Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

""" 

Symbolic Series 

  

Symbolic series are special kinds of symbolic expressions that are 

constructed via the 

:meth:`Expression.series <sage.symbolic.expression.Expression.series>` 

method. 

They usually have an ``Order()`` term unless the series representation 

is exact, see 

:meth:`~sage.symbolic.series.SymbolicSeries.is_terminating_series`. 

  

For series over general rings see 

:class:`power series <sage.rings.power_series_poly.PowerSeries_poly>` 

and 

:class:`Laurent series<sage.rings.laurent_series_ring_element.LaurentSeries>`. 

  

EXAMPLES: 

  

We expand a polynomial in `x` about `0`, about `1`, and also truncate 

it back to a polynomial:: 

  

sage: var('x,y') 

(x, y) 

sage: f = (x^3 - sin(y)*x^2 - 5*x + 3); f 

x^3 - x^2*sin(y) - 5*x + 3 

sage: g = f.series(x, 4); g 

3 + (-5)*x + (-sin(y))*x^2 + 1*x^3 + Order(x^4) 

sage: g.truncate() 

x^3 - x^2*sin(y) - 5*x + 3 

sage: g = f.series(x==1, oo); g 

(-sin(y) - 1) + (-2*sin(y) - 2)*(x - 1) + (-sin(y) + 3)*(x - 1)^2 + 1*(x - 1)^3 

sage: h = g.truncate(); h 

(x - 1)^3 - (x - 1)^2*(sin(y) - 3) - 2*(x - 1)*(sin(y) + 1) - sin(y) - 1 

sage: h.expand() 

x^3 - x^2*sin(y) - 5*x + 3 

  

We compute another series expansion of an analytic function:: 

  

sage: f = sin(x)/x^2 

sage: f.series(x,7) 

1*x^(-1) + (-1/6)*x + 1/120*x^3 + (-1/5040)*x^5 + Order(x^7) 

sage: f.series(x==1,3) 

(sin(1)) + (cos(1) - 2*sin(1))*(x - 1) + (-2*cos(1) + 5/2*sin(1))*(x - 1)^2 + Order((x - 1)^3) 

sage: f.series(x==1,3).truncate().expand() 

-2*x^2*cos(1) + 5/2*x^2*sin(1) + 5*x*cos(1) - 7*x*sin(1) - 3*cos(1) + 11/2*sin(1) 

  

Following the GiNaC tutorial, we use John Machin's amazing 

formula `\pi = 16 \mathrm{tan}^{-1}(1/5) - 4 \mathrm{tan}^{-1}(1/239)` 

to compute digits of `\pi`. We expand the arc tangent around 0 and insert 

the fractions 1/5 and 1/239. 

  

:: 

  

sage: x = var('x') 

sage: f = atan(x).series(x, 10); f 

1*x + (-1/3)*x^3 + 1/5*x^5 + (-1/7)*x^7 + 1/9*x^9 + Order(x^10) 

sage: (16*f.subs(x==1/5) - 4*f.subs(x==1/239)).n() 

3.14159268240440 

  

Note: The result of an operation or function of series is not automatically 

expanded to a series. This must be explicitly done by the user:: 

  

sage: ex1 = sin(x).series(x, 4); ex1 

1*x + (-1/6)*x^3 + Order(x^4) 

sage: ex2 = cos(x).series(x, 4); ex2 

1 + (-1/2)*x^2 + Order(x^4) 

sage: ex1 + ex2 

(1 + (-1/2)*x^2 + Order(x^4)) + (1*x + (-1/6)*x^3 + Order(x^4)) 

sage: (ex1 + ex2).series(x,4) 

1 + 1*x + (-1/2)*x^2 + (-1/6)*x^3 + Order(x^4) 

sage: x*ex1 

x*(1*x + (-1/6)*x^3 + Order(x^4)) 

sage: (x*ex1).series(x,5) 

1*x^2 + (-1/6)*x^4 + Order(x^5) 

sage: sin(ex1) 

sin(1*x + (-1/6)*x^3 + Order(x^4)) 

sage: sin(ex1).series(x,9) 

