, SchemeHomset_generic) 

 

 

#******************************************************************* 

# Factory for Hom sets of schemes 

#******************************************************************* 

class SchemeHomsetFactory(UniqueFactory): 

""" 

Factory for Hom-sets of schemes. 

 

EXAMPLES:: 

 

sage: A2 = AffineSpace(QQ,2) 

sage: A3 = AffineSpace(QQ,3) 

sage: Hom = A3.Hom(A2) 

 

The Hom-sets are uniquely determined by domain and codomain:: 

 

sage: Hom is copy(Hom) 

True 

sage: Hom is A3.Hom(A2) 

True 

 

The Hom-sets are identical if the domains and codomains are 

identical:: 

 

sage: loads(Hom.dumps()) is Hom 

True 

sage: A3_iso = AffineSpace(QQ,3) 

sage: A3_iso is A3 

True 

sage: Hom_iso = A3_iso.Hom(A2) 

sage: Hom_iso is Hom 

True 

 

TESTS:: 

 

sage: Hom.base() 

Integer Ring 

sage: Hom.base_ring() 

Integer Ring 

""" 

 

def create_key_and_extra_args(self, X, Y, category=None, base=ZZ, 

check=True, as_point_homset=False): 

""" 

Create a key that uniquely determines the Hom-set. 

 

INPUT: 

 

- ``X`` -- a scheme. The domain of the morphisms. 

 

- ``Y`` -- a scheme. The codomain of the morphisms. 

 

- ``category`` -- a category for the Hom-sets (default: schemes over 

given base). 

 

- ``base`` -- a scheme or a ring. The base scheme of domain 

and codomain schemes. If a ring is specified, the spectrum 

of that ring will be used as base scheme. 

 

- ``check`` -- boolean (default: ``True``). 

 

EXAMPLES:: 

 

sage: A2 = AffineSpace(QQ,2) 

sage: A3 = AffineSpace(QQ,3) 

sage: A3.Hom(A2) # indirect doctest 

Set of morphisms 

From: Affine Space of dimension 3 over Rational Field 

To: Affine Space of dimension 2 over Rational Field 

sage: from sage.schemes.generic.homset import SchemeHomsetFactory 

sage: SHOMfactory = SchemeHomsetFactory('test') 

sage: key, extra = SHOMfactory.create_key_and_extra_args(A3,A2,check=False) 

sage: key 

(..., ..., Category of schemes over Integer Ring, False) 

sage: extra 

{'X': Affine Space of dimension 3 over Rational Field, 

'Y': Affine Space of dimension 2 over Rational Field, 

'base_ring': Integer Ring, 

'check': False} 

""" 

if isinstance(X, CommutativeRing): 

X = AffineScheme(X) 

if isinstance(Y, CommutativeRing): 

Y = AffineScheme(Y) 

if is_AffineScheme(base): 

base_spec = base 

base_ring = base.coordinate_ring() 

elif isinstance(base, CommutativeRing): 

base_spec = AffineScheme(base) 

base_ring = base 

else: 

raise ValueError('base must be a commutative ring or its spectrum') 

if not category: 

from sage.categories.schemes import Schemes 

category = Schemes(base_spec) 

key = tuple([id(X), id(Y), category, as_point_homset]) 

extra = {'X':X, 'Y':Y, 'base_ring':base_ring, 'check':check} 

return key, extra 

 

def create_object(self, version, key, **extra_args): 

""" 

Create a :class:`SchemeHomset_generic`. 

 

INPUT: 

 

- ``version`` -- object version. Currently not used. 

 

- ``key`` -- a key created by :meth:`create_key_and_extra_args`. 

 

- ``extra_args`` -- a dictionary of extra keyword arguments. 

 

EXAMPLES:: 

 

sage: A2 = AffineSpace(QQ,2) 

sage: A3 = AffineSpace(QQ,3) 

sage: A3.Hom(A2) is A3.Hom(A2) # indirect doctest 

True 

sage: from sage.schemes.generic.homset import SchemeHomsetFactory 

sage: SHOMfactory = SchemeHomsetFactory('test') 

sage: SHOMfactory.create_object(0, [id(A3), id(A2), A3.category(), False], 

....: check=True, X=A3, Y=A2, base_ring=QQ) 

Set of morphisms 

From: Affine Space of dimension 3 over Rational Field 

To: Affine Space of dimension 2 over Rational Field 

""" 

category = key[2] 

X = extra_args.pop('X') 

Y = extra_args.pop('Y') 

base_ring = extra_args.pop('base_ring') 

if len(key) >= 4 and key[3]: # as_point_homset=True 

return Y._point_homset(X, Y, category=category, base=base_ring, **extra_args) 

try: 

return X._homset(X, Y, category=category, base=base_ring, **extra_args) 

except AttributeError: 

return SchemeHomset_generic(X, Y, category=category, base=base_ring, **extra_args) 

 

 

SchemeHomset = SchemeHomsetFactory('sage.schemes.generic.homset.SchemeHomset') 

 

 

 

#******************************************************************* 

# Base class 

#******************************************************************* 

class SchemeHomset_generic(HomsetWithBase): 

r""" 

The base class for Hom-sets of schemes. 

