Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

""" 

Symbolic Integration 

""" 

 

#***************************************************************************** 

# Copyright (C) 2009 Golam Mortuza Hossain <gmhossain@gmail.com> 

# Copyright (C) 2010 Burcin Erocal <burcin@erocal.org> 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#*****************************************************************************` 

from __future__ import print_function 

 

from sage.symbolic.ring import SR, is_SymbolicVariable 

from sage.symbolic.function import BuiltinFunction, Function 

 

################################################################## 

# Table of available integration routines 

################################################################## 

 

# Add new integration routines to the dictionary below. This will make them 

# accessible with the 'algorithm' keyword parameter of top level integrate(). 

available_integrators = {} 

 

import sage.symbolic.integration.external as external 

available_integrators['maxima'] = external.maxima_integrator 

available_integrators['sympy'] = external.sympy_integrator 

available_integrators['mathematica_free'] = external.mma_free_integrator 

available_integrators['fricas'] = external.fricas_integrator 

available_integrators['giac'] = external.giac_integrator 

 

###################################################### 

# 

# Class implementing symbolic integration 

# 

###################################################### 

 

class IndefiniteIntegral(BuiltinFunction): 

def __init__(self): 

""" 

Class to represent an indefinite integral. 

 

EXAMPLES:: 

 

sage: from sage.symbolic.integration.integral import indefinite_integral 

sage: indefinite_integral(log(x), x) #indirect doctest 

x*log(x) - x 

sage: indefinite_integral(x^2, x) 

1/3*x^3 

sage: indefinite_integral(4*x*log(x), x) 

2*x^2*log(x) - x^2 

sage: indefinite_integral(exp(x), 2*x) 

2*e^x 

 

""" 

# The automatic evaluation routine will try these integrators 

# in the given order. This is an attribute of the class instead of 

# a global variable in this module to enable customization by 

# creating a subclasses which define a different set of integrators 

self.integrators = [external.maxima_integrator] 

 

BuiltinFunction.__init__(self, "integrate", nargs=2, conversions={'sympy': 'Integral', 

'giac': 'integrate'}) 

 

def _eval_(self, f, x): 

""" 

EXAMPLES:: 

 

sage: from sage.symbolic.integration.integral import indefinite_integral 

sage: indefinite_integral(exp(x), x) # indirect doctest 

e^x 

sage: indefinite_integral(exp(x), x^2) 

2*(x - 1)*e^x 

""" 

# Check for x 

if not is_SymbolicVariable(x): 

if len(x.variables()) == 1: 

nx = x.variables()[0] 

f = f*x.diff(nx) 

x = nx 

else: 

return None 

 

# we try all listed integration algorithms 

for integrator in self.integrators: 

res = integrator(f, x) 

try: 

return integrator(f, x) 

except NotImplementedError: 

pass 

return None 

 

def _tderivative_(self, f, x, diff_param=None): 

""" 

EXAMPLES:: 

 

sage: from sage.symbolic.integration.integral import indefinite_integral 

sage: f = function('f'); a,b=var('a,b') 

sage: h = indefinite_integral(f(x), x) 

sage: h.diff(x) # indirect doctest 

f(x) 

sage: h.diff(a) 

0 

""" 

if x.has(diff_param): 

return f*x.derivative(diff_param) 

else: 

return f.derivative(diff_param).integral(x) 

 

def _print_latex_(self, f, x): 

""" 

EXAMPLES:: 

 

sage: from sage.symbolic.integration.integral import indefinite_integral 

sage: print_latex = indefinite_integral._print_latex_ 

sage: var('x,a,b') 

(x, a, b) 

sage: f = function('f') 

sage: print_latex(f(x),x) 

'\\int f\\left(x\\right)\\,{d x}' 

sage: latex(integrate(tan(x)/x, x)) 

\int \frac{\tan\left(x\right)}{x}\,{d x} 

""" 

from sage.misc.latex import latex 

if not is_SymbolicVariable(x): 

dx_str = "{d \\left(%s\\right)}"%(latex(x)) 

else: 

dx_str = "{d %s}"%(latex(x)) 

 

return "\\int %s\\,%s"%(latex(f), dx_str) 

 

indefinite_integral = IndefiniteIntegral() 

 

class DefiniteIntegral(BuiltinFunction): 

def __init__(self): 

""" 

The symbolic function representing a definite integral. 

