Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

r""" 

Toric rational divisor classes 

  

This module is a part of the framework for :mod:`toric varieties 

<sage.schemes.toric.variety>`. 

  

AUTHORS: 

  

- Volker Braun and Andrey Novoseltsev (2010-09-05): initial version. 

  

TESTS: 

  

Toric rational divisor clases are elements of the rational class group of a 

toric variety, represented as rational vectors in some basis:: 

  

sage: dP6 = toric_varieties.dP6() 

sage: Cl = dP6.rational_class_group() 

sage: D = Cl([1, -2, 3, -4]) 

sage: D 

Divisor class [1, -2, 3, -4] 

sage: E = Cl([1/2, -2/3, 3/4, -4/5]) 

sage: E 

Divisor class [1/2, -2/3, 3/4, -4/5] 

  

They behave much like ordinary vectors:: 

  

sage: D + E 

Divisor class [3/2, -8/3, 15/4, -24/5] 

sage: 2 * D 

Divisor class [2, -4, 6, -8] 

sage: E / 10 

Divisor class [1/20, -1/15, 3/40, -2/25] 

sage: D * E 

Traceback (most recent call last): 

... 

TypeError: cannot multiply two divisor classes! 

  

The only special method is :meth:`~ToricRationalDivisorClass.lift` to get a 

divisor representing a divisor class:: 

  

sage: D.lift() 

V(x) - 2*V(u) + 3*V(y) - 4*V(v) 

sage: E.lift() 

1/2*V(x) - 2/3*V(u) + 3/4*V(y) - 4/5*V(v) 

""" 

  

  

#***************************************************************************** 

# Copyright (C) 2010 Volker Braun <vbraun.name@gmail.com> 

# Copyright (C) 2010 Andrey Novoseltsev <novoselt@gmail.com> 

# Copyright (C) 2010 William Stein <wstein@gmail.com> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

from __future__ import print_function 

  

from sage.libs.gmp.mpq cimport * 

  

from sage.misc.all import latex 

from sage.modules.all import vector 

from sage.modules.vector_rational_dense cimport Vector_rational_dense 

from sage.rings.all import QQ 

from sage.rings.rational cimport Rational 

from sage.structure.element cimport Element, Vector 

from sage.structure.element import is_Vector 

  

  

def is_ToricRationalDivisorClass(x): 

r""" 

Check if ``x`` is a toric rational divisor class. 

  

INPUT: 

  

- ``x`` -- anything. 

  

OUTPUT: 

  

- ``True`` if ``x`` is a toric rational divisor class, ``False`` otherwise. 

  

EXAMPLES:: 

  

sage: from sage.schemes.toric.divisor_class import ( 

....: is_ToricRationalDivisorClass) 

sage: is_ToricRationalDivisorClass(1) 

False 

sage: dP6 = toric_varieties.dP6() 

sage: D = dP6.rational_class_group().gen(0) 

sage: D 

Divisor class [1, 0, 0, 0] 

sage: is_ToricRationalDivisorClass(D) 

True 

""" 

return isinstance(x, ToricRationalDivisorClass) 

  

  

cdef class ToricRationalDivisorClass(Vector_rational_dense): 

r""" 

Create a toric rational divisor class. 

  

.. WARNING:: 

  

You probably should not construct divisor classes explicitly. 

  

INPUT: 

  

- same as for 

:class:`~sage.modules.vector_rational_dense.Vector_rational_dense`. 

  

OUTPUT: 

  

- toric rational divisor class. 

  

TESTS:: 

  

sage: dP6 = toric_varieties.dP6() 

sage: Cl = dP6.rational_class_group() 

sage: D = dP6.divisor(2) 

sage: Cl(D) 

Divisor class [0, 0, 1, 0] 

""" 

  

def __reduce__(self): 

""" 

Prepare ``self`` for pickling. 

  

TESTS:: 

  

sage: dP6 = toric_varieties.dP6() 

sage: Cl = dP6.rational_class_group() 

sage: D = Cl([1, -2, 3, -4]) 

sage: D 

Divisor class [1, -2, 3, -4] 

sage: loads(dumps(D)) 

Divisor class [1, -2, 3, -4] 

""" 

return (_ToricRationalDivisorClass_unpickle_v1, 

(self._parent, list(self), self._degree, self._is_mutable)) 

  

cpdef _act_on_(self, other, bint self_on_left): 

""" 

Act on ``other``. 

  

INPUT: 

  

- ``other`` - something that 

:class:`~sage.modules.vector_rational_dense.Vector_rational_dense` 

can act on *except* for another toric rational divisor class. 

  

OUTPUT: 

  

- standard output for ``self`` acting as a rational vector on 

``other`` if the latter one is not a toric rational divisor class. 

  

TESTS:: 

  

sage: dP6 = toric_varieties.dP6() 

sage: Cl = dP6.rational_class_group() 

sage: D = Cl([1, -2, 3, -4]) 

sage: D 

Divisor class [1, -2, 3, -4] 

sage: D * D 

Traceback (most recent call last): 

... 

TypeError: cannot multiply two divisor classes! 

