Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

# -*- coding: utf-8 -*- 

r""" 

Discrete Gaussian Samplers over the Integers 

  

This class realizes oracles which returns integers proportionally to 

`\exp(-(x-c)^2/(2σ^2))`. All oracles are implemented using rejection sampling. 

See :func:`DiscreteGaussianDistributionIntegerSampler.__init__` for which algorithms are 

available. 

  

AUTHORS: 

  

- Martin Albrecht (2014-06-28): initial version 

  

EXAMPLES: 

  

We construct a sampler for the distribution `D_{3,c}` with width `σ=3` and center `c=0`:: 

  

sage: from sage.stats.distributions.discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler 

sage: sigma = 3.0 

sage: D = DiscreteGaussianDistributionIntegerSampler(sigma=sigma) 

  

We ask for 100000 samples:: 

  

sage: from six.moves import range 

sage: n=100000; l = [D() for _ in range(n)] 

  

These are sampled with a probability proportional to `\exp(-x^2/18)`. More 

precisely we have to normalise by dividing by the overall probability over all 

integers. We use the fact that hitting anything more than 6 standard deviations 

away is very unlikely and compute:: 

  

sage: norm_factor = sum([exp(-x^2/(2*sigma^2)) for x in range(-6*sigma,sigma*6+1)]) 

sage: norm_factor 

7.519... 

  

With this normalisation factor, we can now test if our samples follow the 

expected distribution:: 

  

sage: x=0; l.count(x), ZZ(round(n*exp(-x^2/(2*sigma^2))/norm_factor)) 

(13355, 13298) 

sage: x=4; l.count(x), ZZ(round(n*exp(-x^2/(2*sigma^2))/norm_factor)) 

(5479, 5467) 

sage: x=-10; l.count(x), ZZ(round(n*exp(-x^2/(2*sigma^2))/norm_factor)) 

(53, 51) 

  

We construct an instance with a larger width:: 

  

sage: from sage.stats.distributions.discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler 

sage: sigma = 127 

sage: D = DiscreteGaussianDistributionIntegerSampler(sigma=sigma, algorithm='uniform+online') 

  

ask for 100000 samples:: 

  

sage: from six.moves import range 

sage: n=100000; l = [D() for _ in range(n)] # long time 

  

and check if the proportions fit:: 

  

sage: x=0; y=1; float(l.count(x))/l.count(y), exp(-x^2/(2*sigma^2))/exp(-y^2/(2*sigma^2)).n() # long time 

(1.0, 1.00...) 

sage: x=0; y=-100; float(l.count(x))/l.count(y), exp(-x^2/(2*sigma^2))/exp(-y^2/(2*sigma^2)).n() # long time 

(1.32..., 1.36...) 

  

We construct a sampler with `c\%1 != 0`:: 

  

sage: from sage.stats.distributions.discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler 

sage: sigma = 3 

sage: D = DiscreteGaussianDistributionIntegerSampler(sigma=sigma, c=1/2) 

sage: from six.moves import range 

sage: n=100000; l = [D() for _ in range(n)] # long time 

sage: mean(l).n() # long time 

0.486650000000000 

  

REFERENCES: 

  

- [DDLL2013]_ 

  

""" 

#****************************************************************************** 

# 

# DGS - Discrete Gaussian Samplers 

# 

# Copyright (c) 2014, Martin Albrecht <martinralbrecht+dgs@googlemail.com> 

# All rights reserved. 

# 

# Redistribution and use in source and binary forms, with or without 

# modification, are permitted provided that the following conditions are met: 

# 

# 1. Redistributions of source code must retain the above copyright notice, this 

# list of conditions and the following disclaimer. 

# 2. Redistributions in binary form must reproduce the above copyright notice, 

# this list of conditions and the following disclaimer in the documentation 

# and/or other materials provided with the distribution. 

# 

# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 

# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 

# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 

# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE 

# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 

# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 

# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 

# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 

# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 

# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 

# 

# The views and conclusions contained in the software and documentation are 

# those of the authors and should not be interpreted as representing official 

# policies, either expressed or implied, of the FreeBSD Project. 

#*****************************************************************************/ 

  