 

EXAMPLES:: 

 

sage: from sage.symbolic.integration.integral import definite_integral 

sage: definite_integral(sin(x),x,0,pi) 

2 

""" 

# The automatic evaluation routine will try these integrators 

# in the given order. This is an attribute of the class instead of 

# a global variable in this module to enable customization by 

# creating a subclasses which define a different set of integrators 

self.integrators = [external.maxima_integrator] 

 

BuiltinFunction.__init__(self, "integrate", nargs=4, conversions={'sympy': 'Integral', 

'giac': 'integrate'}) 

 

def _eval_(self, f, x, a, b): 

""" 

Return the results of symbolic evaluation of the integral 

 

EXAMPLES:: 

 

sage: from sage.symbolic.integration.integral import definite_integral 

sage: definite_integral(exp(x),x,0,1) # indirect doctest 

e - 1 

""" 

# Check for x 

if not is_SymbolicVariable(x): 

if len(x.variables()) == 1: 

nx = x.variables()[0] 

f = f*x.diff(nx) 

x = nx 

else: 

return None 

 

args = (f,x,a,b) 

 

# we try all listed integration algorithms 

for integrator in self.integrators: 

try: 

return integrator(*args) 

except NotImplementedError: 

pass 

return None 

 

def _evalf_(self, f, x, a, b, parent=None, algorithm=None): 

""" 

Return a numerical approximation of the integral 

 

EXAMPLES:: 

 

sage: from sage.symbolic.integration.integral import definite_integral 

sage: h = definite_integral(sin(x)*log(x)/x^2, x, 1, 2); h 

integrate(log(x)*sin(x)/x^2, x, 1, 2) 

sage: h.n() # indirect doctest 

0.14839875208053... 

 

TESTS: 

 

Check if :trac:`3863` is fixed:: 

 

sage: integrate(x^2.7 * e^(-2.4*x), x, 0, 3).n() 

0.154572952320790 

""" 

from sage.calculus.integration import numerical_integral 

# The gsl routine returns a tuple, which also contains the error. 

# We only return the result. 

return numerical_integral(f, a, b)[0] 

 

def _tderivative_(self, f, x, a, b, diff_param=None): 

""" 

Return the derivative of symbolic integration 

 

EXAMPLES:: 

 

sage: from sage.symbolic.integration.integral import definite_integral 

sage: f = function('f'); a,b=var('a,b') 

sage: h = definite_integral(f(x), x,a,b) 

sage: h.diff(x) # indirect doctest 

0 

sage: h.diff(a) 

-f(a) 

sage: h.diff(b) 

f(b) 

""" 

if not x.has(diff_param): 

# integration variable != differentiation variable 

ans = definite_integral(f.diff(diff_param), x, a, b) 

else: 

ans = SR(0) 

return ans + f.subs(x==b)*b.diff(diff_param) \ 

- f.subs(x==a)*a.diff(diff_param) 

 

def _print_latex_(self, f, x, a, b): 

r""" 

Convert this integral to LaTeX notation 

 

EXAMPLES:: 

 

sage: from sage.symbolic.integration.integral import definite_integral 

sage: print_latex = definite_integral._print_latex_ 

sage: var('x,a,b') 

(x, a, b) 

sage: f = function('f') 

sage: print_latex(f(x),x,0,1) 

'\\int_{0}^{1} f\\left(x\\right)\\,{d x}' 

sage: latex(integrate(tan(x)/x, x, 0, 1)) 

\int_{0}^{1} \frac{\tan\left(x\right)}{x}\,{d x} 

""" 

from sage.misc.latex import latex 

if not is_SymbolicVariable(x): 

dx_str = "{d \\left(%s\\right)}"%(latex(x)) 

else: 

dx_str = "{d %s}"%(latex(x)) 

return "\\int_{%s}^{%s} %s\\,%s"%(latex(a), latex(b), latex(f), dx_str) 

 

def _sympy_(self, f, x, a, b): 

""" 

Convert this integral to the equivalent SymPy object 

 

The resulting SymPy integral can be evaluated using ``doit()``. 

