Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

r""" 

Projective `n` space over a ring 

 

EXAMPLES: 

 

We construct projective space over various rings of various dimensions. 

 

The simplest projective space:: 

 

sage: ProjectiveSpace(0) 

Projective Space of dimension 0 over Integer Ring 

 

A slightly bigger projective space over `\QQ`:: 

 

sage: X = ProjectiveSpace(1000, QQ); X 

Projective Space of dimension 1000 over Rational Field 

sage: X.dimension() 

1000 

 

We can use "over" notation to create projective spaces over various 

base rings. 

 

:: 

 

sage: X = ProjectiveSpace(5)/QQ; X 

Projective Space of dimension 5 over Rational Field 

sage: X/CC 

Projective Space of dimension 5 over Complex Field with 53 bits of precision 

 

The third argument specifies the printing names of the generators of the 

homogenous coordinate ring. Using the method `.objgens()` you can obtain both 

the space and the generators as ready to use variables. :: 

 

sage: P2, vars = ProjectiveSpace(10, QQ, 't').objgens() 

sage: vars 

(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10) 

 

You can alternatively use the special syntax with ``<`` and ``>``. 

 

:: 

 

sage: P2.<x,y,z> = ProjectiveSpace(2, QQ) 

sage: P2 

Projective Space of dimension 2 over Rational Field 

sage: P2.coordinate_ring() 

Multivariate Polynomial Ring in x, y, z over Rational Field 

 

The first of the three lines above is just equivalent to the two lines:: 

 

sage: P2 = ProjectiveSpace(2, QQ, 'xyz') 

sage: x,y,z = P2.gens() 

 

For example, we use `x,y,z` to define the intersection of 

two lines. 

 

:: 

 

sage: V = P2.subscheme([x+y+z, x+y-z]); V 

Closed subscheme of Projective Space of dimension 2 over Rational Field defined by: 

x + y + z, 

x + y - z 

sage: V.dimension() 

0 

 

AUTHORS: 

 

- Ben Hutz: (June 2012): support for rings 

 

- Ben Hutz (9/2014): added support for Cartesian products 

 

- Rebecca Lauren Miller (March 2016) : added point_transformation_matrix 

""" 

 

#***************************************************************************** 

# Copyright (C) 2006 William Stein <wstein@gmail.com> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from __future__ import print_function 

from six.moves import range 

from six import integer_types 

 

from sage.arith.misc import binomial 

 

from sage.rings.all import (PolynomialRing, 

Integer, 

ZZ) 

 

from sage.rings.ring import CommutativeRing 

from sage.rings.rational_field import is_RationalField 

from sage.rings.polynomial.multi_polynomial_ring import is_MPolynomialRing 

from sage.rings.finite_rings.finite_field_constructor import is_FiniteField 

 

from sage.categories.fields import Fields 

_Fields = Fields() 

 

from sage.categories.homset import Hom, End 

from sage.categories.number_fields import NumberFields 

from sage.categories.map import Map 

 

from sage.misc.all import (latex, 

prod) 

from sage.structure.category_object import normalize_names 

from sage.arith.all import gcd, binomial 

from sage.combinat.integer_vector import IntegerVectors 

from sage.combinat.integer_vector_weighted import WeightedIntegerVectors 

from sage.combinat.permutation import Permutation 

from sage.combinat.tuple import Tuples 

from sage.combinat.tuple import UnorderedTuples 

from sage.matrix.constructor import matrix 

from sage.modules.free_module_element import prepare 

from sage.schemes.generic.ambient_space import AmbientSpace 

from sage.schemes.projective.projective_homset import (SchemeHomset_points_projective_ring, 

SchemeHomset_points_projective_field) 

from sage.schemes.projective.projective_point import (SchemeMorphism_point_projective_ring, 

SchemeMorphism_point_projective_field, 

SchemeMorphism_point_projective_finite_field) 

from sage.schemes.projective.projective_morphism import (SchemeMorphism_polynomial_projective_space, 

SchemeMorphism_polynomial_projective_space_field, 

SchemeMorphism_polynomial_projective_space_finite_field) 

 

def is_ProjectiveSpace(x): 

r""" 

Return True if ``x`` is a projective space. 

 

In other words, if ``x`` is an ambient space `\mathbb{P}^n_R`, 

where `R` is a ring and `n\geq 0` is an integer. 

 

EXAMPLES:: 

 

sage: from sage.schemes.projective.projective_space import is_ProjectiveSpace 

sage: is_ProjectiveSpace(ProjectiveSpace(5, names='x')) 

True 

sage: is_ProjectiveSpace(ProjectiveSpace(5, GF(9,'alpha'), names='x')) 

True 

sage: is_ProjectiveSpace(Spec(ZZ)) 

False 

""" 

return isinstance(x, ProjectiveSpace_ring) 

 

def ProjectiveSpace(n, R=None, names='x'): 

r""" 

Return projective space of dimension ``n`` over the ring ``R``. 

 

EXAMPLES: The dimension and ring can be given in either order. 

 

:: 

 

sage: ProjectiveSpace(3, QQ) 

Projective Space of dimension 3 over Rational Field 

sage: ProjectiveSpace(5, QQ) 

Projective Space of dimension 5 over Rational Field 

sage: P = ProjectiveSpace(2, QQ, names='XYZ'); P 

Projective Space of dimension 2 over Rational Field 

sage: P.coordinate_ring() 

Multivariate Polynomial Ring in X, Y, Z over Rational Field 

 

The divide operator does base extension. 

 

:: 

 

sage: ProjectiveSpace(5)/GF(17) 

Projective Space of dimension 5 over Finite Field of size 17 

 

The default base ring is `\ZZ`. 

 

:: 

 

sage: ProjectiveSpace(5) 

Projective Space of dimension 5 over Integer Ring 

 

There is also an projective space associated each polynomial ring. 

 

:: 

 

sage: R = GF(7)['x,y,z'] 

sage: P = ProjectiveSpace(R); P 

Projective Space of dimension 2 over Finite Field of size 7 

sage: P.coordinate_ring() 

Multivariate Polynomial Ring in x, y, z over Finite Field of size 7 

sage: P.coordinate_ring() is R 

True 

 

:: 

 

sage: ProjectiveSpace(3, Zp(5), 'y') 

Projective Space of dimension 3 over 5-adic Ring with capped relative precision 20 

 

:: 

 

sage: ProjectiveSpace(2,QQ,'x,y,z') 

Projective Space of dimension 2 over Rational Field 

 

:: 

 

sage: PS.<x,y>=ProjectiveSpace(1,CC) 

sage: PS 

Projective Space of dimension 1 over Complex Field with 53 bits of precision 

 

:: 

 

sage: R.<x,y,z> = QQ[] 

sage: ProjectiveSpace(R).variable_names() 

('x', 'y', 'z') 

 

Projective spaces are not cached, i.e., there can be several with 

the same base ring and dimension (to facilitate gluing 

constructions). 

""" 

if is_MPolynomialRing(n) and R is None: 

A = ProjectiveSpace(n.ngens()-1, n.base_ring(), names=n.variable_names()) 

A._coordinate_ring = n 

return A 

if isinstance(R, integer_types + (Integer,)): 

n, R = R, n 

if R is None: 

R = ZZ # default is the integers 

if R in _Fields: 

if is_FiniteField(R): 

return ProjectiveSpace_finite_field(n, R, names) 

if is_RationalField(R): 

return ProjectiveSpace_rational_field(n, R, names) 

else: 

return ProjectiveSpace_field(n, R, names) 

elif isinstance(R, CommutativeRing): 

return ProjectiveSpace_ring(n, R, names) 

else: 

raise TypeError("R (=%s) must be a commutative ring"%R) 

 

class ProjectiveSpace_ring(AmbientSpace): 

""" 

Projective space of dimension `n` over the ring 

`R`. 

 

EXAMPLES:: 

 

sage: X.<x,y,z,w> = ProjectiveSpace(3, QQ) 

sage: X.base_scheme() 

Spectrum of Rational Field 

sage: X.base_ring() 

Rational Field 

sage: X.structure_morphism() 

Scheme morphism: 

From: Projective Space of dimension 3 over Rational Field 

To: Spectrum of Rational Field 

Defn: Structure map 

sage: X.coordinate_ring() 

Multivariate Polynomial Ring in x, y, z, w over Rational Field 

 

Loading and saving:: 

 

sage: loads(X.dumps()) == X 

True 

""" 

def __init__(self, n, R=ZZ, names=None): 

""" 

Initialization function. 