from __future__ import print_function 

  

from cysignals.signals cimport sig_on, sig_off 

  

from sage.rings.real_mpfr cimport RealNumber, RealField 

from sage.libs.mpfr cimport mpfr_set, MPFR_RNDN 

from sage.rings.integer cimport Integer 

from sage.misc.randstate cimport randstate, current_randstate 

  

from .dgs cimport dgs_disc_gauss_mp_init, dgs_disc_gauss_mp_clear, dgs_disc_gauss_mp_flush_cache 

from .dgs cimport dgs_disc_gauss_dp_init, dgs_disc_gauss_dp_clear, dgs_disc_gauss_dp_flush_cache 

from .dgs cimport DGS_DISC_GAUSS_UNIFORM_TABLE, DGS_DISC_GAUSS_UNIFORM_ONLINE, DGS_DISC_GAUSS_UNIFORM_LOGTABLE, DGS_DISC_GAUSS_SIGMA2_LOGTABLE 

  

cdef class DiscreteGaussianDistributionIntegerSampler(SageObject): 

r""" 

A Discrete Gaussian Sampler using rejection sampling. 

  

.. automethod:: __init__ 

.. automethod:: __call__ 

""" 

  

# We use tables for σt ≤ table_cutoff 

table_cutoff = 10**6 

  

def __init__(self, sigma, c=0, tau=6, algorithm=None, precision="mp"): 

r""" 

Construct a new sampler for a discrete Gaussian distribution. 

  

INPUT: 

  

- ``sigma`` - samples `x` are accepted with probability proportional to 

`\exp(-(x-c)²/(2σ²))` 

  

- ``c`` - the mean of the distribution. The value of ``c`` does not have 

to be an integer. However, some algorithms only support integer-valued 

``c`` (default: ``0``) 

  

- ``tau`` - samples outside the range `(⌊c⌉-⌈στ⌉,...,⌊c⌉+⌈στ⌉)` are 

considered to have probability zero. This bound applies to algorithms which 

sample from the uniform distribution (default: ``6``) 

  

- ``algorithm`` - see list below (default: ``"uniform+table"`` for 

`σt` bounded by ``DiscreteGaussianDistributionIntegerSampler.table_cutoff`` and 

``"uniform+online"`` for bigger `στ`) 

  

- ``precision`` - either ``"mp"`` for multi-precision where the actual 

precision used is taken from sigma or ``"dp"`` for double precision. In 

the latter case results are not reproducible. (default: ``"mp"``) 

  

ALGORITHMS: 

  

- ``"uniform+table"`` - classical rejection sampling, sampling from the 

uniform distribution and accepted with probability proportional to 

`\exp(-(x-c)²/(2σ²))` where `\exp(-(x-c)²/(2σ²))` is precomputed and 

stored in a table. Any real-valued `c` is supported. 

  

- ``"uniform+logtable"`` - samples are drawn from a uniform distribution and 

accepted with probability proportional to `\exp(-(x-c)²/(2σ²))` where 

`\exp(-(x-c)²/(2σ²))` is computed using logarithmically many calls to 

Bernoulli distributions. See [DDLL2013]_ for details. Only 

integer-valued `c` are supported. 

  

- ``"uniform+online"`` - samples are drawn from a uniform distribution and 

accepted with probability proportional to `\exp(-(x-c)²/(2σ²))` where 

`\exp(-(x-c)²/(2σ²))` is computed in each invocation. Typically this 

is very slow. See [DDLL2013]_ for details. Any real-valued `c` is 

accepted. 