 

INPUT: 

 

- ``X`` -- a scheme. The domain of the Hom-set. 

 

- ``Y`` -- a scheme. The codomain of the Hom-set. 

 

- ``category`` -- a category (optional). The category of the 

Hom-set. 

 

- ``check`` -- boolean (optional, default=``True``). Whether to 

check the defining data for consistency. 

 

EXAMPLES:: 

 

sage: from sage.schemes.generic.homset import SchemeHomset_generic 

sage: A2 = AffineSpace(QQ,2) 

sage: Hom = SchemeHomset_generic(A2, A2); Hom 

Set of morphisms 

From: Affine Space of dimension 2 over Rational Field 

To: Affine Space of dimension 2 over Rational Field 

sage: Hom.category() 

Category of endsets of schemes over Rational Field 

""" 

Element = SchemeMorphism 

 

def __reduce__(self): 

""" 

Used in pickling. 

 

EXAMPLES:: 

 

sage: A2 = AffineSpace(QQ,2) 

sage: A3 = AffineSpace(QQ,3) 

sage: Hom = A3.Hom(A2) 

sage: loads(Hom.dumps()) == Hom 

True 

""" 

return SchemeHomset, (self.domain(), self.codomain(), self.homset_category(), 

self.base_ring(), False, False) 

 

def __call__(self, *args, **kwds): 

r""" 

Make Hom-sets callable. 

 

See the ``_call_()`` method of the derived class. All 

arguments are handed through. 

 

EXAMPLES:: 

 

sage: A2 = AffineSpace(QQ,2) 

sage: A2(4,5) 

(4, 5) 

""" 

# Homset (base of HomsetWithBase) overrides __call__ @#$ 

from sage.structure.parent import Set_generic 

return Set_generic.__call__(self, *args, **kwds) 

 

def _repr_(self): 

r""" 

Return a string representation. 

 

OUTPUT: 

 

A string. 

 

EXAMPLES:: 

 

sage: A = AffineSpace(4, QQ) 

sage: print(A.structure_morphism()._repr_()) 

Scheme morphism: 

From: Affine Space of dimension 4 over Rational Field 

To: Spectrum of Rational Field 

Defn: Structure map 

""" 

s = 'Set of morphisms' 

s += '\n From: %s' % self.domain() 

s += '\n To: %s' % self.codomain() 

return s 

 

def natural_map(self): 

r""" 

Return a natural map in the Hom space. 

 

OUTPUT: 

 

A :class:`SchemeMorphism` if there is a natural map from 

domain to codomain. Otherwise, a ``NotImplementedError`` is 

raised. 

 

EXAMPLES:: 

 

sage: A = AffineSpace(4, QQ) 

sage: A.structure_morphism() # indirect doctest 

Scheme morphism: 

From: Affine Space of dimension 4 over Rational Field 

To: Spectrum of Rational Field 

Defn: Structure map 

""" 

X = self.domain() 

Y = self.codomain() 

if is_AffineScheme(Y) and Y.coordinate_ring() == X.base_ring(): 

return SchemeMorphism_structure_map(self) 

raise NotImplementedError 

 

def _element_constructor_(self, x, check=True): 

""" 

Construct a scheme morphism. 

 

INPUT: 

 

- `x` -- a ring morphism, or a list or a tuple that define a 

ring morphism. 

 

- ``check`` -- boolean (default: ``True``) passed onto 

functions called by this one to be more careful about input 

argument type checking. 