 

EXAMPLES:: 

 

sage: ProjectiveSpace(3, Zp(5), 'y') 

Projective Space of dimension 3 over 5-adic Ring with capped relative precision 20 

""" 

names = normalize_names(n+1, names) 

AmbientSpace.__init__(self, n, R) 

self._assign_names(names) 

 

def ngens(self): 

""" 

Return the number of generators of this projective space. 

 

This is the number of variables in the coordinate ring of self. 

 

EXAMPLES:: 

 

sage: ProjectiveSpace(3, QQ).ngens() 

4 

sage: ProjectiveSpace(7, ZZ).ngens() 

8 

""" 

return self.dimension_relative() + 1 

 

def _check_satisfies_equations(self, v): 

""" 

Return True if ``v`` defines a point on the scheme; raise a 

TypeError otherwise. 

 

EXAMPLES:: 

 

sage: P = ProjectiveSpace(2, ZZ) 

sage: P._check_satisfies_equations([1, 1, 0]) 

True 

 

:: 

 

sage: P = ProjectiveSpace(1, QQ) 

sage: P._check_satisfies_equations((1/2, 0)) 

True 

 

:: 

 

sage: P = ProjectiveSpace(2, ZZ) 

sage: P._check_satisfies_equations([0, 0, 0]) 

Traceback (most recent call last): 

... 

TypeError: the zero vector is not a point in projective space 

 

:: 

 

sage: P = ProjectiveSpace(2, ZZ) 

sage: P._check_satisfies_equations((1, 0)) 

Traceback (most recent call last): 

... 

TypeError: the list v=(1, 0) must have 3 components 

 

:: 

 

sage: P = ProjectiveSpace(2, ZZ) 

sage: P._check_satisfies_equations([1/2, 0, 1]) 

Traceback (most recent call last): 

... 

TypeError: the components of v=[1/2, 0, 1] must be elements of Integer Ring 

""" 

if not isinstance(v, (list, tuple)): 

raise TypeError('the argument v=%s must be a list or tuple'%v) 

n = self.ngens() 

if not len(v) == n: 

raise TypeError('the list v=%s must have %s components'%(v, n)) 

R = self.base_ring() 

for coord in v: 

if not coord in R: 

raise TypeError('the components of v=%s must be elements of %s'%(v, R)) 

zero = [R(0)]*n 

if v == zero: 

raise TypeError('the zero vector is not a point in projective space') 

return True 

 

def coordinate_ring(self): 

""" 

Return the coordinate ring of this scheme. 

 

EXAMPLES:: 

 

sage: ProjectiveSpace(3, GF(19^2,'alpha'), 'abcd').coordinate_ring() 

Multivariate Polynomial Ring in a, b, c, d over Finite Field in alpha of size 19^2 

 

:: 

 

sage: ProjectiveSpace(3).coordinate_ring() 

Multivariate Polynomial Ring in x0, x1, x2, x3 over Integer Ring 

 

:: 

 

sage: ProjectiveSpace(2, QQ, ['alpha', 'beta', 'gamma']).coordinate_ring() 

Multivariate Polynomial Ring in alpha, beta, gamma over Rational Field 

""" 

try: 

return self._coordinate_ring 

except AttributeError: 

self._coordinate_ring = PolynomialRing(self.base_ring(), 

self.variable_names(), self.dimension_relative()+1) 

return self._coordinate_ring 

 

def _validate(self, polynomials): 

""" 

If ``polynomials`` is a tuple of valid polynomial functions on self, 

return ``polynomials``, otherwise raise TypeError. 

 

Since this is a projective space, polynomials must be homogeneous. 

 

INPUT: 

 

- ``polynomials`` -- tuple of polynomials in the coordinate ring of 

this space. 

 

OUTPUT: 

 

- tuple of polynomials in the coordinate ring of this space. 

 

EXAMPLES:: 

 

sage: P.<x, y, z> = ProjectiveSpace(2, ZZ) 

sage: P._validate([x*y - z^2, x]) 

[x*y - z^2, x] 

 

:: 

 

sage: P.<x, y, z> = ProjectiveSpace(2, ZZ) 

sage: P._validate((x*y - z, x)) 

Traceback (most recent call last): 

... 

TypeError: x*y - z is not a homogeneous polynomial 

 

:: 

 

sage: P.<x, y, z> = ProjectiveSpace(2, ZZ) 

sage: P._validate(x*y - z) 

Traceback (most recent call last): 

... 

TypeError: the argument polynomials=x*y - z must be a list or tuple 

""" 

if not isinstance(polynomials, (list, tuple)): 

raise TypeError('the argument polynomials=%s must be a list or tuple'%polynomials) 

for f in polynomials: 

if not f.is_homogeneous(): 

raise TypeError("%s is not a homogeneous polynomial" % f) 

return polynomials 

 

def __eq__(self, right): 

""" 

Check equality of two projective spaces. 

 

EXAMPLES:: 

 

sage: ProjectiveSpace(QQ, 3, 'a') == ProjectiveSpace(ZZ, 3, 'a') 

False 

sage: ProjectiveSpace(ZZ, 1, 'a') == ProjectiveSpace(ZZ, 0, 'a') 

False 

sage: ProjectiveSpace(ZZ, 2, 'a') == AffineSpace(ZZ, 2, 'a') 

False 

sage: P = ProjectiveSpace(ZZ, 1, 'x') 

sage: loads(P.dumps()) == P 

True 

""" 

if not isinstance(right, ProjectiveSpace_ring): 

return False 

return (self.dimension_relative() == right.dimension_relative() and 

self.coordinate_ring() == right.coordinate_ring()) 

 

def __ne__(self, other): 

""" 

Check non-equality of two projective spaces. 

 

EXAMPLES:: 

 

sage: ProjectiveSpace(QQ, 3, 'a') != ProjectiveSpace(ZZ, 3, 'a') 

True 

sage: ProjectiveSpace(ZZ, 1, 'a') != ProjectiveSpace(ZZ, 0, 'a') 

True 

sage: ProjectiveSpace(ZZ, 2, 'a') != AffineSpace(ZZ, 2, 'a') 

True 

""" 

return not (self == other) 

 

def __pow__(self, m): 

""" 

Return the Cartesian power of this space. 

 

INPUT: ``m`` -- integer. 

 

OUTPUT: product of projective spaces. 

 

EXAMPLES:: 

 

sage: P = ProjectiveSpace(1, QQ, 'x') 

sage: P3 = P^3; P3 

Product of projective spaces P^1 x P^1 x P^1 over Rational Field 

sage: P3.variable_names() 

('x0', 'x1', 'x2', 'x3', 'x4', 'x5') 

 

As you see, custom variable names are not preserved by power operator, 

since there is no natural way to make new ones in general. 

""" 

mm = int(m) 

if mm != m: 

raise ValueError("m must be an integer") 

from sage.schemes.product_projective.space import ProductProjectiveSpaces 

return ProductProjectiveSpaces([self.dimension_relative()] * mm, self.base_ring()) 

 

def __mul__(self, right): 

r""" 

Create the product of projective spaces. 

 

INPUT: 

 

- ``right`` - a projective space, product of projective spaces, or subscheme. 

 

OUTPUT: a product of projective spaces or subscheme. 

 

EXAMPLES:: 

 

sage: P1 = ProjectiveSpace(QQ, 1, 'x') 

sage: P2 = ProjectiveSpace(QQ, 2, 'y') 

sage: P1*P2 

Product of projective spaces P^1 x P^2 over Rational Field 

 

:: 

 

sage: S.<t,x,y,z,u,v,w> = ProductProjectiveSpaces([3, 2], QQ) 

sage: T.<a,b> = ProjectiveSpace(QQ, 1) 

sage: T*S 

Product of projective spaces P^1 x P^3 x P^2 over Rational Field 

 

:: 

 

sage: S = ProjectiveSpace(ZZ, 2, 't') 

sage: T = ProjectiveSpace(ZZ, 3, 'x') 

sage: T.inject_variables() 

Defining x0, x1, x2, x3 

sage: X = T.subscheme([x0*x2 - x1*x3]) 

sage: S*X 

Closed subscheme of Product of projective spaces P^2 x P^3 over Integer Ring defined by: 

x0*x2 - x1*x3 

 

:: 

 

sage: S = ProjectiveSpace(QQ, 3, 'x') 

sage: T = AffineSpace(2, QQ, 'y') 

sage: S*T 

Traceback (most recent call last): 

... 