1*x + (-1/3)*x^3 + 11/120*x^5 + (-53/2520)*x^7 + Order(x^9) 

sage: (sin(x^2)^(-5)).series(x,3) 

1*x^(-10) + 5/6*x^(-6) + 3/8*x^(-2) + 367/3024*x^2 + Order(x^3) 

sage: (cot(x)^(-3)).series(x,3) 

Order(x^3) 

sage: (cot(x)^(-3)).series(x,4) 

1*x^3 + Order(x^4) 

  

TESTS: 

  

Check that :trac:`20088` is fixed:: 

  

sage: ((1+x).series(x)^pi).series(x,3) 

1 + pi*x + (-1/2*pi + 1/2*pi^2)*x^2 + Order(x^3) 

  

Check that :trac:`14878` is fixed, this should take only microseconds:: 

  

sage: sin(x*sin(x*sin(x*sin(x)))).series(x,8) 

1*x^4 + (-1/6)*x^6 + Order(x^8) 

sage: sin(x*sin(x*sin(x*sin(x)))).series(x,12) 

1*x^4 + (-1/6)*x^6 + (-19/120)*x^8 + (-421/5040)*x^10 + Order(x^12) 

  

Check that :trac:`22959` is fixed:: 

  

sage: (x/(1-x^2)).series(x==0, 10) 

1*x + 1*x^3 + 1*x^5 + 1*x^7 + 1*x^9 + Order(x^10) 

sage: (x/(1-x^2)).series(x==0, 11) 

1*x + 1*x^3 + 1*x^5 + 1*x^7 + 1*x^9 + Order(x^11) 

sage: (x^2/(1-x^2)).series(x==0, 10) 

1*x^2 + 1*x^4 + 1*x^6 + 1*x^8 + Order(x^10) 

sage: (x^2/(1-x^2)).series(x==0, 11) 

1*x^2 + 1*x^4 + 1*x^6 + 1*x^8 + 1*x^10 + Order(x^11) 

  

Check that :trac:`22733` is fixed:: 

  

sage: _ = var('z') 

sage: z.series(x) 

(z) 

""" 

  

#***************************************************************************** 

# Copyright (C) 2015 Ralf Stephan <ralf@ark.in-berlin.de> 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 2 of the License, or 

# (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#***************************************************************************** 

  

from sage.libs.pynac.pynac cimport * 

from sage.symbolic.expression cimport Expression, new_Expression_from_GEx 

  

cdef class SymbolicSeries(Expression): 

def __init__(self, SR): 

""" 

Trivial constructor. 

  

EXAMPLES:: 

  

sage: loads(dumps((x+x^3).series(x,2))) 

1*x + Order(x^2) 

""" 

Expression.__init__(self, SR, 0) 

self._parent = SR 

  

def is_series(self): 

""" 

TESTS:: 

  

sage: ex = sin(x).series(x,5) 

sage: ex.is_series() 

doctest:...: DeprecationWarning: ex.is_series() is deprecated. Use isinstance(ex, sage.symbolic.series.SymbolicSeries) instead 

See http://trac.sagemath.org/17659 for details. 

True 

""" 

from sage.misc.superseded import deprecation 

deprecation(17659, "ex.is_series() is deprecated. Use isinstance(ex, sage.symbolic.series.SymbolicSeries) instead") 

return True 

  

def is_terminating_series(self): 

""" 

Return True if the series is without order term. 

  

A series is terminating if it can be represented exactly, 

without requiring an order term. You can explicitly 

request terminating series by setting the order to 

positive infinity. 

  

OUTPUT: 

  

Boolean. ``True`` if the series has no order term. 

  

EXAMPLES:: 

  

sage: (x^5+x^2+1).series(x, +oo) 

1 + 1*x^2 + 1*x^5 

sage: (x^5+x^2+1).series(x,+oo).is_terminating_series() 

True 

sage: SR(5).is_terminating_series() 

False 

sage: exp(x).series(x,10).is_terminating_series() 

False 

""" 

return g_is_a_terminating_series((<Expression>self)._gobj) 

  

def truncate(self): 

""" 

Given a power series or expression, return the corresponding 

expression without the big oh. 