 

EXAMPLES:: 

 

sage: f = ZZ.hom(QQ); f 

Natural morphism: 

From: Integer Ring 

To: Rational Field 

 

sage: H = Hom(Spec(QQ, ZZ), Spec(ZZ)); H 

Set of morphisms 

From: Spectrum of Rational Field 

To: Spectrum of Integer Ring 

 

sage: phi = H(f); phi 

Affine Scheme morphism: 

From: Spectrum of Rational Field 

To: Spectrum of Integer Ring 

Defn: Natural morphism: 

From: Integer Ring 

To: Rational Field 

 

TESTS:: 

 

sage: H._element_constructor_(f) 

Affine Scheme morphism: 

From: Spectrum of Rational Field 

To: Spectrum of Integer Ring 

Defn: Natural morphism: 

From: Integer Ring 

To: Rational Field 

 

We illustrate input type checking:: 

 

sage: R.<x,y> = QQ[] 

sage: A.<x,y> = AffineSpace(R) 

sage: C = A.subscheme(x*y-1) 

sage: H = C.Hom(C); H 

Set of morphisms 

From: Closed subscheme of Affine Space of dimension 2 over Rational Field defined by: 

x*y - 1 

To: Closed subscheme of Affine Space of dimension 2 over Rational Field defined by: 

x*y - 1 

sage: H(1) 

Traceback (most recent call last): 

... 

TypeError: x must be a ring homomorphism, list or tuple 

""" 

if isinstance(x, (list, tuple)): 

return self.domain()._morphism(self, x, check=check) 

 

from sage.categories.map import Map 

from sage.categories.all import Rings 

if isinstance(x, Map) and x.category_for().is_subcategory(Rings()): 

# x is a morphism of Rings 

return SchemeMorphism_spec(self, x, check=check) 

 

raise TypeError("x must be a ring homomorphism, list or tuple") 

 

#******************************************************************* 

# Base class for points 

#******************************************************************* 

class SchemeHomset_points(SchemeHomset_generic): 

""" 

Set of rational points of the scheme. 

 

Recall that the `K`-rational points of a scheme `X` over `k` can 

be identified with the set of morphisms `Spec(K) \to X`. In Sage, 

the rational points are implemented by such scheme morphisms. 

 

If a scheme has a finite number of points, then the homset is 

supposed to implement the Python iterator interface. See 

:class:`~sage.schemes.toric.homset.SchemeHomset_points_toric_field` 

for example. 

 

INPUT: 

 

See :class:`SchemeHomset_generic`. 

 

EXAMPLES:: 

 

sage: from sage.schemes.generic.homset import SchemeHomset_points 

sage: SchemeHomset_points(Spec(QQ), AffineSpace(ZZ,2)) 

Set of rational points of Affine Space of dimension 2 over Rational Field 

""" 

 

def __init__(self, X, Y, category=None, check=True, base=ZZ): 

""" 

Python constructor. 

 

INPUT: 

 

See :class:`SchemeHomset_generic`. 

 

EXAMPLES:: 

 

sage: from sage.schemes.generic.homset import SchemeHomset_points 

sage: SchemeHomset_points(Spec(QQ), AffineSpace(ZZ,2)) 

Set of rational points of Affine Space of dimension 2 over Rational Field 

""" 

if check and not is_AffineScheme(X): 

raise ValueError('The domain must be an affine scheme.') 

SchemeHomset_generic.__init__(self, X, Y, category=category, check=check, base=base) 

 

def __reduce__(self): 

""" 

Used in pickling. 

 

EXAMPLES:: 

 

sage: A2 = AffineSpace(QQ,2) 

sage: Hom = A2(QQ) 

sage: loads(Hom.dumps()) == Hom 

True 

""" 

return SchemeHomset, (self.domain(), self.codomain(), self.homset_category(), 

self.base_ring(), False, True) 

 

def _coerce_map_from_(self, other): 

r""" 

Return true if ``other`` canonically coerces to ``self``. 

 

EXAMPLES:: 

 

sage: R.<t> = QQ[] 

sage: P = ProjectiveSpace(QQ, 1, 'x') 

sage: P2 = ProjectiveSpace(R, 1, 'x') 

sage: P2(R)._coerce_map_from_(P(QQ)) 

True 

sage: P(QQ)._coerce_map_from_(P2(R)) 

False 

 

:: 

 

sage: P = ProjectiveSpace(QQ, 1, 'x') 

sage: P2 = ProjectiveSpace(CC, 1, 'y') 

sage: P2(CC)._coerce_map_from_(P(QQ)) 

False 

 

:: 

 

sage: A.<x,y,z> = AffineSpace(QQ, 3) 

sage: H = A.subscheme(z) 

sage: L = A.subscheme([z, y+z]) 

sage: A(QQ)._coerce_map_from_(H(QQ)) 

True 

sage: H(QQ)._coerce_map_from_(L(QQ)) 

True 

sage: L(QQ).has_coerce_map_from(H(QQ)) 

False 

sage: A(CC)._coerce_map_from_(H(QQ)) 