 

EXAMPLES:: 

 

sage: integral(x, x, 0, 1, hold=True)._sympy_() 

Integral(x, (x, 0, 1)) 

sage: _.doit() 

1/2 

""" 

from sympy.integrals import Integral 

return Integral(f, (x, a, b)) 

 

definite_integral = DefiniteIntegral() 

 

 

def _normalize_integral_input(f, v=None, a=None, b=None): 

r""" 

Validate and return variable and endpoints for an integral. 

 

INPUT: 

 

- ``f`` -- an expression to integrate; 

 

- ``v`` -- a variable of integration or a triple; 

 

- ``a`` -- (optional) the left endpoint of integration; 

 

- ``b`` -- (optional) the right endpoint of integration. 

 

It is also possible to pass last three parameters in ``v`` as a triple. 

 

OUTPUT: 

 

- a tuple of ``f``, ``v``, ``a``, and ``b``. 

 

EXAMPLES:: 

 

sage: from sage.symbolic.integration.integral import \ 

....: _normalize_integral_input 

sage: _normalize_integral_input(x^2, x, 0, 3) 

(x^2, x, 0, 3) 

sage: _normalize_integral_input(x^2, [x, 0, 3], None, None) 

(x^2, x, 0, 3) 

sage: _normalize_integral_input(x^2, [0, 3], None, None) 

doctest:...: DeprecationWarning: 

Variable of integration should be specified explicitly. 

See http://trac.sagemath.org/12438 for details. 

(x^2, x, 0, 3) 

sage: _normalize_integral_input(x^2, [x], None, None) 

(x^2, x, None, None) 

""" 

if isinstance(v, (list, tuple)) and a is None and b is None: 

if len(v) == 1: # bare variable in a tuple 

v = v[0] 

elif len(v) == 2: # endpoints only 

a, b = v 

v = None 

elif len(v) == 3: # variable and endpoints 

v, a, b = v 

else: 

raise ValueError("invalid input %s - please use variable, " 

"with or without two endpoints" % repr(v)) 

elif b is None and a is not None: 

# two arguments, must be endpoints 

v, a, b = None, v, a 

if v is None: 

from sage.misc.superseded import deprecation 

deprecation(12438, "Variable of integration should be specified explicitly.") 

v = f.default_variable() 

if isinstance(f, Function): # a bare function like sin 

f = f(v) 

if (a is None) ^ (b is None): 

raise TypeError('only one endpoint was given!') 

return f, v, a, b 

 

def integrate(expression, v=None, a=None, b=None, algorithm=None, hold=False): 

r""" 

Returns the indefinite integral with respect to the variable 

`v`, ignoring the constant of integration. Or, if endpoints 

`a` and `b` are specified, returns the definite 

integral over the interval `[a, b]`. 

 

If ``self`` has only one variable, then it returns the 

integral with respect to that variable. 

 

If definite integration fails, it could be still possible to 

evaluate the definite integral using indefinite integration with 

the Newton - Leibniz theorem (however, the user has to ensure that the 

indefinite integral is continuous on the compact interval `[a,b]` and 

this theorem can be applied). 

 

INPUT: 

 

- ``v`` - a variable or variable name. This can also be a tuple of 

the variable (optional) and endpoints (i.e., ``(x,0,1)`` or ``(0,1)``). 