TypeError: Affine Space of dimension 2 over Rational Field must be a 

projective space, product of projective spaces, or subscheme 

""" 

if self.base_ring() != right.base_ring(): 

raise ValueError ('Must have the same base ring') 

 

from sage.schemes.product_projective.space import ProductProjectiveSpaces_ring 

from sage.schemes.product_projective.space import ProductProjectiveSpaces 

from sage.schemes.generic.algebraic_scheme import AlgebraicScheme_subscheme 

 

if isinstance(right, (ProductProjectiveSpaces_ring)): 

return ProductProjectiveSpaces([self] + right.components()) 

elif isinstance(right, ProjectiveSpace_ring): 

if self is right: 

return self.__pow__(2) 

return ProductProjectiveSpaces([self, right]) 

elif isinstance(right, AlgebraicScheme_subscheme): 

AS = self*right.ambient_space() 

CR = AS.coordinate_ring() 

n = self.ambient_space().coordinate_ring().ngens() 

 

phi = self.ambient_space().coordinate_ring().hom(list(CR.gens()[:n]), CR) 

psi = right.ambient_space().coordinate_ring().hom(list(CR.gens()[n:]), CR) 

return AS.subscheme([phi(t) for t in self.defining_polynomials()] + [psi(t) for t in right.defining_polynomials()]) 

else: 

raise TypeError('%s must be a projective space, product of projective spaces, or subscheme'%right) 

 

def _latex_(self): 

r""" 

Return a LaTeX representation of this projective space. 

 

EXAMPLES:: 

 

sage: print(latex(ProjectiveSpace(1, ZZ, 'x'))) 

{\mathbf P}_{\Bold{Z}}^1 

 

TESTS:: 

 

sage: ProjectiveSpace(3, Zp(5), 'y')._latex_() 

'{\\mathbf P}_{\\ZZ_{5}}^3' 

""" 

return "{\\mathbf P}_{%s}^%s"%(latex(self.base_ring()), self.dimension_relative()) 

 

def _linear_system_as_kernel(self, d, pt, m): 

""" 

Return a matrix whose kernel consists of the coefficient vectors 

of the degree ``d`` hypersurfaces (wrt lexicographic ordering of its 

monomials) with multiplicity at least ``m`` at ``pt``. 

 

INPUT: 

 

- ``d`` -- a nonnegative integer. 

 

- ``pt`` -- a point of self (possibly represented by a list with at \ 

least one component equal to 1). 

 

- ``m`` -- a nonnegative integer. 

 

OUTPUT: 

 

A matrix of size `\binom{m-1+n}{n}` x `\binom{d+n}{n}` where n is the 

relative dimension of self. The base ring of the matrix is a ring that 

contains the base ring of self and the coefficients of the given point. 

 

EXAMPLES: 

 

If the degree `d` is 0, then a matrix consisting of the first unit vector 

is returned:: 

 

sage: P = ProjectiveSpace(GF(5), 2, names='x') 

sage: pt = P([1, 1, 1]) 

sage: P._linear_system_as_kernel(0, pt, 3) 

[1] 

[0] 

[0] 

[0] 

[0] 

[0] 

 

If the multiplicity `m` is 0, then the a matrix with zero rows 

is returned:: 

 

sage: P = ProjectiveSpace(GF(5), 2, names='x') 

sage: pt = P([1, 1, 1]) 

sage: M = P._linear_system_as_kernel(2, pt, 0) 

sage: [M.nrows(), M.ncols()] 

[0, 6] 

 

The base ring does not need to be a field or even an integral domain. 

In this case, the point can be given by a list:: 

 

sage: R = Zmod(4) 

sage: P = ProjectiveSpace(R, 2, names='x') 

sage: pt = [R(1), R(3), R(0)] 

sage: P._linear_system_as_kernel(3, pt, 2) 

[1 3 0 1 0 0 3 0 0 0] 

[0 1 0 2 0 0 3 0 0 0] 

[0 0 1 0 3 0 0 1 0 0] 

 

When representing a point by a list at least one component must be 1 

(even when the base ring is a field and the list gives a well-defined 

point in projective space):: 

 

sage: R = GF(5) 

sage: P = ProjectiveSpace(R, 2, names='x') 

sage: pt = [R(3), R(3), R(0)] 

sage: P._linear_system_as_kernel(3, pt, 2) 

Traceback (most recent call last): 

... 

TypeError: at least one component of pt=[3, 3, 0] must be equal 

to 1 

 

The components of the list do not have to be elements of the base ring 

of the projective space. It suffices if there exists a common parent. 

For example, the kernel of the following matrix corresponds to 

hypersurfaces of degree 2 in 3-space with multiplicity at least 2 at a 

general point in the third affine patch:: 

 

sage: P = ProjectiveSpace(QQ,3,names='x') 

sage: RPol.<t0,t1,t2,t3> = PolynomialRing(QQ,4) 

sage: pt = [t0,t1,1,t3] 

sage: P._linear_system_as_kernel(2,pt,2) 

[ 2*t0 t1 1 t3 0 0 0 0 0 0] 

[ 0 t0 0 0 2*t1 1 t3 0 0 0] 

[ t0^2 t0*t1 t0 t0*t3 t1^2 t1 t1*t3 1 t3 t3^2] 

[ 0 0 0 t0 0 0 t1 0 1 2*t3] 

 

.. TODO:: 

 

Use this method as starting point to implement a class 

LinearSystem for linear systems of hypersurfaces. 

 

""" 

if not isinstance(d, (int, Integer)): 

raise TypeError('the argument d=%s must be an integer'%d) 

if d < 0: 

raise ValueError('the integer d=%s must be nonnegative'%d) 

if not isinstance(pt, (list, tuple, \ 

SchemeMorphism_point_projective_ring)): 

raise TypeError('the argument pt=%s must be a list, tuple, or ' 

'point on a projective space'%pt) 

pt, R = prepare(pt, None) 

n = self.dimension_relative() 

if not len(pt) == n+1: 

raise TypeError('the sequence pt=%s must have %s ' 

'components'%(pt, n + 1)) 

if not R.has_coerce_map_from(self.base_ring()): 

raise TypeError('unable to find a common ring for all elements') 

try: 

i = pt.index(1) 

except Exception: 

raise TypeError('at least one component of pt=%s must be equal ' 

'to 1'%pt) 

pt = pt[:i] + pt[i+1:] 

if not isinstance(m, (int, Integer)): 

raise TypeError('the argument m=%s must be an integer'%m) 

if m < 0: 

raise ValueError('the integer m=%s must be nonnegative'%m) 

# the components of partials correspond to partial derivatives 

# of order at most m-1 with respect to n variables 

partials = IntegerVectors(m-1, n+1).list() 

# the components of monoms correspond to monomials of degree 

# at most d in n variables 

monoms = IntegerVectors(d, n+1).list() 

M = matrix(R,len(partials),len(monoms)) 

for row in range(M.nrows()): 

e = partials[row][:i] + partials[row][i+1:] 

for col in range(M.ncols()): 

f = monoms[col][:i] + monoms[col][i+1:] 

if min([f[j]-e[j] for j in range(n)]) >= 0: 

M[row,col] = prod([ binomial(f[j],e[j]) * pt[j]**(f[j]-e[j]) 

for j in (k for k in range(n) if f[k] > e[k]) ]) 

return M 

 

def _morphism(self, *args, **kwds): 

""" 

Construct a morphism. 

 

For internal use only. See :mod:`morphism` for details. 

 

TESTS:: 

 

sage: P2.<x,y,z> = ProjectiveSpace(2, GF(3)) 

sage: P2._morphism(P2.Hom(P2), [x,y,z]) 

Scheme endomorphism of Projective Space of dimension 2 over Finite Field of size 3 

Defn: Defined on coordinates by sending (x : y : z) to 

(x : y : z) 

""" 

return SchemeMorphism_polynomial_projective_space(*args, **kwds) 

 

def _point_homset(self, *args, **kwds): 

""" 

Construct a point Hom-set. 

 

For internal use only. See :mod:`morphism` for details. 

 

TESTS:: 

 

sage: P2.<x,y,z> = ProjectiveSpace(2, GF(3)) 

sage: P2._point_homset(Spec(GF(3)), P2) 

Set of rational points of Projective Space of dimension 2 over Finite Field of size 3 

""" 

return SchemeHomset_points_projective_ring(*args, **kwds) 

 

def point(self, v, check=True): 

""" 

Create a point on this projective space. 

 

INPUT: 

 

- ``v`` -- anything that defines a point 

 

- ``check`` -- boolean (optional, default: ``True``); whether 

to check the defining data for consistency 

 

OUTPUT: A point of this projective space. 

