Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

""" 

Assumptions 

 

The ``GenericDeclaration`` class provides assumptions about a symbol or 

function in verbal form. Such assumptions can be made using the :func:`assume` 

function in this module, which also can take any relation of symbolic 

expressions as argument. Use :func:`forget` to clear all assumptions. 

Creating a variable with a specific domain is equivalent with making an 

assumption about it. 

 

There is only rudimentary support for consistency and satisfiability checking 

in Sage. Assumptions are used both in Maxima and Pynac to support or refine 

some computations. In the following we show how to make and query assumptions. 

Please see the respective modules for more practical examples. 

 

In addition to the global :func:`assumptions` database, :func:`assuming` 

creates reusable, stackable context managers allowing for temporary 

updates of the database for evaluation of a (block of) statements. 

 

EXAMPLES: 

 

The default domain of a symbolic variable is the complex plane:: 

 

sage: var('x') 

x 

sage: x.is_real() 

False 

sage: assume(x,'real') 

sage: x.is_real() 

True 

sage: forget() 

sage: x.is_real() 

False 

 

Here is the list of acceptable features:: 

 

sage: maxima('features') 

[integer,noninteger,even,odd,rational,irrational,real,imaginary,complex,analytic,increasing,decreasing,oddfun,evenfun,posfun,constant,commutative,lassociative,rassociative,symmetric,antisymmetric,integervalued] 

 

Set positive domain using a relation:: 

 

sage: assume(x>0) 

sage: x.is_positive() 

True 

sage: x.is_real() 

True 

sage: assumptions() 

[x > 0] 

 

Assumptions also affect operations that do not use Maxima:: 

 

sage: forget() 

sage: assume(x, 'even') 

sage: assume(x, 'real') 

sage: (-1)^x 

1 

sage: (-gamma(pi))^x 

gamma(pi)^x 

sage: binomial(2*x, x).is_integer() 

True 

 

Assumptions are added and in some cases checked for consistency:: 

 

sage: assume(x>0) 

sage: assume(x<0) 

Traceback (most recent call last): 

... 

ValueError: Assumption is inconsistent 

sage: forget() 

""" 

from sage.structure.sage_object import SageObject 

from sage.rings.all import ZZ, QQ, RR, CC 

from sage.symbolic.ring import is_SymbolicVariable 

_assumptions = [] 

 

 

class GenericDeclaration(SageObject): 

""" 

This class represents generic assumptions, such as a variable being 

an integer or a function being increasing. It passes such 

information to Maxima's declare (wrapped in a context so it is able 

to forget) and to Pynac. 

 

INPUT: 

 

- ``var`` -- the variable about which assumptions are 

being made 

 

- ``assumption`` -- a string containing a Maxima feature, either user 

defined or in the list given by ``maxima('features')`` 

 

EXAMPLES:: 

 

sage: from sage.symbolic.assumptions import GenericDeclaration 

sage: decl = GenericDeclaration(x, 'integer') 

sage: decl.assume() 

sage: sin(x*pi) 

0 

sage: decl.forget() 

sage: sin(x*pi) 

sin(pi*x) 

sage: sin(x*pi).simplify() 

sin(pi*x) 

 

Here is the list of acceptable features:: 

 

sage: maxima('features') 

[integer,noninteger,even,odd,rational,irrational,real,imaginary,complex,analytic,increasing,decreasing,oddfun,evenfun,posfun,constant,commutative,lassociative,rassociative,symmetric,antisymmetric,integervalued] 

""" 

 

def __init__(self, var, assumption): 

""" 

This class represents generic assumptions, such as a variable being 

an integer or a function being increasing. It passes such 

information to maxima's declare (wrapped in a context so it is able 

to forget). 