  

OUTPUT: 

  

A symbolic expression. 

  

EXAMPLES:: 

  

sage: f = sin(x)/x^2 

sage: f.truncate() 

sin(x)/x^2 

sage: f.series(x,7) 

1*x^(-1) + (-1/6)*x + 1/120*x^3 + (-1/5040)*x^5 + Order(x^7) 

sage: f.series(x,7).truncate() 

-1/5040*x^5 + 1/120*x^3 - 1/6*x + 1/x 

sage: f.series(x==1,3).truncate().expand() 

-2*x^2*cos(1) + 5/2*x^2*sin(1) + 5*x*cos(1) - 7*x*sin(1) - 3*cos(1) + 11/2*sin(1) 

""" 

return new_Expression_from_GEx(self._parent, series_to_poly(self._gobj)) 

  

def default_variable(self): 

""" 

Return the expansion variable of this symbolic series. 

  

EXAMPLES:: 

  

sage: s=(1/(1-x)).series(x,3); s 

1 + 1*x + 1*x^2 + Order(x^3) 

sage: s.default_variable() 

x 

""" 

cdef GEx x = g_series_var(self._gobj) 

cdef Expression ex = new_Expression_from_GEx(self._parent, x) 

return ex 

  

def coefficients(self, x=None, sparse=True): 

r""" 

Return the coefficients of this symbolic series as a list of pairs. 

  

INPUT: 

  

- ``x`` -- optional variable. 

  

- ``sparse`` -- Boolean. If ``False`` return a list with as much 

entries as the order of the series. 

  

OUTPUT: 

  

Depending on the value of ``sparse``, 

  

- A list of pairs ``(expr, n)``, where ``expr`` is a symbolic 

expression and ``n`` is a power (``sparse=True``, default) 

  

- A list of expressions where the ``n``-th element is the coefficient of 

``x^n`` when self is seen as polynomial in ``x`` (``sparse=False``). 

  

EXAMPLES:: 

  

sage: s=(1/(1-x)).series(x,6); s 

1 + 1*x + 1*x^2 + 1*x^3 + 1*x^4 + 1*x^5 + Order(x^6) 

sage: s.coefficients() 

[[1, 0], [1, 1], [1, 2], [1, 3], [1, 4], [1, 5]] 

sage: s.coefficients(x, sparse=False) 

[1, 1, 1, 1, 1, 1] 

sage: x,y = var("x,y") 

sage: s=(1/(1-y*x-x)).series(x,3); s 

1 + (y + 1)*x + ((y + 1)^2)*x^2 + Order(x^3) 

sage: s.coefficients(x, sparse=False) 

[1, y + 1, (y + 1)^2] 

  

""" 

if x is None: 

x = self.default_variable() 

l = [[self.coefficient(x, d), d] for d in xrange(self.degree(x))] 

if sparse: 

return l 

else: 

from sage.rings.integer_ring import ZZ 

if any(not c[1] in ZZ for c in l): 

raise ValueError("Cannot return dense coefficient list with noninteger exponents.") 

val = l[0][1] 

if val < 0: 

raise ValueError("Cannot return dense coefficient list with negative valuation.") 

deg = l[-1][1] 

ret = [ZZ(0)] * int(deg+1) 

for c in l: 

ret[c[1]] = c[0] 

return ret 

  

def power_series(self, base_ring): 

""" 

Return algebraic power series associated to this symbolic 

series. The coefficients must be coercible to the base ring. 

  

EXAMPLES:: 

  

sage: ex=(gamma(1-x)).series(x,3); ex 

1 + euler_gamma*x + (1/2*euler_gamma^2 + 1/12*pi^2)*x^2 + Order(x^3) 

sage: g=ex.power_series(SR); g 

1 + euler_gamma*x + (1/2*euler_gamma^2 + 1/12*pi^2)*x^2 + O(x^3) 

sage: g.parent() 

Power Series Ring in x over Symbolic Ring 

""" 

from sage.rings.all import PowerSeriesRing 

R = PowerSeriesRing(base_ring, names=str(self.default_variable())) 

return R(self.list(), self.degree(self.default_variable()))