Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

r""" 

General linear group of a free module 

 

The set `\mathrm{GL}(M)` of automorphisms (i.e. invertible endomorphisms) of a 

free module of finite rank `M` is a group under composition of automorphisms, 

named the *general linear group* of `M`. In other words, `\mathrm{GL}(M)` is 

the group of units (i.e. invertible elements) of `\mathrm{End}(M)`, the 

endomorphism ring of `M`. 

 

The group `\mathrm{GL}(M)` is implemented via the class 

:class:`FreeModuleLinearGroup`. 

 

AUTHORS: 

 

- Eric Gourgoulhon (2015): initial version 

 

REFERENCES: 

 

- Chap. 15 of R. Godement : *Algebra* [God1968]_ 

 

""" 

#****************************************************************************** 

# Copyright (C) 2015 Eric Gourgoulhon <eric.gourgoulhon@obspm.fr> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# as published by the Free Software Foundation; either version 2 of 

# the License, or (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#****************************************************************************** 

 

from sage.structure.unique_representation import UniqueRepresentation 

from sage.structure.parent import Parent 

from sage.categories.groups import Groups 

from sage.tensor.modules.finite_rank_free_module import FiniteRankFreeModule 

from sage.tensor.modules.free_module_automorphism import FreeModuleAutomorphism 

 

class FreeModuleLinearGroup(UniqueRepresentation, Parent): 

r""" 

General linear group of a free module of finite rank over a commutative 

ring. 

 

Given a free module of finite rank `M` over a commutative ring `R`, the 

*general linear group* of `M` is the group `\mathrm{GL}(M)` of 

automorphisms (i.e. invertible endomorphisms) of `M`. It is the group of 

units (i.e. invertible elements) of `\mathrm{End}(M)`, the endomorphism 

ring of `M`. 

 

This is a Sage *parent* class, whose *element* class is 

:class:`~sage.tensor.modules.free_module_automorphism.FreeModuleAutomorphism`. 

 

INPUT: 

 

- ``fmodule`` -- free module `M` of finite rank over a commutative ring 

`R`, as an instance of 

:class:`~sage.tensor.modules.finite_rank_free_module.FiniteRankFreeModule` 

 

EXAMPLES: 

 

General linear group of a free `\ZZ`-module of rank 3:: 

 

sage: M = FiniteRankFreeModule(ZZ, 3, name='M') 

sage: e = M.basis('e') 

sage: from sage.tensor.modules.free_module_linear_group import FreeModuleLinearGroup 

sage: GL = FreeModuleLinearGroup(M) ; GL 

General linear group of the Rank-3 free module M over the Integer Ring 

 

Instead of importing FreeModuleLinearGroup in the global name space, it is 

recommended to use the module's method 

:meth:`~sage.tensor.modules.finite_rank_free_module.FiniteRankFreeModule.general_linear_group`:: 

 

sage: GL = M.general_linear_group() ; GL 

General linear group of the Rank-3 free module M over the Integer Ring 

sage: latex(GL) 

\mathrm{GL}\left( M \right) 

 

As most parents, the general linear group has a unique instance:: 

 

sage: GL is M.general_linear_group() 

True 

 

`\mathrm{GL}(M)` is in the category of groups:: 

 

sage: GL.category() 

Category of groups 

sage: GL in Groups() 

True 

 

``GL`` is a *parent* object, whose elements are automorphisms of `M`, 

represented by instances of the class 

:class:`~sage.tensor.modules.free_module_automorphism.FreeModuleAutomorphism`:: 

 

sage: GL.Element 

<class 'sage.tensor.modules.free_module_automorphism.FreeModuleAutomorphism'> 

sage: a = GL.an_element() ; a 

Automorphism of the Rank-3 free module M over the Integer Ring 

sage: a.matrix(e) 

[ 1 0 0] 

[ 0 -1 0] 

[ 0 0 1] 

sage: a in GL 

True 

sage: GL.is_parent_of(a) 

True 

 

As an endomorphism, ``a`` maps elements of `M` to elements of `M`:: 

 

sage: v = M.an_element() ; v 

Element of the Rank-3 free module M over the Integer Ring 

sage: v.display() 

e_0 + e_1 + e_2 

sage: a(v) 