  

- ``"sigma2+logtable"`` - samples are drawn from an easily samplable 

distribution with `σ = k·σ_2` with `σ_2 = \sqrt{1/(2\log 2)}` and accepted 

with probability proportional to `\exp(-(x-c)²/(2σ²))` where 

`\exp(-(x-c)²/(2σ²))` is computed using logarithmically many calls to Bernoulli 

distributions (but no calls to `\exp`). See [DDLL2013]_ for details. Note that this 

sampler adjusts `σ` to match `k·σ_2` for some integer `k`. 

Only integer-valued `c` are supported. 

  

EXAMPLES:: 

  

sage: from sage.stats.distributions.discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler 

sage: DiscreteGaussianDistributionIntegerSampler(3.0, algorithm="uniform+online") 

Discrete Gaussian sampler over the Integers with sigma = 3.000000 and c = 0 

sage: DiscreteGaussianDistributionIntegerSampler(3.0, algorithm="uniform+table") 

Discrete Gaussian sampler over the Integers with sigma = 3.000000 and c = 0 

sage: DiscreteGaussianDistributionIntegerSampler(3.0, algorithm="uniform+logtable") 

Discrete Gaussian sampler over the Integers with sigma = 3.000000 and c = 0 

  

Note that ``"sigma2+logtable"`` adjusts `σ`:: 

  

sage: DiscreteGaussianDistributionIntegerSampler(3.0, algorithm="sigma2+logtable") 

Discrete Gaussian sampler over the Integers with sigma = 3.397287 and c = 0 

  

TESTS: 

  

We are testing invalid inputs:: 

  

sage: from sage.stats.distributions.discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler 

sage: DiscreteGaussianDistributionIntegerSampler(-3.0) 

Traceback (most recent call last): 

... 

ValueError: sigma must be > 0.0 but got -3.000000 

  

sage: DiscreteGaussianDistributionIntegerSampler(3.0, tau=-1) 

Traceback (most recent call last): 

... 

ValueError: tau must be >= 1 but got -1 

  

sage: DiscreteGaussianDistributionIntegerSampler(3.0, tau=2, algorithm="superfastalgorithmyouneverheardof") 

Traceback (most recent call last): 

... 

ValueError: Algorithm 'superfastalgorithmyouneverheardof' not supported by class 'DiscreteGaussianDistributionIntegerSampler' 

  

sage: DiscreteGaussianDistributionIntegerSampler(3.0, c=1.5, algorithm="sigma2+logtable") 

Traceback (most recent call last): 

... 

ValueError: algorithm 'uniform+logtable' requires c%1 == 0 

  

We are testing correctness for multi-precision:: 

  

sage: from sage.stats.distributions.discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler 

sage: D = DiscreteGaussianDistributionIntegerSampler(1.0, c=0, tau=2) 

sage: from six.moves import range 

sage: l = [D() for _ in range(2^16)] 

sage: min(l) == 0-2*1.0, max(l) == 0+2*1.0, abs(mean(l)) < 0.01 

(True, True, True) 

  

sage: from sage.stats.distributions.discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler 

sage: D = DiscreteGaussianDistributionIntegerSampler(1.0, c=2.5, tau=2) 

sage: from six.moves import range 

sage: l = [D() for _ in range(2^18)] 

sage: min(l)==2-2*1.0, max(l)==2+2*1.0, mean(l).n() 

(True, True, 2.45...) 

  

sage: from sage.stats.distributions.discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler 

sage: D = DiscreteGaussianDistributionIntegerSampler(1.0, c=2.5, tau=6) 

sage: from six.moves import range 

sage: l = [D() for _ in range(2^18)] 

sage: min(l), max(l), abs(mean(l)-2.5) < 0.01 

(-2, 7, True) 

  

We are testing correctness for double precision:: 

  

sage: from sage.stats.distributions.discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler 

sage: D = DiscreteGaussianDistributionIntegerSampler(1.0, c=0, tau=2, precision="dp") 

sage: from six.moves import range 

sage: l = [D() for _ in range(2^16)] 

sage: min(l) == 0-2*1.0, max(l) == 0+2*1.0, abs(mean(l)) < 0.05 

(True, True, True) 

  

sage: from sage.stats.distributions.discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler 

sage: D = DiscreteGaussianDistributionIntegerSampler(1.0, c=2.5, tau=2, precision="dp") 

sage: from six.moves import range 

sage: l = [D() for _ in range(2^18)] 

sage: min(l)==2-2*1.0, max(l)==2+2*1.0, mean(l).n() 

(True, True, 2.4...) 