 

EXAMPLES:: 

 

sage: P2 = ProjectiveSpace(QQ, 2) 

sage: P2.point([4,5]) 

(4 : 5 : 1) 

 

:: 

 

sage: P = ProjectiveSpace(QQ, 1) 

sage: P.point(infinity) 

(1 : 0) 

 

:: 

 

sage: P = ProjectiveSpace(QQ, 2) 

sage: P.point(infinity) 

Traceback (most recent call last): 

... 

ValueError: +Infinity not well defined in dimension > 1 

 

:: 

 

sage: P = ProjectiveSpace(ZZ, 2) 

sage: P.point([infinity]) 

Traceback (most recent call last): 

... 

ValueError: [+Infinity] not well defined in dimension > 1 

""" 

from sage.rings.infinity import infinity 

if v is infinity or\ 

(isinstance(v, (list,tuple)) and len(v) == 1 and v[0] is infinity): 

if self.dimension_relative() > 1: 

raise ValueError("%s not well defined in dimension > 1"%v) 

v = [1, 0] 

 

return self.point_homset()(v, check=check) 

 

def _point(self, *args, **kwds): 

""" 

Construct a point. 

 

For internal use only. See :mod:`morphism` for details. 

 

TESTS:: 

 

sage: P2.<x,y,z> = ProjectiveSpace(2, GF(3)) 

sage: point_homset = P2._point_homset(Spec(GF(3)), P2) 

sage: P2._point(point_homset, [1,2,3]) 

(2 : 1 : 0) 

""" 

return SchemeMorphism_point_projective_ring(*args, **kwds) 

 

def _repr_(self): 

""" 

Return a string representation of this projective space. 

 

EXAMPLES:: 

 

sage: ProjectiveSpace(1, ZZ, 'x') 

Projective Space of dimension 1 over Integer Ring 

 

TESTS:: 

 

sage: ProjectiveSpace(3, Zp(5), 'y')._repr_() 

'Projective Space of dimension 3 over 5-adic Ring with capped relative precision 20' 

""" 

return "Projective Space of dimension %s over %s"%(self.dimension_relative(), self.base_ring()) 

 

def _repr_generic_point(self, v=None): 

""" 

Return a string representation of the generic point 

corresponding to the list of polys ``v`` on this projective space. 

 

If ``v`` is None, the representation of the generic point of 

the projective space is returned. 

 

EXAMPLES:: 

 

sage: P.<x, y, z> = ProjectiveSpace(2, ZZ) 

sage: P._repr_generic_point([z*y-x^2]) 

'(-x^2 + y*z)' 

sage: P._repr_generic_point() 

'(x : y : z)' 

""" 

if v is None: 

v = self.gens() 

return '(%s)'%(" : ".join([repr(f) for f in v])) 

 

def _latex_generic_point(self, v=None): 

""" 

Return a LaTeX representation of the generic point 

corresponding to the list of polys ``v`` on this projective space. 

 

If ``v`` is None, the representation of the generic point of 

the projective space is returned. 

 

EXAMPLES:: 

 

sage: P.<x, y, z> = ProjectiveSpace(2, ZZ) 

sage: P._latex_generic_point([z*y-x^2]) 

'\\left(- x^{2} + y z\\right)' 

sage: P._latex_generic_point() 

'\\left(x : y : z\\right)' 

""" 

if v is None: 

v = self.gens() 

return '\\left(%s\\right)'%(" : ".join([str(latex(f)) for f in v])) 

 

def change_ring(self, R): 

r""" 

Return a projective space over ring ``R``. 

 

INPUT: 

 

- ``R`` -- commutative ring or morphism. 

 

OUTPUT: 

 

- projective space over ``R``. 

 

.. NOTE:: 

 

There is no need to have any relation between ``R`` and the base ring 

of this space, if you want to have such a relation, use 

``self.base_extend(R)`` instead. 

 

EXAMPLES:: 

 

sage: P.<x, y, z> = ProjectiveSpace(2, ZZ) 

sage: PQ = P.change_ring(QQ); PQ 

Projective Space of dimension 2 over Rational Field 

sage: PQ.change_ring(GF(5)) 

Projective Space of dimension 2 over Finite Field of size 5 

 

:: 

 

sage: K.<w> = QuadraticField(2) 

sage: P = ProjectiveSpace(K,2,'t') 

sage: P.change_ring(K.embeddings(QQbar)[0]) 

Projective Space of dimension 2 over Algebraic Field 

""" 

if isinstance(R, Map): 

return ProjectiveSpace(self.dimension_relative(), R.codomain(), 

self.variable_names()) 

else: 

return ProjectiveSpace(self.dimension_relative(), R, 

self.variable_names()) 

 

def is_projective(self): 

""" 

Return that this ambient space is projective `n`-space. 

 

EXAMPLES:: 

 

sage: ProjectiveSpace(3,QQ).is_projective() 

True 

""" 

return True 

 

def subscheme(self, X): 

""" 

Return the closed subscheme defined by ``X``. 

 

INPUT: 

 

- ``X`` - a list or tuple of equations. 

 

EXAMPLES:: 

 

sage: A.<x,y,z> = ProjectiveSpace(2, QQ) 

sage: X = A.subscheme([x*z^2, y^2*z, x*y^2]); X 

Closed subscheme of Projective Space of dimension 2 over Rational Field defined by: 

x*z^2, 

y^2*z, 

x*y^2 

sage: X.defining_polynomials () 

(x*z^2, y^2*z, x*y^2) 

sage: I = X.defining_ideal(); I 

Ideal (x*z^2, y^2*z, x*y^2) of Multivariate Polynomial Ring in x, y, z over Rational Field 

sage: I.groebner_basis() 

[x*y^2, y^2*z, x*z^2] 

sage: X.dimension() 

0 

sage: X.base_ring() 

Rational Field 

sage: X.base_scheme() 

Spectrum of Rational Field 

sage: X.structure_morphism() 

Scheme morphism: 

From: Closed subscheme of Projective Space of dimension 2 over Rational Field defined by: 

x*z^2, 

y^2*z, 

x*y^2 

To: Spectrum of Rational Field 

Defn: Structure map 

 

sage: TestSuite(X).run(skip=["_test_an_element", "_test_elements",\ 

"_test_elements_eq", "_test_some_elements", "_test_elements_eq_reflexive",\ 

"_test_elements_eq_symmetric", "_test_elements_eq_transitive",\ 

"_test_elements_neq"]) 

""" 

from sage.schemes.projective.projective_subscheme import AlgebraicScheme_subscheme_projective 

return AlgebraicScheme_subscheme_projective(self, X) 

 

def affine_patch(self, i, AA=None): 

r""" 

Return the `i^{th}` affine patch of this projective space. 

 

This is an ambient affine space `\mathbb{A}^n_R,` where 

`R` is the base ring of self, whose "projective embedding" 

map is `1` in the `i^{th}` factor. 

 

INPUT: 

 

- ``i`` -- integer between 0 and dimension of self, inclusive. 

 

- ``AA`` -- (default: None) ambient affine space, this is constructed 

if it is not given. 

 

OUTPUT: 

 

- An ambient affine space with fixed projective_embedding map. 

 

EXAMPLES:: 

 

sage: PP = ProjectiveSpace(5) / QQ 

sage: AA = PP.affine_patch(2) 

sage: AA 

Affine Space of dimension 5 over Rational Field 

sage: AA.projective_embedding() 

Scheme morphism: 

From: Affine Space of dimension 5 over Rational Field 

To: Projective Space of dimension 5 over Rational Field 

Defn: Defined on coordinates by sending (x0, x1, x2, x3, x4) to 

(x0 : x1 : 1 : x2 : x3 : x4) 

sage: AA.projective_embedding(0) 

Scheme morphism: 

From: Affine Space of dimension 5 over Rational Field 

To: Projective Space of dimension 5 over Rational Field 

Defn: Defined on coordinates by sending (x0, x1, x2, x3, x4) to 

(1 : x0 : x1 : x2 : x3 : x4) 

 

:: 

 

sage: P.<x,y> = ProjectiveSpace(QQ,1) 

sage: P.affine_patch(0).projective_embedding(0).codomain() == P 

True 

""" 

i = int(i) # implicit type checking 

n = self.dimension_relative() 

if i < 0 or i > n: 

raise ValueError("argument i (= %s) must be between 0 and %s"%(i, n)) 

try: 

A = self.__affine_patches[i] 

#assume that if you've passed in a new affine space you want to override 

#the existing patch 

if AA is None or A == AA: 

return(A) 

except AttributeError: 

self.__affine_patches = {} 

except KeyError: 

pass 

#if no ith patch exists, we may still be here with AA==None 

if AA is None: 

from sage.schemes.affine.affine_space import AffineSpace 

AA = AffineSpace(n, self.base_ring(), names = 'x') 

elif AA.dimension_relative() != n: 

raise ValueError("affine space must be of the dimension %s"%(n)) 

AA._default_embedding_index = i 

phi = AA.projective_embedding(i, self) 

self.__affine_patches[i] = AA 

return AA 

 

def _an_element_(self): 

r""" 

Returns a (preferably typical) element of this space. 