 

INPUT: 

 

- ``var`` -- the variable about which assumptions are 

being made 

 

- ``assumption`` -- a Maxima feature, either user 

defined or in the list given by ``maxima('features')`` 

 

EXAMPLES:: 

 

sage: from sage.symbolic.assumptions import GenericDeclaration 

sage: decl = GenericDeclaration(x, 'integer') 

sage: decl.assume() 

sage: sin(x*pi) 

0 

sage: decl.forget() 

sage: sin(x*pi) 

sin(pi*x) 

 

Here is the list of acceptable features:: 

 

sage: maxima('features') 

[integer,noninteger,even,odd,rational,irrational,real,imaginary,complex,analytic,increasing,decreasing,oddfun,evenfun,posfun,constant,commutative,lassociative,rassociative,symmetric,antisymmetric,integervalued] 

""" 

self._var = var 

self._assumption = assumption 

self._context = None 

 

def __repr__(self): 

""" 

EXAMPLES:: 

 

sage: from sage.symbolic.assumptions import GenericDeclaration 

sage: GenericDeclaration(x, 'foo') 

x is foo 

""" 

return "%s is %s" % (self._var, self._assumption) 

 

def __eq__(self, other): 

""" 

Check whether ``self`` and ``other`` are equal. 

 

TESTS:: 

 

sage: from sage.symbolic.assumptions import GenericDeclaration as GDecl 

sage: var('y') 

y 

sage: GDecl(x, 'integer') == GDecl(x, 'integer') 

True 

sage: GDecl(x, 'integer') == GDecl(x, 'rational') 

False 

sage: GDecl(x, 'integer') == GDecl(y, 'integer') 

False 

""" 

if not isinstance(other, GenericDeclaration): 

return False 

return (bool(self._var == other._var) and 

self._assumption == other._assumption) 

 

def __ne__(self, other): 

""" 

Check whether ``self`` and ``other`` are not equal. 

 

TESTS:: 

 

sage: from sage.symbolic.assumptions import GenericDeclaration as GDecl 

sage: var('y') 

y 

sage: GDecl(x, 'integer') != GDecl(x, 'integer') 

False 

sage: GDecl(x, 'integer') != GDecl(x, 'rational') 

True 

sage: GDecl(x, 'integer') != GDecl(y, 'integer') 

True 

""" 

return not self == other 

 

def has(self, arg): 

""" 

Check if this assumption contains the argument ``arg``. 

 

EXAMPLES:: 

 

sage: from sage.symbolic.assumptions import GenericDeclaration as GDecl 

sage: var('y') 

y 

sage: d = GDecl(x, 'integer') 

sage: d.has(x) 

True 

sage: d.has(y) 

False 

""" 

return (arg - self._var).is_trivial_zero() 

 

def assume(self): 

""" 

Make this assumption. 

 

TESTS:: 

 

sage: from sage.symbolic.assumptions import GenericDeclaration 

sage: decl = GenericDeclaration(x, 'even') 

sage: decl.assume() 

sage: cos(x*pi).simplify() 

1 

sage: decl2 = GenericDeclaration(x, 'odd') 

sage: decl2.assume() 

Traceback (most recent call last): 

... 

ValueError: Assumption is inconsistent 

sage: decl.forget() 

""" 

from sage.calculus.calculus import maxima 

if self._context is None: 

# We get the list here because features may be added with time. 

valid_features = list(maxima("features")) 

if self._assumption not in [repr(x).strip() for x in list(valid_features)]: 

raise ValueError("%s not a valid assumption, must be one of %s" % (self._assumption, valid_features)) 

cur = maxima.get("context") 

self._context = maxima.newcontext('context' + maxima._next_var_name()) 

try: 

maxima.eval("declare(%s, %s)" % (self._var._maxima_init_(), self._assumption)) 

except RuntimeError as mess: 

if 'inconsistent' in str(mess): # note Maxima doesn't tell you if declarations are redundant 

raise ValueError("Assumption is inconsistent") 

else: 

raise 

maxima.set("context", cur) 

 

if not self in _assumptions: 

maxima.activate(self._context) 

self._var.decl_assume(self._assumption) 

_assumptions.append(self) 

 

def forget(self): 

""" 

Forget this assumption. 

 

TESTS:: 

 

sage: from sage.symbolic.assumptions import GenericDeclaration 

sage: decl = GenericDeclaration(x, 'odd') 

sage: decl.assume() 

sage: cos(pi*x) 

cos(pi*x) 

sage: cos(pi*x).simplify() 

-1 

sage: decl.forget() 

sage: cos(x*pi).simplify() 

cos(pi*x) 

""" 

self._var.decl_forget(self._assumption) 

from sage.calculus.calculus import maxima 

if self._context is not None: 

try: 

_assumptions.remove(self) 

except ValueError: 

return 

maxima.deactivate(self._context) 

else: # trying to forget a declaration explicitly rather than implicitly 

for x in _assumptions: 

if repr(self) == repr(x): # so by implication x is also a GenericDeclaration 

x.forget() 

break 

return 

 

def contradicts(self, soln): 

""" 

Return ``True`` if this assumption is violated by the given 

variable assignment(s). 