True 

sage: H(CC)._coerce_map_from_(L(RR)) 

True 

 

:: 

 

sage: A.<x,y,z> = AffineSpace(QQ, 3) 

sage: A2.<u,v> = AffineSpace(QQ, 2) 

sage: A(QQ).has_coerce_map_from(A2(QQ)) 

False 

 

:: 

 

sage: A.<x,y> = AffineSpace(QQ, 2) 

sage: P.<u,v,w> = ProjectiveSpace(QQ, 2) 

sage: A(QQ).has_coerce_map_from(P(QQ)) 

False 

 

:: 

 

sage: A = AffineSpace(QQ, 1) 

sage: A(QQ)._coerce_map_from_(ZZ) 

True 

 

:: 

 

sage: PS = ProjectiveSpace(ZZ, 1, 'x') 

sage: PS2 = ProjectiveSpace(Zp(7), 1, 'x') 

sage: PS(ZZ).has_coerce_map_from(PS2(Zp(7))) 

False 

sage: PS2(Zp(7)).has_coerce_map_from(PS(ZZ)) 

True 

 

:: 

 

sage: PP1 = ProductProjectiveSpaces(ZZ, [2,1], 'x') 

sage: PP1(QQ)._coerce_map_from_(PP1(ZZ)) 

True 

sage: PP2 = ProductProjectiveSpaces(QQ, [1,2], 'x') 

sage: PP2(QQ)._coerce_map_from_(PP1(ZZ)) 

False 

sage: PP3 = ProductProjectiveSpaces(QQ, [2,1], 'y') 

sage: PP3(QQ)._coerce_map_from_(PP1(ZZ)) 

False 

 

:: 

 

sage: K.<w> = QuadraticField(2) 

sage: A.<x,y,z> = AffineSpace(QQ, 3) 

sage: H = A.subscheme(z) 

sage: A(K).has_coerce_map_from(H(QQ)) 

True 

 

TESTS:: 

 

sage: P.<x,y> = ProjectiveSpace(QQ, 1) 

sage: X = P. subscheme ([x-y]) 

sage: P(1,1) == X(1,1) 

True 

 

:: 

 

sage: A = AffineSpace(QQ, 1, 'x') 

sage: AC = AffineSpace(CC, 1, 'x') 

sage: A(3/2) == AC(3/2) 

True 

 

:: 

 

sage: A = AffineSpace(QQ, 1) 

sage: A(0) == 0 

True 

""" 

target = self.codomain() 

#ring elements can be coerced to a space if we're affine dimension 1 

#and the base rings are coercible 

if isinstance(other, CommutativeRing): 

try: 

from sage.schemes.affine.affine_space import is_AffineSpace 

if is_AffineSpace(target.ambient_space())\ 

and target.ambient_space().dimension_relative() == 1: 

return target.base_ring().has_coerce_map_from(other) 

else: 

return False 

except AttributeError: #no .ambient_space 

return False 

elif isinstance(other, SchemeHomset_points): 

#we are converting between scheme points 

from sage.schemes.generic.algebraic_scheme import AlgebraicScheme_subscheme 

source = other.codomain() 

if isinstance(target, AlgebraicScheme_subscheme): 

#subscheme coerce when there is containment 

if not isinstance(source, AlgebraicScheme_subscheme): 

return False 

if target.ambient_space() == source.ambient_space(): 

if all([g in source.defining_ideal() for g in target.defining_polynomials()]): 

return self.domain().coordinate_ring().has_coerce_map_from(other.domain().coordinate_ring()) 

else: 

#if the target is an ambient space, we can coerce if the base rings coerce 

#and they are the same type: affine, projective, etc and have the same 

#variable names 

from sage.schemes.projective.projective_space import is_ProjectiveSpace 

from sage.schemes.affine.affine_space import is_AffineSpace 

from sage.schemes.product_projective.space import is_ProductProjectiveSpaces 

try: 

ta = target.ambient_space() 

sa = source.ambient_space() 

except AttributeError: #no .ambient_space 

return False 

#for projective and affine varieties, we check dimension 

#and matching variable names 

if (is_ProjectiveSpace(ta) and is_ProjectiveSpace(sa))\ 

or (is_AffineSpace(ta) and is_AffineSpace(sa)): 

if (ta.variable_names() == sa.variable_names()): 

return self.domain().coordinate_ring().has_coerce_map_from(other.domain().coordinate_ring()) 

else: 

return False 

#for products of projective spaces, we check dimension of 

#components and matching variable names 

elif (is_ProductProjectiveSpaces(ta) and is_ProductProjectiveSpaces(sa)): 

if (ta.dimension_relative_components() == sa.dimension_relative_components()) \ 

and (ta.variable_names() == sa.variable_names()): 

return self.domain().coordinate_ring().has_coerce_map_from(other.domain().coordinate_ring()) 

else: 

return False 

 

def _element_constructor_(self, *v, **kwds): 

""" 

The element constructor. 