Element of the Rank-3 free module M over the Integer Ring 

sage: a(v).display() 

e_0 - e_1 + e_2 

 

An automorphism can also be viewed as a tensor of type `(1,1)` on `M`:: 

 

sage: a.tensor_type() 

(1, 1) 

sage: a.display(e) 

e_0*e^0 - e_1*e^1 + e_2*e^2 

sage: type(a) 

<class 'sage.tensor.modules.free_module_linear_group.FreeModuleLinearGroup_with_category.element_class'> 

 

As for any group, the identity element is obtained by the method 

:meth:`one`:: 

 

sage: id = GL.one() ; id 

Identity map of the Rank-3 free module M over the Integer Ring 

sage: id*a == a 

True 

sage: a*id == a 

True 

sage: a*a^(-1) == id 

True 

sage: a^(-1)*a == id 

True 

 

The identity element is of course the identity map of the module `M`:: 

 

sage: id(v) == v 

True 

sage: id.matrix(e) 

[1 0 0] 

[0 1 0] 

[0 0 1] 

 

The module's changes of basis are stored as elements of the general linear 

group:: 

 

sage: f = M.basis('f', from_family=(-e[1], 4*e[0]+3*e[2], 7*e[0]+5*e[2])) 

sage: f 

Basis (f_0,f_1,f_2) on the Rank-3 free module M over the Integer Ring 

sage: M.change_of_basis(e,f) 

Automorphism of the Rank-3 free module M over the Integer Ring 

sage: M.change_of_basis(e,f) in GL 

True 

sage: M.change_of_basis(e,f).parent() 

General linear group of the Rank-3 free module M over the Integer Ring 

sage: M.change_of_basis(e,f).matrix(e) 

[ 0 4 7] 

[-1 0 0] 

[ 0 3 5] 

sage: M.change_of_basis(e,f) == M.change_of_basis(f,e).inverse() 

True 

 

Since every automorphism is an endomorphism, there is a coercion 

`\mathrm{GL}(M) \rightarrow \mathrm{End}(M)` (the endomorphism ring of 

module `M`):: 

 

sage: End(M).has_coerce_map_from(GL) 

True 

 

(see :class:`~sage.tensor.modules.free_module_homset.FreeModuleHomset` for 

details), but not in the reverse direction, since only bijective 

endomorphisms are automorphisms:: 

 

sage: GL.has_coerce_map_from(End(M)) 

False 

 

A bijective endomorphism can be converted to an element of 

`\mathrm{GL}(M)`:: 

 

sage: h = M.endomorphism([[1,0,0], [0,-1,2], [0,1,-3]]) ; h 

Generic endomorphism of Rank-3 free module M over the Integer Ring 

sage: h.parent() is End(M) 

True 

sage: ah = GL(h) ; ah 

Automorphism of the Rank-3 free module M over the Integer Ring 

sage: ah.parent() is GL 

True 

 

As maps `M\rightarrow M`, ``ah`` and ``h`` are identical:: 

 

sage: v # recall 

Element of the Rank-3 free module M over the Integer Ring 

sage: ah(v) == h(v) 

True 

sage: ah.matrix(e) == h.matrix(e) 

True 

 

Of course, non-invertible endomorphisms cannot be converted to elements of 

`\mathrm{GL}(M)`:: 

 

sage: GL(M.endomorphism([[0,0,0], [0,-1,2], [0,1,-3]])) 

Traceback (most recent call last): 

... 

TypeError: the Generic endomorphism of Rank-3 free module M over the 

Integer Ring is not invertible 

 

Similarly, there is a coercion `\mathrm{GL}(M)\rightarrow T^{(1,1)}(M)` 

(module of type-`(1,1)` tensors):: 

 

sage: M.tensor_module(1,1).has_coerce_map_from(GL) 

True 

 

(see :class:`~sage.tensor.modules.tensor_free_module.TensorFreeModule` for 

details), but not in the reverse direction, since not every type-`(1,1)` 

tensor can be considered as an automorphism:: 

 

sage: GL.has_coerce_map_from(M.tensor_module(1,1)) 

False 

 