 

- ``a`` - (optional) lower endpoint of definite integral 

 

- ``b`` - (optional) upper endpoint of definite integral 

 

- ``algorithm`` - (default: 'maxima') one of 

 

- 'maxima' - use maxima (the default) 

 

- 'sympy' - use sympy (also in Sage) 

 

- 'mathematica_free' - use http://integrals.wolfram.com/ 

 

- 'fricas' - use FriCAS (the optional fricas spkg has to be installed) 

 

- 'giac' - use Giac 

 

To prevent automatic evaluation use the ``hold`` argument. 

 

.. SEEALSO:: 

 

To integrate a polynomial over a polytope, use the optional 

``latte_int`` package 

:meth:`sage.geometry.polyhedron.base.Polyhedron_base.integrate`. 

 

EXAMPLES:: 

 

sage: x = var('x') 

sage: h = sin(x)/(cos(x))^2 

sage: h.integral(x) 

1/cos(x) 

 

:: 

 

sage: f = x^2/(x+1)^3 

sage: f.integral(x) 

1/2*(4*x + 3)/(x^2 + 2*x + 1) + log(x + 1) 

 

:: 

 

sage: f = x*cos(x^2) 

sage: f.integral(x, 0, sqrt(pi)) 

0 

sage: f.integral(x, a=-pi, b=pi) 

0 

 

:: 

 

sage: f(x) = sin(x) 

sage: f.integral(x, 0, pi/2) 

1 

 

The variable is required, but the endpoints are optional:: 

 

sage: y=var('y') 

sage: integral(sin(x), x) 

-cos(x) 

sage: integral(sin(x), y) 

y*sin(x) 

sage: integral(sin(x), x, pi, 2*pi) 

-2 

sage: integral(sin(x), y, pi, 2*pi) 

pi*sin(x) 

sage: integral(sin(x), (x, pi, 2*pi)) 

-2 

sage: integral(sin(x), (y, pi, 2*pi)) 

pi*sin(x) 

 

Using the ``hold`` parameter it is possible to prevent automatic 

evaluation, which can then be evaluated via :meth:`simplify`:: 

 

sage: integral(x^2, x, 0, 3) 

9 

sage: a = integral(x^2, x, 0, 3, hold=True) ; a 

integrate(x^2, x, 0, 3) 

sage: a.simplify() 

9 

 

Constraints are sometimes needed:: 

 

sage: var('x, n') 

(x, n) 

sage: integral(x^n,x) 

Traceback (most recent call last): 

... 

ValueError: Computation failed since Maxima requested additional 

constraints; using the 'assume' command before evaluation 

*may* help (example of legal syntax is 'assume(n>0)', see `assume?` 

for more details) 

Is n equal to -1? 

sage: assume(n > 0) 

sage: integral(x^n,x) 

x^(n + 1)/(n + 1) 

sage: forget() 

 

Usually the constraints are of sign, but others are possible:: 

 

sage: assume(n==-1) 

sage: integral(x^n,x) 

log(x) 

 

Note that an exception is raised when a definite integral is 

divergent:: 

 

sage: forget() # always remember to forget assumptions you no longer need 

sage: integrate(1/x^3,(x,0,1)) 

Traceback (most recent call last): 

... 

ValueError: Integral is divergent. 

sage: integrate(1/x^3,x,-1,3) 

Traceback (most recent call last): 

... 

ValueError: Integral is divergent. 

 

But Sage can calculate the convergent improper integral of 

this function:: 

 

sage: integrate(1/x^3,x,1,infinity) 

1/2 

 

The examples in the Maxima documentation:: 

 

sage: var('x, y, z, b') 

(x, y, z, b) 

sage: integral(sin(x)^3, x) 

1/3*cos(x)^3 - cos(x) 

sage: integral(x/sqrt(b^2-x^2), b) 

x*log(2*b + 2*sqrt(b^2 - x^2)) 

sage: integral(x/sqrt(b^2-x^2), x) 

-sqrt(b^2 - x^2) 

sage: integral(cos(x)^2 * exp(x), x, 0, pi) 