 

INPUT: 

 

- ``v`` -- anything that determines a scheme morphism in the 

Hom-set. 

 

OUTPUT: 

 

The scheme morphism determined by ``v``. 

 

EXAMPLES:: 

 

sage: A2 = AffineSpace(ZZ,2) 

sage: F = GF(3) 

sage: F_points = A2(F); type(F_points) 

<class 'sage.schemes.affine.affine_homset.SchemeHomset_points_affine_with_category'> 

sage: F_points([2,5]) 

(2, 2) 

 

sage: P2 = ProjectiveSpace(GF(3),2) 

sage: F.<a> = GF(9,'a') 

sage: F_points = P2(F) 

sage: type(F_points) 

<class 'sage.schemes.projective.projective_homset.SchemeHomset_points_projective_field_with_category'> 

sage: F_points([4,2*a]) 

(1 : 2*a : 1) 

 

TESTS:: 

 

sage: F_points._element_constructor_([4,2*a]) 

(1 : 2*a : 1) 

""" 

if len(v) == 1: 

v = v[0] 

return self.codomain()._point(self, v, **kwds) 

 

def extended_codomain(self): 

""" 

Return the codomain with extended base, if necessary. 

 

OUTPUT: 

 

The codomain scheme, with its base ring extended to the 

codomain. That is, the codomain is of the form `Spec(R)` and 

the base ring of the domain is extended to `R`. 

 

EXAMPLES:: 

 

sage: P2 = ProjectiveSpace(QQ,2) 

sage: K.<a> = NumberField(x^2 + x - (3^3-3)) 

sage: K_points = P2(K); K_points 

Set of rational points of Projective Space of dimension 2 

over Number Field in a with defining polynomial x^2 + x - 24 

 

sage: K_points.codomain() 

Projective Space of dimension 2 over Rational Field 

 

sage: K_points.extended_codomain() 

Projective Space of dimension 2 over Number Field in a with 

defining polynomial x^2 + x - 24 

""" 

if '_extended_codomain' in self.__dict__: 

return self._extended_codomain 

R = self.domain().coordinate_ring() 

if R is not self.codomain().base_ring(): 

X = self.codomain().base_extend(R) 

else: 

X = self.codomain() 

self._extended_codomain = X 

return X 

 

def _repr_(self): 

""" 

Return a string representation of ``self``. 

 

OUTPUT: 

 

A string. 

 

EXAMPLES:: 

 

sage: P2 = ProjectiveSpace(ZZ,2) 

sage: P2(QQ)._repr_() 

'Set of rational points of Projective Space of dimension 2 over Rational Field' 

""" 

return 'Set of rational points of '+str(self.extended_codomain()) 

 

def value_ring(self): 

""" 

Return `R` for a point Hom-set `X(Spec(R))`. 

 

OUTPUT: 

 

A commutative ring. 

 

EXAMPLES:: 

 

sage: P2 = ProjectiveSpace(ZZ,2) 

sage: P2(QQ).value_ring() 

Rational Field 

""" 

dom = self.domain() 

if not is_AffineScheme(dom): 

raise ValueError("value rings are defined for affine domains only") 

return dom.coordinate_ring() 

 

def cardinality(self): 

""" 

Return the number of points. 

 

OUTPUT: 

 

An integer or infinity. 

 

EXAMPLES:: 

 

sage: toric_varieties.P2().point_set().cardinality() 

+Infinity 

 

sage: P2 = toric_varieties.P2(base_ring=GF(3)) 

sage: P2.point_set().cardinality() 

13 

""" 

if hasattr(self, 'is_finite') and not self.is_finite(): 

from sage.rings.infinity import Infinity 

return Infinity 

return sum(ZZ.one() for point in self) 

 

__len__ = cardinality 

 

def list(self): 

""" 

Return a tuple containing all points. 

 

OUTPUT: 

 

A tuple containing all points of the toric variety. 

 

EXAMPLES:: 

 

sage: P1 = toric_varieties.P1(base_ring=GF(3)) 

sage: P1.point_set().list() 

([0 : 1], [1 : 0], [1 : 1], [1 : 2]) 

""" 

return tuple(self)