 

This is used both for illustration and testing purposes. 

 

OUTPUT: a point in this projective space. 

 

EXAMPLES:: 

 

sage: ProjectiveSpace(ZZ, 3, 'x').an_element() 

(7 : 6 : 5 : 1) 

 

sage: ProjectiveSpace(PolynomialRing(ZZ,'y'), 3, 'x').an_element() 

(7*y : 6*y : 5*y : 1) 

""" 

n = self.dimension_relative() 

R = self.base_ring() 

return self([(7 - i) * R.an_element() for i in range(n)] + [R.one()]) 

 

def Lattes_map(self, E, m): 

r""" 

Given an elliptic curve ``E`` and an integer ``m`` return 

the Lattes map associated to multiplication by `m`. 

 

In other words, the rational map on the quotient 

`E/\{\pm 1\} \cong \mathbb{P}^1` associated to `[m]:E \to E`. 

 

INPUT: 

 

- ``E`` -- an elliptic curve. 

 

- ``m`` -- an integer. 

 

OUTPUT: an endomorphism of this projective space. 

 

Examples:: 

 

sage: P.<x,y> = ProjectiveSpace(QQ,1) 

sage: E = EllipticCurve(QQ,[-1, 0]) 

sage: P.Lattes_map(E, 2) 

Scheme endomorphism of Projective Space of dimension 1 over Rational Field 

Defn: Defined on coordinates by sending (x : y) to 

(x^4 + 2*x^2*y^2 + y^4 : 4*x^3*y - 4*x*y^3) 

""" 

if self.dimension_relative() != 1: 

raise TypeError("must be dimension 1") 

 

L = E.multiplication_by_m(m, x_only = True) 

F = [L.numerator(), L.denominator()] 

R = self.coordinate_ring() 

x, y = R.gens() 

phi = F[0].parent().hom([x],R) 

F = [phi(F[0]).homogenize(y), phi(F[1]).homogenize(y)*y] 

H = Hom(self,self) 

return(H(F)) 

 

def cartesian_product(self, other): 

r""" 

Return the Cartesian product of this projective space and 

``other``. 

 

INPUT: 

 

- ``other`` - A projective space with the same base ring as this space. 

 

OUTPUT: 

 

- A Cartesian product of projective spaces. 

 

EXAMPLES:: 

 

sage: P1 = ProjectiveSpace(QQ, 1, 'x') 

sage: P2 = ProjectiveSpace(QQ, 2, 'y') 

sage: PP = P1.cartesian_product(P2); PP 

Product of projective spaces P^1 x P^2 over Rational Field 

sage: PP.gens() 

(x0, x1, y0, y1, y2) 

""" 

from sage.schemes.product_projective.space import ProductProjectiveSpaces 

return ProductProjectiveSpaces([self, other]) 

 

def chebyshev_polynomial(self, n, kind='first'): 

""" 

Generates an endomorphism of this projective line by a Chebyshev polynomial. 

 

Chebyshev polynomials are a sequence of recursively defined orthogonal 

polynomials. Chebyshev of the first kind are defined as `T_0(x) = 1`, 

`T_1(x) = x`, and `T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)`. Chebyshev of 

the second kind are defined as `U_0(x) = 1`, 

`U_1(x) = 2x`, and `U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x)`. 

 

INPUT: 

 

- ``n`` -- a non-negative integer. 

 

- ``kind`` -- ``first`` or ``second`` specifying which kind of chebyshev the user would like 

to generate. Defaults to ``first``. 

 

OUTPUT: :class:`SchemeMorphism_polynomial_projective_space` 

 

EXAMPLES:: 

 

sage: P.<x,y> = ProjectiveSpace(QQ, 1) 

sage: P.chebyshev_polynomial(5, 'first') 

Scheme endomorphism of Projective Space of dimension 1 over Rational Field 

Defn: Defined on coordinates by sending (x : y) to 

(16*x^5 - 20*x^3*y^2 + 5*x*y^4 : y^5) 

 

:: 

 

sage: P.<x,y> = ProjectiveSpace(QQ, 1) 

sage: P.chebyshev_polynomial(3, 'second') 

Scheme endomorphism of Projective Space of dimension 1 over Rational Field 

Defn: Defined on coordinates by sending (x : y) to 

(8*x^3 - 4*x*y^2 : y^3) 

 

:: 

 

sage: P.<x,y> = ProjectiveSpace(QQ, 1) 

sage: P.chebyshev_polynomial(3, 2) 

Traceback (most recent call last): 

... 

ValueError: keyword 'kind' must have a value of either 'first' or 'second' 

 

:: 

 

sage: P.<x,y> = ProjectiveSpace(QQ, 1) 

sage: P.chebyshev_polynomial(-4, 'second') 

Traceback (most recent call last): 

... 

ValueError: first parameter 'n' must be a non-negative integer 

 

:: 

 

sage: P = ProjectiveSpace(QQ, 2, 'x') 

sage: P.chebyshev_polynomial(2) 

Traceback (most recent call last): 

... 

TypeError: projective space must be of dimension 1 

""" 

if self.dimension_relative() != 1: 

raise TypeError("projective space must be of dimension 1") 

n = ZZ(n) 

if (n < 0): 

raise ValueError("first parameter 'n' must be a non-negative integer") 

#use the affine version and then homogenize. 

A = self.affine_patch(1) 

f = A.chebyshev_polynomial(n, kind) 

return f.homogenize(1) 

 

def veronese_embedding(self, d, CS=None, order='lex'): 

r""" 

Return the degree ``d`` Veronese embedding from this projective space. 

 

INPUT: 

 

- ``d`` -- a positive integer. 

 

- ``CS`` -- a projective ambient space to embed into. If this projective space has dimension `N`, the 

dimension of ``CS`` must be `\binom{N + d}{d} - 1`. This is constructed if not specified. Default: 

``None``. 

 

- ``order`` -- a monomial order to use to arrange the monomials defining the embedding. The monomials 

will be arranged from greatest to least with respect to this order. Default: ``'lex'``. 

 

OUTPUT: 

 

- a scheme morphism from this projective space to ``CS``. 

 

EXAMPLES:: 

 

sage: P.<x,y> = ProjectiveSpace(QQ, 1) 

sage: vd = P.veronese_embedding(4, order='invlex') 

sage: vd 

Scheme morphism: 

From: Projective Space of dimension 1 over Rational Field 

To: Projective Space of dimension 4 over Rational Field 

Defn: Defined on coordinates by sending (x : y) to 

(y^4 : x*y^3 : x^2*y^2 : x^3*y : x^4) 

 

Veronese surface:: 

 

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) 

sage: Q.<q,r,s,t,u,v> = ProjectiveSpace(QQ, 5) 

sage: vd = P.veronese_embedding(2, Q) 

sage: vd 

Scheme morphism: 

From: Projective Space of dimension 2 over Rational Field 

To: Projective Space of dimension 5 over Rational Field 

Defn: Defined on coordinates by sending (x : y : z) to 

(x^2 : x*y : x*z : y^2 : y*z : z^2) 

sage: vd(P.subscheme([])) 

Closed subscheme of Projective Space of dimension 5 over Rational Field 

defined by: 

-u^2 + t*v, 

-s*u + r*v, 

-s*t + r*u, 

-s^2 + q*v, 

-r*s + q*u, 

-r^2 + q*t 

""" 

d = ZZ(d) 

if d <= 0: 

raise ValueError("(=%s) must be a positive integer"%d) 

N = self.dimension() 

# construct codomain space if not given 

if CS is None: 

CS = ProjectiveSpace(self.base_ring(), binomial(N + d, d) - 1) 

else: 

if not is_ProjectiveSpace(CS): 

raise TypeError("(=%s) must be a projective space"%CS) 

if CS.dimension() != binomial(N + d, d) - 1: 

raise TypeError("(=%s) has the wrong dimension to serve as the codomain space"%CS) 

 

R = self.coordinate_ring().change_ring(order=order) 

monomials = sorted([R({tuple(v) : 1}) for v in WeightedIntegerVectors(d, [1] * (N + 1))]) 

monomials.reverse() # order the monomials greatest to least via the given monomial order 

return Hom(self, CS)(monomials) 

 

class ProjectiveSpace_field(ProjectiveSpace_ring): 

def _point_homset(self, *args, **kwds): 

""" 

Construct a point Hom-set. 