3/5*e^pi - 3/5 

sage: integral(x^2 * exp(-x^2), x, -oo, oo) 

1/2*sqrt(pi) 

 

We integrate the same function in both Mathematica and Sage (via 

Maxima):: 

 

sage: _ = var('x, y, z') 

sage: f = sin(x^2) + y^z 

sage: g = mathematica(f) # optional - mathematica 

sage: print(g) # optional - mathematica 

z 2 

y + Sin[x ] 

sage: print(g.Integrate(x)) # optional - mathematica 

z Pi 2 

x y + Sqrt[--] FresnelS[Sqrt[--] x] 

2 Pi 

sage: print(f.integral(x)) 

x*y^z + 1/16*sqrt(pi)*((I + 1)*sqrt(2)*erf((1/2*I + 1/2)*sqrt(2)*x) + (I - 1)*sqrt(2)*erf((1/2*I - 1/2)*sqrt(2)*x) - (I - 1)*sqrt(2)*erf(sqrt(-I)*x) + (I + 1)*sqrt(2)*erf((-1)^(1/4)*x)) 

 

Alternatively, just use algorithm='mathematica_free' to integrate via Mathematica 

over the internet (does NOT require a Mathematica license!):: 

 

sage: _ = var('x, y, z') # optional - internet 

sage: f = sin(x^2) + y^z # optional - internet 

sage: f.integrate(x, algorithm="mathematica_free") # optional - internet 

x*y^z + sqrt(1/2)*sqrt(pi)*fresnels(sqrt(2)*x/sqrt(pi)) 

 

We can also use Sympy:: 

 

sage: integrate(x*sin(log(x)), x) 

-1/5*x^2*(cos(log(x)) - 2*sin(log(x))) 

sage: integrate(x*sin(log(x)), x, algorithm='sympy') 

-1/5*x^2*cos(log(x)) + 2/5*x^2*sin(log(x)) 

sage: _ = var('y, z') 

sage: (x^y - z).integrate(y) 

-y*z + x^y/log(x) 

sage: (x^y - z).integrate(y, algorithm="sympy") 

-y*z + cases(((log(x) == 0, y), (1, x^y/log(x)))) 

 

We integrate the above function in Maple now:: 

 

sage: g = maple(f); g.sort() # optional - maple 

y^z+sin(x^2) 

sage: g.integrate(x).sort() # optional - maple 

x*y^z+1/2*2^(1/2)*Pi^(1/2)*FresnelS(2^(1/2)/Pi^(1/2)*x) 

 

We next integrate a function with no closed form integral. Notice 

that the answer comes back as an expression that contains an 

integral itself. 

 

:: 

 

sage: A = integral(1/ ((x-4) * (x^3+2*x+1)), x); A 

-1/73*integrate((x^2 + 4*x + 18)/(x^3 + 2*x + 1), x) + 1/73*log(x - 4) 

 

We now show that floats are not converted to rationals 

automatically since we by default have keepfloat: true in maxima. 

 

:: 

 

sage: integral(e^(-x^2),(x, 0, 0.1)) 

0.05623145800914245*sqrt(pi) 

 

An example of an integral that fricas can integrate, but the 

default integrator cannot:: 

 

sage: f(x) = sqrt(x+sqrt(1+x^2))/x 

sage: integrate(f(x), x, algorithm="fricas") # optional - fricas 

2*sqrt(x + sqrt(x^2 + 1)) - 2*arctan(sqrt(x + sqrt(x^2 + 1))) - log(sqrt(x + sqrt(x^2 + 1)) + 1) + log(sqrt(x + sqrt(x^2 + 1)) - 1) 

 

The following definite integral is not found with the 

default integrator:: 

 

sage: f(x) = (x^4 - 3*x^2 + 6) / (x^6 - 5*x^4 + 5*x^2 + 4) 

sage: integrate(f(x), x, 1, 2) 

integrate((x^4 - 3*x^2 + 6)/(x^6 - 5*x^4 + 5*x^2 + 4), x, 1, 2) 