  

sage: from sage.stats.distributions.discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler 

sage: D = DiscreteGaussianDistributionIntegerSampler(1.0, c=2.5, tau=6, precision="dp") 

sage: from six.moves import range 

sage: l = [D() for _ in range(2^18)] 

sage: min(l)<=-1, max(l)>=6, abs(mean(l)-2.5) < 0.1 

(True, True, True) 

sage: tuple(l.count(i) for i in range(-2,8)) # output random 

(7, 242, 4519, 34120, 92714, 91700, 33925, 4666, 246, 5) 

  

We plot a histogram:: 

  

sage: from sage.stats.distributions.discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler 

sage: D = DiscreteGaussianDistributionIntegerSampler(17.0) 

sage: S = [D() for _ in range(2^16)] 

sage: list_plot([(v,S.count(v)) for v in set(S)]) # long time 

Graphics object consisting of 1 graphics primitive 

  

These generators cache random bits for performance reasons. Hence, resetting 

the seed of the PRNG might not have the expected outcome. You can flush this cache with 

``_flush_cache()``:: 

  

sage: from sage.stats.distributions.discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler 

sage: D = DiscreteGaussianDistributionIntegerSampler(3.0) 

sage: sage.misc.randstate.set_random_seed(0); D() 

3 

sage: sage.misc.randstate.set_random_seed(0); D() 

3 

sage: sage.misc.randstate.set_random_seed(0); D._flush_cache(); D() 

3 

  

sage: D = DiscreteGaussianDistributionIntegerSampler(3.0) 

sage: sage.misc.randstate.set_random_seed(0); D() 

3 

sage: sage.misc.randstate.set_random_seed(0); D() 

3 

sage: sage.misc.randstate.set_random_seed(0); D() 

-3 

""" 

if sigma <= 0.0: 

raise ValueError("sigma must be > 0.0 but got %f"%sigma) 

  

if tau < 1: 

raise ValueError("tau must be >= 1 but got %d"%tau) 

  

if algorithm is None: 

if sigma*tau <= DiscreteGaussianDistributionIntegerSampler.table_cutoff: 

algorithm = "uniform+table" 

else: 

algorithm = "uniform+online" 

  

algorithm_str = algorithm 

  

if algorithm == "uniform+table": 

algorithm = DGS_DISC_GAUSS_UNIFORM_TABLE 

elif algorithm == "uniform+online": 

algorithm = DGS_DISC_GAUSS_UNIFORM_ONLINE 

elif algorithm == "uniform+logtable": 

if (c%1): 

raise ValueError("algorithm 'uniform+logtable' requires c%1 == 0") 

algorithm = DGS_DISC_GAUSS_UNIFORM_LOGTABLE 

elif algorithm == "sigma2+logtable": 

if (c%1): 

raise ValueError("algorithm 'uniform+logtable' requires c%1 == 0") 

algorithm = DGS_DISC_GAUSS_SIGMA2_LOGTABLE 

else: 

raise ValueError("Algorithm '%s' not supported by class 'DiscreteGaussianDistributionIntegerSampler'"%(algorithm)) 

  

if precision == "mp": 

if not isinstance(sigma, RealNumber): 

RR = RealField() 

sigma = RR(sigma) 

  

if not isinstance(c, RealNumber): 

c = sigma.parent()(c) 

sig_on() 

self._gen_mp = dgs_disc_gauss_mp_init((<RealNumber>sigma).value, (<RealNumber>c).value, tau, algorithm) 

sig_off() 

self._gen_dp = NULL 

self.sigma = sigma.parent()(0) 

mpfr_set(self.sigma.value, self._gen_mp.sigma, MPFR_RNDN) 

self.c = c 

elif precision == "dp": 