 

For internal use only. See :mod:`morphism` for details. 

 

TESTS:: 

 

sage: P2.<x,y,z> = ProjectiveSpace(2, GF(3)) 

sage: P2._point_homset(Spec(GF(3)), P2) 

Set of rational points of Projective Space of dimension 2 over Finite Field of size 3 

""" 

return SchemeHomset_points_projective_field(*args, **kwds) 

 

def _point(self, *args, **kwds): 

""" 

Construct a point. 

 

For internal use only. See :mod:`morphism` for details. 

 

TESTS:: 

 

sage: P2.<x,y,z> = ProjectiveSpace(2, GF(3)) 

sage: point_homset = P2._point_homset(Spec(GF(3)), P2) 

sage: P2._point(point_homset, [1,2,3]) 

(2 : 1 : 0) 

""" 

return SchemeMorphism_point_projective_field(*args, **kwds) 

 

def _morphism(self, *args, **kwds): 

""" 

Construct a morphism. 

 

For internal use only. See :mod:`morphism` for details. 

 

TESTS:: 

 

sage: P2.<x,y,z> = ProjectiveSpace(2, GF(3)) 

sage: P2._morphism(P2.Hom(P2), [x,y,z]) 

Scheme endomorphism of Projective Space of dimension 2 over Finite Field of size 3 

Defn: Defined on coordinates by sending (x : y : z) to 

(x : y : z) 

""" 

return SchemeMorphism_polynomial_projective_space_field(*args, **kwds) 

 

def points_of_bounded_height(self, bound, prec=53): 

r""" 

Returns an iterator of the points in self of absolute height of at most the given bound. 

 

Bound check is strict for the rational field. Requires self to be projective space 

over a number field. Uses the Doyle-Krumm algorithm for computing algebraic numbers 

up to a given height [Doyle-Krumm]_. 

 

INPUT: 

 

- ``bound`` - a real number. 

 

- ``prec`` - the precision to use to compute the elements of bounded height for number fields. 

 

OUTPUT: 

 

- an iterator of points in this space. 

 

.. WARNING:: 

 

In the current implementation, the output of the [Doyle-Krumm]_ algorithm 

cannot be guaranteed to be correct due to the necessity of floating point 

computations. In some cases, the default 53-bit precision is 

considerably lower than would be required for the algorithm to 

generate correct output. 

 

EXAMPLES:: 

 

sage: P.<x,y> = ProjectiveSpace(QQ, 1) 

sage: list(P.points_of_bounded_height(5)) 

[(0 : 1), (1 : 1), (-1 : 1), (1/2 : 1), (-1/2 : 1), (2 : 1), (-2 : 1), (1/3 : 1), 

(-1/3 : 1), (3 : 1), (-3 : 1), (2/3 : 1), (-2/3 : 1), (3/2 : 1), (-3/2 : 1), (1/4 : 1), 

(-1/4 : 1), (4 : 1), (-4 : 1), (3/4 : 1), (-3/4 : 1), (4/3 : 1), (-4/3 : 1), (1 : 0)] 

 

:: 

 

sage: u = QQ['u'].0 

sage: P.<x,y,z> = ProjectiveSpace(NumberField(u^2 - 2, 'v'), 2) 

sage: len(list(P.points_of_bounded_height(1.5))) 

57 

""" 

if (is_RationalField(self.base_ring())): 

ftype = False # stores whether the field is a number field or the rational field 

elif (self.base_ring() in NumberFields()): # true for rational field as well, so check is_RationalField first 

ftype = True 

else: 

raise NotImplementedError("self must be projective space over a number field") 

 

bound = bound**(self.base_ring().absolute_degree()) # convert to relative height 

 

n = self.dimension_relative() 

R = self.base_ring() 

zero = R(0) 

i = n 

while not i < 0: 

P = [ zero for _ in range(i) ] + [ R(1) ] + [ zero for _ in range(n-i) ] 

yield self(P) 

if not ftype: # if rational field 

iters = [ R.range_by_height(bound) for _ in range(i) ] 

else: # if number field 

iters = [ R.elements_of_bounded_height(bound, precision=prec) for _ in range(i) ] 

for x in iters: next(x) # put at zero 

j = 0 

while j < i: 

try: 

P[j] = next(iters[j]) 

yield self(P) 

j = 0 

except StopIteration: 

if not ftype: # if rational field 

iters[j] = R.range_by_height(bound) # reset 

else: # if number field 

iters[j] = R.elements_of_bounded_height(bound, precision=prec) # reset 

next(iters[j]) # put at zero 

P[j] = zero 

j += 1 

i -= 1 

 

def subscheme_from_Chow_form(self, Ch, dim): 

r""" 

Returns the subscheme defined by the Chow equations associated to the Chow form ``Ch``. 

 

These equations define the subscheme set-theoretically, but only for smooth 

subschemes and hypersurfaces do they define the subscheme as a scheme. 

 

ALGORITHM: 

 

The Chow form is a polynomial in the Plucker coordinates. The Plucker coordinates 

are the bracket polynomials. We first re-write the Chow form in terms of the dual 

Plucker coordinates. Then we expand `Ch(span(p,L)` for a generic point `p` and a 

generic linear subspace `L`. The coefficients as polynomials in the coordinates 

of `p` are the equations defining the subscheme. [DalbecSturmfels]. 

 

INPUT: 

 

- ``Ch`` - a homogeneous polynomial. 

 

- ``dim`` - the dimension of the associated scheme. 

 

OUTPUT: a projective subscheme. 

 

EXAMPLES:: 

 

sage: P = ProjectiveSpace(QQ, 4, 'z') 

sage: R.<x0,x1,x2,x3,x4> = PolynomialRing(QQ) 

sage: H = x1^2 + x2^2 + 5*x3*x4 

sage: P.subscheme_from_Chow_form(H,3) 

Closed subscheme of Projective Space of dimension 4 over Rational Field defined by: 

-5*z0*z1 + z2^2 + z3^2 

 

:: 

 

sage: P = ProjectiveSpace(QQ, 3, 'z') 

sage: R.<x0,x1,x2,x3,x4,x5> = PolynomialRing(QQ) 

sage: H = x1-x2-x3+x5+2*x0 

sage: P.subscheme_from_Chow_form(H, 1) 

Closed subscheme of Projective Space of dimension 3 over Rational Field 

defined by: 

-z1 + z3, 

z0 + z2 + z3, 

-z1 - 2*z3, 

-z0 - z1 + 2*z2 

 

:: 

 

sage: P.<x0,x1,x2,x3> = ProjectiveSpace(GF(7), 3) 

sage: X = P.subscheme([x3^2+x1*x2,x2-x0]) 

sage: Ch = X.Chow_form();Ch 

t0^2 - 2*t0*t3 + t3^2 - t2*t4 - t4*t5 

sage: Y = P.subscheme_from_Chow_form(Ch, 1); Y 

Closed subscheme of Projective Space of dimension 3 over Finite Field of 

size 7 defined by: 

x1*x2 + x3^2, 

-x0*x2 + x2^2, 

-x0*x1 - x1*x2 - 2*x3^2, 

x0^2 - x0*x2, 

x0*x1 + x3^2, 

-2*x0*x3 + 2*x2*x3, 

2*x0*x3 - 2*x2*x3, 

x0^2 - 2*x0*x2 + x2^2 

sage: I = Y.defining_ideal() 

sage: I.saturation(I.ring().ideal(list(I.ring().gens())))[0] 

Ideal (x0 - x2, x1*x2 + x3^2) of Multivariate Polynomial Ring in x0, x1, 

x2, x3 over Finite Field of size 7 

""" 

if not Ch.is_homogeneous(): 

raise ValueError("Chow form must be a homogeneous polynomial") 

n = self.dimension_relative() 

R = Ch.parent() 

if binomial(n+1,n-dim) != R.ngens(): 

raise ValueError("for given dimension, there should be %d variables in the Chow form" %binomial(n+1,n-dim)) 

vars = list(R.gens()) 

#create the brackets associated to variables 

L1 = [] 

for t in UnorderedTuples(list(range(n + 1)), dim+1): 

if all([t[i]<t[i+1] for i in range(dim)]): 

L1.append(t) 

#create the dual brackets 

L2 = [] 

signs = [] 

for l in L1: 

s = [] 

for v in range(n+1): 

if not v in l: 

s.append(v) 

t1 = [b+1 for b in l] 

t2 = [b+1 for b in s] 

perm = Permutation(t1+t2) 

signs.append(perm.sign()) 

L2.append(s) 

#create the polys associated to dual brackets 

if n-dim-1 > 0: 

S = PolynomialRing(R.base_ring(),n+1,'z') 

T = PolynomialRing(S,(n+1)*(n-dim-1),'s') 

M = matrix(T,n-dim,n+1,list(S.gens())+list(T.gens())) 

else: 

T = PolynomialRing(R.base_ring(),n+1,'z') 

M = matrix(T,n-dim,n+1,list(T.gens())) 

coords=[] 

for i in range(len(L2)): 

coords.append(signs[i]*M.matrix_from_columns(L2[i]).det()) 

#substitute in dual brackets to chow form 

phi = R.hom(coords,T) 

ch = phi(Ch) 

#coefficients are polys in zs which are the chow equations for the chow form 

if n-dim-1 > 0: 

X = self.subscheme(ch.coefficients()) 

else: 

X = self.subscheme(ch) 

return X 

 

def point_transformation_matrix(self, points_source, points_target): 

r""" 

 

Returns a unique element of PGL that transforms one set of points to another. 