 

Both fricas and sympy give the correct result:: 

 

sage: integrate(f(x), x, 1, 2, algorithm="fricas") # optional - fricas 

-1/2*pi + arctan(8) + arctan(5) + arctan(2) + arctan(1/2) 

sage: integrate(f(x), x, 1, 2, algorithm="sympy") 

-1/2*pi + arctan(8) + arctan(5) + arctan(2) + arctan(1/2) 

 

Using Giac to integrate the absolute value of a trigonometric expression:: 

 

sage: integrate(abs(cos(x)), x, 0, 2*pi, algorithm='giac') 

4 

 

ALIASES: integral() and integrate() are the same. 

 

EXAMPLES: 

 

Here is an example where we have to use assume:: 

 

sage: a,b = var('a,b') 

sage: integrate(1/(x^3 *(a+b*x)^(1/3)), x) 

Traceback (most recent call last): 

... 

ValueError: Computation failed since Maxima requested additional 

constraints; using the 'assume' command before evaluation 

*may* help (example of legal syntax is 'assume(a>0)', see `assume?` 

for more details) 

Is a positive or negative? 

 

So we just assume that `a>0` and the integral works:: 

 

sage: assume(a>0) 

sage: integrate(1/(x^3 *(a+b*x)^(1/3)), x) 

2/9*sqrt(3)*b^2*arctan(1/3*sqrt(3)*(2*(b*x + a)^(1/3) + a^(1/3))/a^(1/3))/a^(7/3) - 1/9*b^2*log((b*x + a)^(2/3) + (b*x + a)^(1/3)*a^(1/3) + a^(2/3))/a^(7/3) + 2/9*b^2*log((b*x + a)^(1/3) - a^(1/3))/a^(7/3) + 1/6*(4*(b*x + a)^(5/3)*b^2 - 7*(b*x + a)^(2/3)*a*b^2)/((b*x + a)^2*a^2 - 2*(b*x + a)*a^3 + a^4) 

 

TESTS: 

 

The following integral was broken prior to Maxima 5.15.0 - 

see :trac:`3013`:: 

 

sage: integrate(sin(x)*cos(10*x)*log(x), x) 

-1/198*(9*cos(11*x) - 11*cos(9*x))*log(x) + 1/44*Ei(11*I*x) - 1/36*Ei(9*I*x) - 1/36*Ei(-9*I*x) + 1/44*Ei(-11*I*x) 

 

It is no longer possible to use certain functions without an 

explicit variable. Instead, evaluate the function at a variable, 

and then take the integral:: 

 

sage: integrate(sin) 

Traceback (most recent call last): 

... 

TypeError: unable to convert sin to a symbolic expression 

 

sage: integrate(sin(x), x) 

-cos(x) 

sage: integrate(sin(x), x, 0, 1) 

-cos(1) + 1 

 

Check if :trac:`780` is fixed:: 

 

sage: _ = var('x,y') 

sage: f = log(x^2+y^2) 

sage: res = integral(f,x,0.0001414, 1.); res 

Traceback (most recent call last): 

... 

ValueError: Computation failed since Maxima requested additional constraints; using the 'assume' command before evaluation *may* help (example of legal syntax is 'assume(50015104*y^2-50015103>0)', see `assume?` for more details) 

Is 50015104*y^2-50015103 positive, negative or zero? 

sage: assume(y>1) 

sage: res = integral(f,x,0.0001414, 1.); res 

2*y*arctan(1.0/y) - 2*y*arctan(0.0001414/y) + 1.0*log(1.0*y^2 + 1.0) - 0.0001414*log(1.0*y^2 + 1.9993959999999997e-08) - 1.9997172 

sage: nres = numerical_integral(f.subs(y=2), 0.0001414, 1.); nres 

(1.4638323264144..., 1.6251803529759...e-14) 

sage: res.subs(y=2).n() 