 

INPUT: 

 

- ``soln`` -- Either a dictionary with variables as keys or a symbolic 

relation with a variable on the left hand side. 

 

EXAMPLES:: 

 

sage: from sage.symbolic.assumptions import GenericDeclaration 

sage: GenericDeclaration(x, 'integer').contradicts(x==4) 

False 

sage: GenericDeclaration(x, 'integer').contradicts(x==4.0) 

False 

sage: GenericDeclaration(x, 'integer').contradicts(x==4.5) 

True 

sage: GenericDeclaration(x, 'integer').contradicts(x==sqrt(17)) 

True 

sage: GenericDeclaration(x, 'noninteger').contradicts(x==sqrt(17)) 

False 

sage: GenericDeclaration(x, 'noninteger').contradicts(x==17) 

True 

sage: GenericDeclaration(x, 'even').contradicts(x==3) 

True 

sage: GenericDeclaration(x, 'complex').contradicts(x==3) 

False 

sage: GenericDeclaration(x, 'imaginary').contradicts(x==3) 

True 

sage: GenericDeclaration(x, 'imaginary').contradicts(x==I) 

False 

 

sage: var('y,z') 

(y, z) 

sage: GenericDeclaration(x, 'imaginary').contradicts(x==y+z) 

False 

 

sage: GenericDeclaration(x, 'rational').contradicts(y==pi) 

False 

sage: GenericDeclaration(x, 'rational').contradicts(x==pi) 

True 

sage: GenericDeclaration(x, 'irrational').contradicts(x!=pi) 

False 

sage: GenericDeclaration(x, 'rational').contradicts({x: pi, y: pi}) 

True 

sage: GenericDeclaration(x, 'rational').contradicts({z: pi, y: pi}) 

False 

""" 

if isinstance(soln, dict): 

value = soln.get(self._var) 

if value is None: 

return False 

elif soln.lhs() == self._var: 

value = soln.rhs() 

else: 

return False 

try: 

CC(value) 

except TypeError: 

return False 

if self._assumption == 'integer': 

return value not in ZZ 

elif self._assumption == 'noninteger': 

return value in ZZ 

elif self._assumption == 'even': 

return value not in ZZ or ZZ(value) % 2 != 0 

elif self._assumption == 'odd': 

return value not in ZZ or ZZ(value) % 2 != 1 

elif self._assumption == 'rational': 

return value not in QQ 

elif self._assumption == 'irrational': 

return value in QQ 

elif self._assumption == 'real': 

return value not in RR 

elif self._assumption == 'imaginary': 

return value not in CC or CC(value).real() != 0 

elif self._assumption == 'complex': 

return value not in CC 

 

 

def preprocess_assumptions(args): 

""" 

Turn a list of the form ``(var1, var2, ..., 'property')`` into a 

sequence of declarations ``(var1 is property), (var2 is property), 

...`` 

 

EXAMPLES:: 

 

sage: from sage.symbolic.assumptions import preprocess_assumptions 

sage: preprocess_assumptions([x, 'integer', x > 4]) 

[x is integer, x > 4] 

sage: var('x, y') 

(x, y) 

sage: preprocess_assumptions([x, y, 'integer', x > 4, y, 'even']) 

[x is integer, y is integer, x > 4, y is even] 

""" 

args = list(args) 

last = None 

for i, x in reversed(list(enumerate(args))): 

if isinstance(x, str): 

del args[i] 

last = x 

elif ((not hasattr(x, 'assume') or is_SymbolicVariable(x)) 

and last is not None): 

args[i] = GenericDeclaration(x, last) 

else: 

last = None 

return args 

 

 

def assume(*args): 

""" 

Make the given assumptions. 

 

INPUT: 

 

- ``*args`` -- assumptions 

 

EXAMPLES: 

 

Assumptions are typically used to ensure certain relations are 

evaluated as true that are not true in general. 