RR = RealField() 

if not isinstance(sigma, RealNumber): 

sigma = RR(sigma) 

sig_on() 

self._gen_dp = dgs_disc_gauss_dp_init(sigma, c, tau, algorithm) 

sig_off() 

self._gen_mp = NULL 

self.sigma = RR(sigma) 

self.c = RR(c) 

else: 

raise ValueError("Parameter precision '%s' not supported."%precision) 

  

self.tau = Integer(tau) 

self.algorithm = algorithm_str 

  

def _flush_cache(self): 

r""" 

Flush the internal cache of random bits. 

  

EXAMPLES:: 

  

sage: from sage.stats.distributions.discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler 

  

sage: f = lambda: sage.misc.randstate.set_random_seed(0) 

  

sage: f() 

sage: D = DiscreteGaussianDistributionIntegerSampler(30.0) 

sage: [D() for k in range(16)] 

[21, 23, 37, 6, -64, 29, 8, -22, -3, -10, 7, -43, 1, -29, 25, 38] 

  

sage: f() 

sage: D = DiscreteGaussianDistributionIntegerSampler(30.0) 

sage: l = [] 

sage: for i in range(16): 

....: f(); l.append(D()) 

sage: l 

[21, 21, 21, 21, -21, 21, 21, -21, -21, -21, 21, -21, 21, -21, 21, 21] 

  

sage: f() 

sage: D = DiscreteGaussianDistributionIntegerSampler(30.0) 

sage: l = [] 

sage: for i in range(16): 

....: f(); D._flush_cache(); l.append(D()) 

sage: l 

[21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21] 

""" 

if self._gen_mp: 

dgs_disc_gauss_mp_flush_cache(self._gen_mp) 

if self._gen_dp: 

dgs_disc_gauss_dp_flush_cache(self._gen_dp) 

  

def __dealloc__(self): 

r""" 

TESTS:: 

  

sage: from sage.stats.distributions.discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler 

sage: D = DiscreteGaussianDistributionIntegerSampler(3.0, algorithm="uniform+online") 

sage: del D 

""" 

if self._gen_mp: 

dgs_disc_gauss_mp_clear(self._gen_mp) 

if self._gen_dp: 

dgs_disc_gauss_dp_clear(self._gen_dp) 

  

def __call__(self): 

r""" 

Return a new sample. 

  

EXAMPLES:: 

  

sage: from sage.stats.distributions.discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler 

sage: DiscreteGaussianDistributionIntegerSampler(3.0, algorithm="uniform+online")() 

-3 

sage: DiscreteGaussianDistributionIntegerSampler(3.0, algorithm="uniform+table")() 

3 

  

TESTS:: 

  

sage: from sage.stats.distributions.discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler 

sage: DiscreteGaussianDistributionIntegerSampler(3.0, algorithm="uniform+logtable", precision="dp")() # random output 

13 

""" 

cdef randstate rstate 

cdef Integer rop 

if self._gen_mp: 

rstate = current_randstate() 

rop = Integer() 

sig_on() 

self._gen_mp.call(rop.value, self._gen_mp, rstate.gmp_state) 

sig_off() 

return rop 

else: 

sig_on() 

r = self._gen_dp.call(self._gen_dp) 

sig_off() 

return Integer(r) 

  

def _repr_(self): 

r""" 

TESTS:: 

  

sage: from sage.stats.distributions.discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler 

sage: repr(DiscreteGaussianDistributionIntegerSampler(3.0, 2)) 

'Discrete Gaussian sampler over the Integers with sigma = 3.000000 and c = 2' 

""" 

return "Discrete Gaussian sampler over the Integers with sigma = %f and c = %d"%(self.sigma, self.c)