1.46383232641443 

sage: nres = numerical_integral(f.subs(y=.5), 0.0001414, 1.); nres 

(-0.669511708872807, 7.768678110854711e-15) 

sage: res.subs(y=.5).n() 

-0.669511708872807 

 

Check if :trac:`6816` is fixed:: 

 

sage: var('t,theta') 

(t, theta) 

sage: integrate(t*cos(-theta*t),t,0,pi) 

(pi*theta*sin(pi*theta) + cos(pi*theta))/theta^2 - 1/theta^2 

sage: integrate(t*cos(-theta*t),(t,0,pi)) 

(pi*theta*sin(pi*theta) + cos(pi*theta))/theta^2 - 1/theta^2 

sage: integrate(t*cos(-theta*t),t) 

(t*theta*sin(t*theta) + cos(t*theta))/theta^2 

sage: integrate(x^2,(x)) # this worked before 

1/3*x^3 

sage: integrate(x^2,(x,)) # this didn't 

1/3*x^3 

sage: integrate(x^2,(x,1,2)) 

7/3 

sage: integrate(x^2,(x,1,2,3)) 

Traceback (most recent call last): 

... 

ValueError: invalid input (x, 1, 2, 3) - please use variable, with or without two endpoints 

 

Note that this used to be the test, but it is actually divergent 

(Maxima currently asks for assumptions on theta):: 

 

sage: integrate(t*cos(-theta*t),(t,-oo,oo)) 

Traceback (most recent call last): 

... 

ValueError: Computation failed since Maxima requested additional constraints;... 

 

Check if :trac:`6189` is fixed:: 

 

sage: n = N; n 

<function numerical_approx at ...> 

sage: F(x) = 1/sqrt(2*pi*1^2)*exp(-1/(2*1^2)*(x-0)^2) 

sage: G(x) = 1/sqrt(2*pi*n(1)^2)*exp(-1/(2*n(1)^2)*(x-n(0))^2) 

sage: integrate( (F(x)-F(x))^2, x, -infinity, infinity).n() 

0.000000000000000 

sage: integrate( ((F(x)-G(x))^2).expand(), x, -infinity, infinity).n() 

-6.26376265908397e-17 

sage: integrate( (F(x)-G(x))^2, x, -infinity, infinity).n()# abstol 1e-6 

0 

 

This was broken before Maxima 5.20:: 

 

sage: exp(-x*i).integral(x,0,1) 

I*e^(-I) - I 

 

Test deprecation warning when variable is not specified:: 

 

sage: x.integral() 

doctest:...: DeprecationWarning: 

Variable of integration should be specified explicitly. 

See http://trac.sagemath.org/12438 for details. 

1/2*x^2 

 

Test that :trac:`8729` is fixed:: 

 

sage: t = var('t') 

sage: a = sqrt((sin(t))^2 + (cos(t))^2) 

sage: integrate(a, t, 0, 2*pi) 

2*pi 

sage: a.simplify_full().simplify_trig() 

1 

 

Maxima uses Cauchy Principal Value calculations to 

integrate certain convergent integrals. Here we test 

that this does not raise an error message (see :trac:`11987`):: 

 

sage: integrate(sin(x)*sin(x/3)/x^2, x, 0, oo) 

1/6*pi 

 

Maxima returned a negative value for this integral prior to 

maxima-5.24 (:trac:`10923`). Ideally we would get an answer in terms 

of the gamma function; however, we get something equivalent:: 

 

sage: actual_result = integral(e^(-1/x^2), x, 0, 1) 

sage: actual_result.canonicalize_radical() 

(sqrt(pi)*(erf(1)*e - e) + 1)*e^(-1) 

sage: ideal_result = 1/2*gamma(-1/2, 1) 

sage: error = actual_result - ideal_result 

sage: error.numerical_approx() # abs tol 1e-10 

0 

 

We will not get an evaluated answer here, which is better than 

the previous (wrong) answer of zero. See :trac:`10914`:: 