 

Given a projective space of degree n and a set of n+2 source points and a set of n+2 target 

points in the same projective space, such that no n+1 points of each set are linearly dependent 

finds the unique element of PGL that translates the source points to the target points. 

 

 

Warning :: will not work over precision fields 

 

INPUT: 

 

- ``points_source`` - points in source projective space. 

 

- ``points_target`` - points in target projective space. 

 

OUTPUT: Transformation matrix - element of PGL. 

 

EXAMPLES:: 

 

sage: P1.<a,b,c>=ProjectiveSpace(QQ, 2) 

sage: points_source=[P1([1,4,1]),P1([1,2,2]),P1([3,5,1]),P1([1,-1,1])] 

sage: points_target=[P1([5,-2,7]),P1([3,-2,3]),P1([6,-5,9]), P1([3,6,7])] 

sage: m = P1.point_transformation_matrix(points_source, points_target); m 

[ -13/59 -128/59 -25/59] 

[538/177 8/59 26/177] 

[ -45/59 -196/59 1] 

sage: [P1(list(m*vector(list(points_source[i])))) == points_target[i] for i in range(4)] 

[True, True, True, True] 

 

:: 

 

sage: P.<a,b> = ProjectiveSpace(GF(13),1) 

sage: points_source = [P([-6,7]), P([1,4]), P([3,2])] 

sage: points_target = [P([-1,2]), P([0,2]), P([-1,6])] 

sage: P.point_transformation_matrix(points_source, points_target) 

[10 4] 

[10 1] 

 

:: 

 

sage: P.<a,b> = ProjectiveSpace(QQ,1) 

sage: points_source = [P([-6,-4]), P([1,4]), P([3,2])] 

sage: points_target = [P([-1,2]), P([0,2]), P([-7,-3])] 

sage: P.point_transformation_matrix(points_source, points_target) 

Traceback (most recent call last): 

... 

ValueError: source points not independent 

 

:: 

 

sage: P.<a,b> = ProjectiveSpace(QQ,1) 

sage: points_source = [P([-6,-1]), P([1,4]), P([3,2])] 

sage: points_target = [P([-1,2]), P([0,2]), P([-2,4])] 

sage: P.point_transformation_matrix(points_source, points_target) 

Traceback (most recent call last): 

... 

ValueError: target points not independent 

 

:: 

 

sage: P.<a,b,c>=ProjectiveSpace(QQ, 2) 

sage: points_source=[P([1,4,1]),P([2,-7,9]),P([3,5,1])] 

sage: points_target=[P([5,-2,7]),P([3,-2,3]),P([6,-5,9]),P([6,-1,1])] 

sage: P.point_transformation_matrix(points_source, points_target) 

Traceback (most recent call last): 

... 

ValueError: incorrect number of points in source, need 4 points 

 

:: 

 

sage: P.<a,b,c>=ProjectiveSpace(QQ, 2) 

sage: points_source=[P([1,4,1]),P([2,-7,9]),P([3,5,1]),P([1,-1,1])] 

sage: points_target=[P([5,-2,7]),P([3,-2,3]),P([6,-5,9]),P([6,-1,1]),P([7,8,-9])] 

sage: P.point_transformation_matrix(points_source, points_target) 

Traceback (most recent call last): 

... 

ValueError: incorrect number of points in target, need 4 points 

 

:: 

 

sage: P.<a,b,c>=ProjectiveSpace(QQ, 2) 

sage: P1.<x,y,z>=ProjectiveSpace(QQ, 2) 

sage: points_source=[P([1,4,1]),P([2,-7,9]),P([3,5,1]),P1([1,-1,1])] 

sage: points_target=[P([5,-2,7]),P([3,-2,3]),P([6,-5,9]),P([6,-1,1])] 

sage: P.point_transformation_matrix(points_source, points_target) 

Traceback (most recent call last): 

... 

ValueError: source points not in self 

 

:: 

 

sage: P.<a,b,c>=ProjectiveSpace(QQ, 2) 

sage: P1.<x,y,z>=ProjectiveSpace(QQ, 2) 

sage: points_source=[P([1,4,1]),P([2,-7,9]),P([3,5,1]),P([1,-1,1])] 

sage: points_target=[P([5,-2,7]),P([3,-2,3]),P([6,-5,9]),P1([6,-1,1])] 

sage: P.point_transformation_matrix(points_source, points_target) 

Traceback (most recent call last): 

... 

ValueError: target points not in self 

""" 

r = self.base_ring() 

n = self.dimension_relative() 

P = ProjectiveSpace(r, n**2+2*n,'p') 

# makes sure there aren't to few or two many points 

if len(points_source)!= n + 2: 

raise ValueError ("incorrect number of points in source, need %d points"%(n+2)) 

if len(points_target)!= n + 2: 

raise ValueError ("incorrect number of points in target, need %d points"%(n+2)) 

if any([x.codomain()!=self for x in points_source]): 

raise ValueError ("source points not in self") 

if any([x.codomain()!=self for x in points_target]): 

raise ValueError ("target points not in self") 

# putting points as the rows of the matrix 

Ms = matrix(r, [list(s) for s in points_source]) 

if any([m == 0 for m in Ms.minors(n+1)]): 

raise ValueError("source points not independent") 

Mt = matrix(r, [list(t) for t in points_target]) 

if any([l == 0 for l in Mt.minors(n+1)]): 

raise ValueError("target points not independent") 

A = matrix(P.coordinate_ring(), n+1, n+1, P.gens()) 

#transpose to get image points and then get the list of image points with columns 

funct = (A*Ms.transpose()).columns() 

eq = [] 

for k in range(n+2):# n+2 num f point and n is size of pts 

eq = eq+ [funct[k][i]*points_target[k][j] - funct[k][j]*points_target[k][i]\ 

for i in range(0,n+1) for j in range(i+1, n+1)] 

v = P.subscheme(eq) 

w = v.rational_points() 

return matrix(r, n+1, n+1, list(w[0])) 

 

def curve(self,F): 

r""" 

Return a curve defined by ``F`` in this projective space. 

 

INPUT: 

 

- ``F`` -- a polynomial, or a list or tuple of polynomials in 

the coordinate ring of this projective space. 

 

EXAMPLES:: 

 

sage: P.<x,y,z> = ProjectiveSpace(QQ, 2) 

sage: P.curve([y^2 - x*z]) 

Projective Plane Curve over Rational Field defined by y^2 - x*z 

""" 

from sage.schemes.curves.constructor import Curve 

return Curve(F, self) 

 

class ProjectiveSpace_finite_field(ProjectiveSpace_field): 

def _point(self, *args, **kwds): 

""" 

Construct a point. 

 

For internal use only. See :mod:`morphism` for details. 

 

TESTS:: 

 

sage: P2.<x,y,z> = ProjectiveSpace(2, GF(3)) 

sage: point_homset = P2._point_homset(Spec(GF(3)), P2) 

sage: P2._point(point_homset, [1,2,3]) 

(2 : 1 : 0) 

""" 

return SchemeMorphism_point_projective_finite_field(*args, **kwds) 

 

def _morphism(self, *args, **kwds): 

""" 

Construct a morphism. 

 

For internal use only. See :mod:`morphism` for details. 

 

TESTS:: 

 

sage: P2.<x,y,z> = ProjectiveSpace(2, GF(3)) 

sage: P2._morphism(P2.Hom(P2), [x,y,z]) 

Scheme endomorphism of Projective Space of dimension 2 over Finite Field of size 3 

Defn: Defined on coordinates by sending (x : y : z) to 

(x : y : z) 

""" 

return SchemeMorphism_polynomial_projective_space_finite_field(*args, **kwds) 

 

 

def __iter__(self): 

r""" 

Return iterator over the elements of this projective space. 