 

Here, we verify that for `x>0`, `\sqrt{x^2}=x`:: 

 

sage: assume(x > 0) 

sage: bool(sqrt(x^2) == x) 

True 

 

This will be assumed in the current Sage session until forgotten:: 

 

sage: forget() 

sage: bool(sqrt(x^2) == x) 

False 

 

Another major use case is in taking certain integrals and limits 

where the answers may depend on some sign condition:: 

 

sage: var('x, n') 

(x, n) 

sage: assume(n+1>0) 

sage: integral(x^n,x) 

x^(n + 1)/(n + 1) 

sage: forget() 

 

:: 

 

sage: var('q, a, k') 

(q, a, k) 

sage: assume(q > 1) 

sage: sum(a*q^k, k, 0, oo) 

Traceback (most recent call last): 

... 

ValueError: Sum is divergent. 

sage: forget() 

sage: assume(abs(q) < 1) 

sage: sum(a*q^k, k, 0, oo) 

-a/(q - 1) 

sage: forget() 

 

An integer constraint:: 

 

sage: var('n, P, r, r2') 

(n, P, r, r2) 

sage: assume(n, 'integer') 

sage: c = P*e^(r*n) 

sage: d = P*(1+r2)^n 

sage: solve(c==d,r2) 

[r2 == e^r - 1] 

 

Simplifying certain well-known identities works as well:: 

 

sage: sin(n*pi) 

0 

sage: forget() 

sage: sin(n*pi).simplify() 

sin(pi*n) 

 

If you make inconsistent or meaningless assumptions, 

Sage will let you know:: 

 

sage: assume(x<0) 

sage: assume(x>0) 

Traceback (most recent call last): 

... 

ValueError: Assumption is inconsistent 

sage: assume(x<1) 

Traceback (most recent call last): 

... 

ValueError: Assumption is redundant 

sage: assumptions() 

[x < 0] 

sage: forget() 

sage: assume(x,'even') 

sage: assume(x,'odd') 

Traceback (most recent call last): 

... 

ValueError: Assumption is inconsistent 

sage: forget() 

 

You can also use assumptions to evaluate simple 

truth values:: 

 

sage: x, y, z = var('x, y, z') 

sage: assume(x>=y,y>=z,z>=x) 

sage: bool(x==z) 

True 

sage: bool(z<x) 

False 

sage: bool(z>y) 

False 

sage: bool(y==z) 

True 

sage: forget() 

sage: assume(x>=1,x<=1) 

sage: bool(x==1) 

True 

sage: bool(x>1) 

False 

sage: forget() 

 

TESTS: 

 

Test that you can do two non-relational 

declarations at once (fixing :trac:`7084`):: 

 

sage: var('m,n') 

(m, n) 

sage: assume(n, 'integer'); assume(m, 'integer') 

sage: sin(n*pi).simplify() 

0 

sage: sin(m*pi).simplify() 

0 

sage: forget() 

sage: sin(n*pi).simplify() 

sin(pi*n) 

sage: sin(m*pi).simplify() 

sin(pi*m) 

 

Check that positive integers can be created (:trac:`20132`) 

 

sage: forget() 

sage: x = SR.var('x', domain='positive') 

sage: assume(x, 'integer') 

sage: x.is_positive() and x.is_integer() 

True 

 

sage: forget() 

sage: x = SR.var('x', domain='integer') 

sage: assume(x > 0) 

sage: x.is_positive() and x.is_integer() 

True 

 

sage: forget() 

sage: assume(x, "integer") 

sage: assume(x > 0) 

sage: x.is_positive() and x.is_integer() 

True 

""" 

for x in preprocess_assumptions(args): 

if isinstance(x, (tuple, list)): 

assume(*x) 

else: 

try: 

x.assume() 

except KeyError: 

raise TypeError("assume not defined for objects of type '%s'"%type(x)) 

 

 

def forget(*args): 

""" 

Forget the given assumption, or call with no arguments to forget 

all assumptions. 

 

Here an assumption is some sort of symbolic constraint. 