 

sage: f = abs(sin(x)) 

sage: integrate(f, x, 0, 2*pi) # long time (4s on sage.math, 2012) 

integrate(abs(sin(x)), x, 0, 2*pi) 

 

Another incorrect integral fixed upstream in Maxima, from 

:trac:`11233`:: 

 

sage: a,t = var('a,t') 

sage: assume(a>0) 

sage: assume(x>0) 

sage: f = log(1 + a/(x * t)^2) 

sage: F = integrate(f, t, 1, Infinity) 

sage: F(x=1, a=7).numerical_approx() # abs tol 1e-10 

4.32025625668262 

sage: forget() 

 

Verify that MinusInfinity works with sympy (:trac:`12345`):: 

 

sage: integral(1/x^2, x, -infinity, -1, algorithm='sympy') 

1 

 

Check that :trac:`11737` is fixed:: 

 

sage: N(integrate(sin(x^2)/(x^2), x, 1, infinity), prec=54) 

0.285736646322853 

sage: N(integrate(sin(x^2)/(x^2), x, 1, infinity)) # known bug (non-zero imag part) 

0.285736646322853 

 

Check that :trac:`14209` is fixed:: 

 

sage: integral(e^(-abs(x))/cosh(x),x,-infinity,infinity) 

2*log(2) 

sage: integral(e^(-abs(x))/cosh(x),x,-infinity,infinity) 

2*log(2) 

 

Check that :trac:`12628` is fixed:: 

 

sage: var('z,n') 

(z, n) 

sage: f(z, n) = sin(n*z) / (n*z) 

sage: integrate(f(z,1)*f(z,3)*f(z,5)*f(z,7),z,0,oo) 

22/315*pi 

sage: for k in srange(1, 16, 2): 

....: print(integrate(prod(f(z, ell) 

....: for ell in srange(1, k+1, 2)), z, 0, oo)) 

1/2*pi 

1/6*pi 

1/10*pi 

22/315*pi 

3677/72576*pi 

48481/1247400*pi 

193359161/6227020800*pi 

5799919/227026800*pi 

 

Check that :trac:`12628` is fixed:: 

 

sage: integrate(1/(sqrt(x)*((1+sqrt(x))^2)),x,1,9) 

1/2 

 

Check that :trac:`8728` is fixed:: 

 

sage: forget() 

sage: c,w,T = var('c,w,T') 

sage: assume(1-c^2 > 0) 

sage: assume(abs(c) - sqrt(1-c^2) - 1 > 0) 

sage: assume(abs(sqrt(1-c^2)-1) - abs(c) > 0) 

sage: integrate(cos(w+T) / (1+c*cos(T))^2, T, 0, 2*pi) 

2*pi*sqrt(-c^2 + 1)*c*cos(w)/(c^4 - 2*c^2 + 1) 

 

Check that :trac:`13733` is fixed:: 

 

sage: a = integral(log(cot(x) - 1), x, 0, pi/4); a # long time (about 6 s) 

-1/4*pi*log(2) - 1/2*I*dilog(I + 1) + 1/2*I*dilog(-I + 1) + 1/2*I*dilog(1/2*I + 1/2) - 1/2*I*dilog(-1/2*I + 1/2) 

sage: abs(N(a - pi*log(2)/8)) < 1e-15 # long time 

True 

 

Check that :trac:`17968` is fixed:: 

 

sage: a = N(integrate(exp(x^3), (x, 1, 2)), prec=54) 

sage: a.real_part() # abs tol 1e-13 

275.510983763312 

sage: a.imag_part() # abs tol 1e-13 

0.0 

""" 

expression, v, a, b = _normalize_integral_input(expression, v, a, b) 

if algorithm is not None: 

integrator = available_integrators.get(algorithm) 

if not integrator: 

raise ValueError("Unknown algorithm: %s" % algorithm) 

return integrator(expression, v, a, b) 

if a is None: 

return indefinite_integral(expression, v, hold=hold) 

else: 

return definite_integral(expression, v, a, b, hold=hold) 

 

integral = integrate