 

Note that iteration is over the decomposition 

`\mathbb{P}^n = \mathbb{A}A^n \cup \mathbb{P}^n-1`, where 

`\mathbb{A}A^n` is the `n`-th affine patch and 

`\mathbb{P}^n-1` is the hyperplane at infinity 

`x_n = 0`. 

 

EXAMPLES:: 

 

sage: FF = FiniteField(3) 

sage: PP = ProjectiveSpace(0,FF) 

sage: [ x for x in PP ] 

[(1)] 

sage: PP = ProjectiveSpace(1,FF) 

sage: [ x for x in PP ] 

[(0 : 1), (1 : 1), (2 : 1), (1 : 0)] 

sage: PP = ProjectiveSpace(2,FF) 

sage: [ x for x in PP ] 

[(0 : 0 : 1), 

(1 : 0 : 1), 

(2 : 0 : 1), 

(0 : 1 : 1), 

(1 : 1 : 1), 

(2 : 1 : 1), 

(0 : 2 : 1), 

(1 : 2 : 1), 

(2 : 2 : 1), 

(0 : 1 : 0), 

(1 : 1 : 0), 

(2 : 1 : 0), 

(1 : 0 : 0)] 

 

AUTHORS: 

 

- David Kohel 

 

.. TODO:: 

 

Iteration for point sets over finite fields, and return of 

iter of point set over base field. Note that the point set does not 

know whether this is a projective space or subscheme. 

""" 

n = self.dimension_relative() 

R = self.base_ring() 

zero = R(0) 

i = n 

while not i < 0: 

P = [ zero for _ in range(i) ] + [ R(1) ] + [ zero for _ in range(n-i) ] 

yield self(P) 

iters = [ iter(R) for _ in range(i) ] 

for x in iters: next(x) # put at zero 

j = 0 

while j < i: 

try: 

P[j] = next(iters[j]) 

yield self(P) 

j = 0 

except StopIteration: 

iters[j] = iter(R) # reset 

next(iters[j]) # put at zero 

P[j] = zero 

j += 1 

i -= 1 

 

def rational_points(self, F=None): 

""" 

Return the list of ``F``-rational points on this projective space, 

where ``F`` is a given finite field, or the base ring of this space. 

 

EXAMPLES:: 

 

sage: P = ProjectiveSpace(1, GF(3)) 

sage: P.rational_points() 

[(0 : 1), (1 : 1), (2 : 1), (1 : 0)] 

sage: P.rational_points(GF(3^2, 'b')) 

[(0 : 1), (b : 1), (b + 1 : 1), (2*b + 1 : 1), (2 : 1), (2*b : 1), (2*b + 2 : 1), (b + 2 : 1), (1 : 1), (1 : 0)] 

""" 

if F is None: 

return [ P for P in self ] 

elif not is_FiniteField(F): 

raise TypeError("second argument (= %s) must be a finite field"%F) 

return [ P for P in self.base_extend(F) ] 

 

def rational_points_dictionary(self): 

r""" 

Return dictionary of points. 

 

OUTPUT: 

 

- dictionary 

 

EXAMPLES:: 

 

sage: P1 = ProjectiveSpace(GF(7),1,'x') 

sage: P1.rational_points_dictionary() 

{(0 : 1): 0, 

(1 : 0): 7, 

(1 : 1): 1, 

(2 : 1): 2, 

(3 : 1): 3, 

(4 : 1): 4, 

(5 : 1): 5, 

(6 : 1): 6} 

""" 

n = self.dimension_relative() 

R = self.base_ring() 

D={} 

zero = R(0) 

i = n 

index=0 

while not i < 0: 

P = [ zero for _ in range(i) ] + [ R(1) ] + [ zero for _ in range(n-i) ] 

D.update({self(P):index}) 

index+=1 

iters = [ iter(R) for _ in range(i) ] 

for x in iters: next(x) # put at zero 

j = 0 

while j < i: 

try: 

P[j] = next(iters[j]) 

D.update({self(P):index}) 

index+=1 

j = 0 

except StopIteration: 

iters[j] = iter(R) # reset 

next(iters[j]) # put at zero 

P[j] = zero 

j += 1 

i -= 1 

return(D) 

 

class ProjectiveSpace_rational_field(ProjectiveSpace_field): 

def rational_points(self, bound=0): 

r""" 

Returns the projective points `(x_0:\cdots:x_n)` over 

`\QQ` with `|x_i| \leq` bound. 

 

ALGORITHM: 

 

The very simple algorithm works as follows: every point 

`(x_0:\cdots:x_n)` in projective space has a unique 

largest index `i` for which `x_i` is not 

zero. The algorithm then iterates downward on this 

index. We normalize by choosing `x_i` positive. Then, 

the points `x_0,\ldots,x_{i-1}` are the points of 

affine `i`-space that are relatively prime to 

`x_i`. We access these by using the Tuples method. 

 

INPUT: 

 

- ``bound`` - integer. 

 

EXAMPLES:: 

 

sage: PP = ProjectiveSpace(0, QQ) 

sage: PP.rational_points(1) 

[(1)] 

sage: PP = ProjectiveSpace(1, QQ) 

sage: PP.rational_points(2) 

[(-2 : 1), (-1 : 1), (0 : 1), (1 : 1), (2 : 1), (-1/2 : 1), (1/2 : 1), (1 : 0)] 

sage: PP = ProjectiveSpace(2, QQ) 

sage: PP.rational_points(2) 

[(-2 : -2 : 1), (-1 : -2 : 1), (0 : -2 : 1), (1 : -2 : 1), (2 : -2 : 1), 

(-2 : -1 : 1), (-1 : -1 : 1), (0 : -1 : 1), (1 : -1 : 1), (2 : -1 : 1), 

(-2 : 0 : 1), (-1 : 0 : 1), (0 : 0 : 1), (1 : 0 : 1), (2 : 0 : 1), (-2 : 

1 : 1), (-1 : 1 : 1), (0 : 1 : 1), (1 : 1 : 1), (2 : 1 : 1), (-2 : 2 : 

1), (-1 : 2 : 1), (0 : 2 : 1), (1 : 2 : 1), (2 : 2 : 1), (-1/2 : -1 : 

1), (1/2 : -1 : 1), (-1 : -1/2 : 1), (-1/2 : -1/2 : 1), (0 : -1/2 : 1), 

(1/2 : -1/2 : 1), (1 : -1/2 : 1), (-1/2 : 0 : 1), (1/2 : 0 : 1), (-1 : 

1/2 : 1), (-1/2 : 1/2 : 1), (0 : 1/2 : 1), (1/2 : 1/2 : 1), (1 : 1/2 : 

1), (-1/2 : 1 : 1), (1/2 : 1 : 1), (-2 : 1 : 0), (-1 : 1 : 0), (0 : 1 : 

0), (1 : 1 : 0), (2 : 1 : 0), (-1/2 : 1 : 0), (1/2 : 1 : 0), (1 : 0 : 

0)] 

 

AUTHORS: 

 

- Benjamin Antieau (2008-01-12) 

""" 

if not bound > 0: 

raise ValueError("argument bound (= %s) must be a positive integer") 

 

n = self.dimension_relative() 

 

Q = [k-bound for k in range(2*bound+1)] # the affine coordinates 

R = [(k+1) for k in range(bound)] # the projective coordinate 

S = [Tuples(Q, (k+1)) for k in range(n)] 

pts = [] 

 

i = n 

while i > 0: 

P = [ 0 for _ in range(n+1) ] 

for ai in R: 

P[i] = ai 

for tup in S[i-1]: 

if gcd([ai] + tup) == 1: 

for j in range(i): 

P[j] = tup[j] 

pts.append(self(P)) 

i -= 1 

 

# now do i=0; this is treated as a special case so that 

# we don't have all points (1:0),(2,0),(3,0),etc. 

P = [ 0 for _ in range(n+1) ]; P[0] = 1 

pts.append(self(P)) 

return pts 

 

 

#fix the pickles from moving projective_space.py 

from sage.structure.sage_object import register_unpickle_override 

register_unpickle_override('sage.schemes.generic.projective_space', 

'ProjectiveSpace_field', 

ProjectiveSpace_field) 

 

register_unpickle_override('sage.schemes.generic.projective_space', 

'ProjectiveSpace_rational_field', 

ProjectiveSpace_rational_field)