 

INPUT: 

 

- ``*args`` -- assumptions (default: forget all 

assumptions) 

 

EXAMPLES: 

 

We define and forget multiple assumptions:: 

 

sage: forget() 

sage: var('x,y,z') 

(x, y, z) 

sage: assume(x>0, y>0, z == 1, y>0) 

sage: sorted(assumptions(), key=lambda x:str(x)) 

[x > 0, y > 0, z == 1] 

sage: forget(x>0, z==1) 

sage: assumptions() 

[y > 0] 

sage: assume(y, 'even', z, 'complex') 

sage: assumptions() 

[y > 0, y is even, z is complex] 

sage: cos(y*pi).simplify() 

1 

sage: forget(y,'even') 

sage: cos(y*pi).simplify() 

cos(pi*y) 

sage: assumptions() 

[y > 0, z is complex] 

sage: forget() 

sage: assumptions() 

[] 

""" 

if len(args) == 0: 

_forget_all() 

return 

for x in preprocess_assumptions(args): 

if isinstance(x, (tuple, list)): 

forget(*x) 

else: 

try: 

x.forget() 

except KeyError: 

raise TypeError("forget not defined for objects of type '%s'"%type(x)) 

 

 

def assumptions(*args): 

""" 

List all current symbolic assumptions. 

 

INPUT: 

 

- ``args`` -- list of variables which can be empty. 

 

OUTPUT: 

 

- list of assumptions on variables. If args is empty it returns all 

assumptions 

 

EXAMPLES:: 

 

sage: var('x, y, z, w') 

(x, y, z, w) 

sage: forget() 

sage: assume(x^2+y^2 > 0) 

sage: assumptions() 

[x^2 + y^2 > 0] 

sage: forget(x^2+y^2 > 0) 

sage: assumptions() 

[] 

sage: assume(x > y) 

sage: assume(z > w) 

sage: sorted(assumptions(), key=lambda x: str(x)) 

[x > y, z > w] 

sage: forget() 

sage: assumptions() 

[] 

 

It is also possible to query for assumptions on a variable independently:: 

 

sage: x, y, z = var('x y z') 

sage: assume(x, 'integer') 

sage: assume(y > 0) 

sage: assume(y**2 + z**2 == 1) 

sage: assume(x < 0) 

sage: assumptions() 

[x is integer, y > 0, y^2 + z^2 == 1, x < 0] 

sage: assumptions(x) 

[x is integer, x < 0] 

sage: assumptions(x, y) 

[x is integer, x < 0, y > 0, y^2 + z^2 == 1] 

sage: assumptions(z) 

[y^2 + z^2 == 1] 

""" 

if len(args) == 0: 

return list(_assumptions) 

 

result = [] 

if len(args) == 1: 

result.extend([statement for statement in _assumptions 

if statement.has(args[0])]) 

else: 

for v in args: 

result += [ statement for statement in list(_assumptions) \ 

if str(v) in str(statement) ] 

return result 

 

 

def _forget_all(): 

""" 

Forget all symbolic assumptions. 

 

This is called by ``forget()``. 

 

EXAMPLES:: 

 

sage: forget() 

sage: var('x,y') 

(x, y) 

sage: assume(x > 0, y < 0) 

sage: bool(x*y < 0) # means definitely true 

True 

sage: bool(x*y > 0) # might not be true 

False 

sage: forget() # implicitly calls _forget_all 

sage: bool(x*y < 0) # might not be true 

False 

sage: bool(x*y > 0) # might not be true 

False 

 

TESTS: 

 

Check that :trac:`7315` is fixed:: 

 

sage: var('m,n') 

(m, n) 

sage: assume(n, 'integer'); assume(m, 'integer') 

sage: sin(n*pi).simplify() 

0 

sage: sin(m*pi).simplify() 

0 

sage: forget() 

sage: sin(n*pi).simplify() 

sin(pi*n) 

sage: sin(m*pi).simplify() 

sin(pi*m) 

""" 

global _assumptions 

if len(_assumptions) == 0: 

return 

#maxima._eval_line('forget([%s]);'%(','.join([x._maxima_init_() for x in _assumptions]))) 

for x in _assumptions[:]: # need to do this because x.forget() removes x from _assumptions 

x.forget() 

_assumptions = [] 

 

class assuming: 

""" 

Temporarily modify assumptions. 

 

Create a context manager in which temporary assumptions are added 

(or substituted) to the current assumptions set. 

 

The set of possible assumptions and declarations is the same as for  

:func:`assume`. 

 

This can be useful in interactive mode to discover the assumptions 

necessary to a given integration, or the exact solution to a system of 

equations. 

 

It can also be used to explore the branches of a :func:`cases()` expression. 

 

As with :func:`assume`, it is an error to add an assumption either redundant 

or inconsistent with the current assumption set (unless ``replace=True`` is 

used). See examples. 