  

We test standard behaviour:: 

  

sage: v = vector([1, 2, 3, 4]) 

sage: v * D # indirect doctest 

-10 

sage: D * v # indirect doctest 

-10 

sage: v = vector([1, 2/3, 4/5, 6/7]) 

sage: v * D # indirect doctest 

-143/105 

sage: D * v # indirect doctest 

-143/105 

sage: A = matrix(4, range(16)) 

sage: A * D # indirect doctest 

(-8, -16, -24, -32) 

sage: D * A # indirect doctest 

(-32, -34, -36, -38) 

sage: B = A / 3 

sage: B * D # indirect doctest 

(-8/3, -16/3, -8, -32/3) 

sage: D * B # indirect doctest 

(-32/3, -34/3, -12, -38/3) 

""" 

# If we don't treat vectors separately, they get converted into 

# divisor classes where multiplication is prohibited on purpose. 

if isinstance(other, Vector_rational_dense): 

return Vector_rational_dense._dot_product_(self, other) 

cdef Vector v 

if is_Vector(other) and not is_ToricRationalDivisorClass(other): 

try: 

v = vector(QQ, other) 

if v._degree == self._degree: 

return Vector_rational_dense._dot_product_(self, v) 

except TypeError: 

pass 

# Now let the standard framework work... 

return Vector_rational_dense._act_on_(self, other, self_on_left) 

  

cpdef _dot_product_(self, Vector right): 

r""" 

Raise a ``TypeError`` exception. 

  

Dot product is not defined on toric rational divisor classes. 

  

INPUT: 

  

- ``right`` - vector. 

  

OUTPUT: 

  

- ``TypeError`` exception is raised. 

  

TESTS:: 

  

sage: c = toric_varieties.dP8().rational_class_group().gens() 

sage: c[0]._dot_product_(c[1]) 

Traceback (most recent call last): 

... 

TypeError: cannot multiply two divisor classes! 

sage: c[0] * c[1] # indirect doctest 

Traceback (most recent call last): 

... 

TypeError: cannot multiply two divisor classes! 

""" 

raise TypeError("cannot multiply two divisor classes!") 

  

def _latex_(self): 

r""" 

Return a LaTeX representation of ``self``. 

  

OUTPUT: 

  

- string. 

  

TESTS:: 

  

sage: D = toric_varieties.dP6().divisor(0).divisor_class() 

sage: print(D._latex_()) 

\left[ 1, 0, 0, 0 \right]_{\mathop{Cl}_{\QQ}\left(\mathbb{P}_{\Delta^{2}_{9}}\right)} 

""" 

return r"\left[ %s \right]_{%s}" % ( 

", ".join([latex(e) for e in self]), latex(self.parent())) 

  

def _repr_(self): 

r""" 

Return a string representation of ``self``. 

  

OUTPUT: 

  

- string. 

  

EXAMPLES:: 

  

sage: toric_varieties.dP6().divisor(0).divisor_class()._repr_() 

'Divisor class [1, 0, 0, 0]' 

""" 

return 'Divisor class %s' % list(self) 

  

def lift(self): 

r""" 

Return a divisor representing this divisor class. 

  

OUTPUT: 

  

An instance of :class:`ToricDivisor` representing ``self``. 

  

EXAMPLES:: 

  

sage: X = toric_varieties.Cube_nonpolyhedral() 

sage: D = X.divisor([0,1,2,3,4,5,6,7]); D 

V(z1) + 2*V(z2) + 3*V(z3) + 4*V(z4) + 5*V(z5) + 6*V(z6) + 7*V(z7) 

sage: D.divisor_class() 

Divisor class [29, 6, 8, 10, 0] 

sage: Dequiv = D.divisor_class().lift(); Dequiv 

6*V(z1) - 17*V(z2) - 22*V(z3) - 7*V(z4) + 25*V(z6) + 32*V(z7) 

sage: Dequiv == D 

False 

sage: Dequiv.divisor_class() == D.divisor_class() 

True 

""" 

Cl = self.parent() 

return Cl._variety.divisor(Cl._lift_matrix * self) 

  

  

def _ToricRationalDivisorClass_unpickle_v1(parent, entries, 

degree, is_mutable): 

""" 

Unpickle a :class:`toric rational divisor class 

<ToricRationalDivisorClass>`. 

  

INPUT: 

  

- ``parent`` -- rational divisor class group of a toric variety; 

  

- ``entries`` -- list of rationals specifying the divisor class; 

  

- ``degree`` -- integer, dimension of the ``parent``; 

  

- ``is_mutable`` -- boolean, whether the divisor class is mutable. 

  

OUTPUT: 

  

- :class:`toric rational divisor class <ToricRationalDivisorClass>`. 

  

TESTS:: 

  

sage: dP6 = toric_varieties.dP6() 

sage: Cl = dP6.rational_class_group() 

sage: D = Cl([1, -2, 3, -4]) 

sage: D 

Divisor class [1, -2, 3, -4] 

sage: loads(dumps(D)) # indirect test 

Divisor class [1, -2, 3, -4] 

sage: from sage.schemes.toric.divisor_class import ( 

....: _ToricRationalDivisorClass_unpickle_v1) 

sage: _ToricRationalDivisorClass_unpickle_v1( 

....: Cl, [1, -2, 3, -4], 4, True) 

Divisor class [1, -2, 3, -4] 

""" 

cdef ToricRationalDivisorClass v 

v = ToricRationalDivisorClass.__new__(ToricRationalDivisorClass) 

v._init(degree, parent) 

cdef Rational z 

cdef Py_ssize_t i 

for i from 0 <= i < degree: 

z = Rational(entries[i]) 

mpq_set(v._entries[i], z.value) 

v._is_mutable = is_mutable 

return v