 

INPUT: 

 

- ``*args`` -- assumptions (same format as for :func:`assume`). 

 

- ``replace`` -- a boolean (default : ``False``). 

Specifies whether the new assumptions are added to (default) 

or replace (if ``replace=True``) the current assumption set. 

 

OUTPUT: 

 

A context manager useable in a ``with`` statement (see examples). 

 

EXAMPLES: 

 

Basic functionality : inside a :func:`with assuming:` block, Sage uses the 

updated assumptions database. After exit, the original database is 

restored. :: 

 

sage: var("x") 

x 

sage: forget(assumptions()) 

sage: solve(x^2 == 4,x) 

[x == -2, x == 2] 

sage: with assuming(x > 0): 

....: solve(x^2 == 4,x) 

....:  

[x == 2] 

sage: assumptions() 

[] 

 

The local assumptions can be stacked. We can use this functionality to 

discover incrementally the assumptions necessary to a given calculation 

(and by the way, to check that Sage's default integrator 

(Maxima's, that is), sometimes nitpicks for naught). :: 

 

sage: var("y,k,theta") 

(y, k, theta) 

sage: dgamma(y,k,theta)=y^(k-1)*e^(-y/theta)/(theta^k*gamma(k)) 

sage: integrate(dgamma(y,k,theta),y,0,oo) 

Traceback (most recent call last): 

... 

ValueError: Computation failed since Maxima requested additional constraints; using the 'assume' command before evaluation *may* help (example of legal syntax is 'assume(theta>0)', see `assume?` for more details) 

Is theta positive or negative? 

sage: a1=assuming(theta>0) 

sage: with a1:integrate(dgamma(y,k,theta),y,0,oo) 

Traceback (most recent call last): 

... 

ValueError: Computation failed since Maxima requested additional constraints; using the 'assume' command before evaluation *may* help (example of legal syntax is 'assume(k>0)', see `assume?` for more details) 

Is k positive, negative or zero? 

sage: a2=assuming(k>0) 

sage: with a1,a2:integrate(dgamma(y,k,theta),y,0,oo) 

Traceback (most recent call last): 

... 

ValueError: Computation failed since Maxima requested additional constraints; using the 'assume' command before evaluation *may* help (example of legal syntax is 'assume(k>0)', see `assume?` for more details) 

Is k an integer? 

sage: a3=assuming(k,"noninteger") 

sage: with a1,a2,a3:integrate(dgamma(y,k,theta),y,0,oo) 

1 

sage: a4=assuming(k,"integer") 

sage: with a1,a2,a4:integrate(dgamma(y,k,theta),y,0,oo) 

1 

 

As mentioned above, it is an error to try to introduce redundant or 

inconsistent assumptions. :: 

 

sage: assume(x > 0) 

sage: with assuming(x > -1): "I won't see this" 

Traceback (most recent call last): 

... 

ValueError: Assumption is redundant 

 

sage: with assuming(x < -1): "I won't see this" 

Traceback (most recent call last): 

... 

ValueError: Assumption is inconsistent 

 

""" 

def __init__(self,*args, **kwds): 

""" 

EXAMPLES:: 

 

sage: forget() 

sage: foo=assuming(x>0) 

sage: foo.Ass 

(x > 0,) 

sage: bool(x>-1) 

False 

 

""" 

self.replace=kwds.pop("replace",False) 

self.Ass=args 

 

def __enter__(self): 

""" 

EXAMPLES:: 

 

sage: forget() 

sage: foo=assuming(x>0) 

sage: bool(x>-1) 

False 

sage: foo.__enter__() 

sage: bool(x>-1) 

True 

sage: foo.__exit__() 

sage: bool(x>-1) 

False 

 

""" 

if self.replace: 

self.OldAss=assumptions() 

forget(assumptions()) 

assume(self.Ass) 

 

def __exit__(self, *args, **kwds): 

""" 

EXAMPLES:: 

 

sage: forget() 

sage: foo=assuming(x>0) 

sage: bool(x>-1) 

False 

sage: foo.__enter__() 

sage: bool(x>-1) 

True 

sage: foo.__exit__() 

sage: bool(x>-1) 

False 

sage: forget() 

 

""" 

if self.replace: 

forget(assumptions()) 

assume(self.OldAss) 

else: 

if len(self.Ass)>0: forget(self.Ass)