Invertible type-`(1,1)` tensors can be converted to automorphisms:: 

 

sage: t = M.tensor((1,1), name='t') 

sage: t[e,:] = [[-1,0,0], [0,1,2], [0,1,3]] 

sage: at = GL(t) ; at 

Automorphism t of the Rank-3 free module M over the Integer Ring 

sage: at.matrix(e) 

[-1 0 0] 

[ 0 1 2] 

[ 0 1 3] 

sage: at.matrix(e) == t[e,:] 

True 

 

Non-invertible ones cannot:: 

 

sage: t0 = M.tensor((1,1), name='t_0') 

sage: t0[e,0,0] = 1 

sage: t0[e,:] # the matrix is clearly not invertible 

[1 0 0] 

[0 0 0] 

[0 0 0] 

sage: GL(t0) 

Traceback (most recent call last): 

... 

TypeError: the Type-(1,1) tensor t_0 on the Rank-3 free module M over 

the Integer Ring is not invertible 

sage: t0[e,1,1], t0[e,2,2] = 2, 3 

sage: t0[e,:] # the matrix is not invertible in Mat_3(ZZ) 

[1 0 0] 

[0 2 0] 

[0 0 3] 

sage: GL(t0) 

Traceback (most recent call last): 

... 

TypeError: the Type-(1,1) tensor t_0 on the Rank-3 free module M over 

the Integer Ring is not invertible 

 

""" 

 

Element = FreeModuleAutomorphism 

 

def __init__(self, fmodule): 

r""" 

See :class:`FreeModuleLinearGroup` for documentation and examples. 

 

TESTS:: 

 

sage: M = FiniteRankFreeModule(ZZ, 3, name='M') 

sage: e = M.basis('e') 

sage: from sage.tensor.modules.free_module_linear_group import FreeModuleLinearGroup 

sage: GL = FreeModuleLinearGroup(M) ; GL 

General linear group of the Rank-3 free module M over the Integer Ring 

sage: GL.category() 

Category of groups 

sage: TestSuite(GL).run() 

 

""" 

if not isinstance(fmodule, FiniteRankFreeModule): 

raise TypeError("{} is not a free module of finite rank".format( 

fmodule)) 

Parent.__init__(self, category=Groups()) 

self._fmodule = fmodule 

self._one = None # to be set by self.one() 

 

#### Parent methods #### 

 

def _element_constructor_(self, comp=[], basis=None, name=None, 

latex_name=None): 

r""" 

Construct a free module automorphism. 

 

INPUT: 

 

- ``comp`` -- (default: ``[]``) components representing the 

automorphism with respect to ``basis``; this entry can actually be 

any array of size rank(M)*rank(M) from which a matrix of elements 

of ``self`` base ring can be constructed; the *columns* of ``comp`` 

must be the components w.r.t. ``basis`` of the images of the elements 

of ``basis``. If ``comp`` is ``[]``, the automorphism has to be 

initialized afterwards by method 

:meth:`~sage.tensor.modules.free_module_tensor.FreeModuleTensor.set_comp` 

or via the operator []. 

- ``basis`` -- (default: ``None``) basis of ``self`` defining the 

matrix representation; if ``None`` the default basis of ``self`` is 

assumed. 

- ``name`` -- (default: ``None``) name given to the automorphism 

- ``latex_name`` -- (default: ``None``) LaTeX symbol to denote the 

automorphism; if none is provided, the LaTeX symbol is set to ``name`` 

 

OUTPUT: 

 

- instance of 

:class:`~sage.tensor.modules.free_module_automorphism.FreeModuleAutomorphism` 

 

EXAMPLES: 

 

Generic construction:: 

 

sage: M = FiniteRankFreeModule(ZZ, 2, name='M') 

sage: e = M.basis('e') 

sage: GL = M.general_linear_group() 

sage: a = GL._element_constructor_(comp=[[1,2],[1,3]], basis=e, 

....: name='a') 

sage: a 

Automorphism a of the Rank-2 free module M over the Integer Ring 

sage: a.matrix(e) 

[1 2] 

[1 3] 

 

Identity map constructed from integer 1:: 

 

sage: GL._element_constructor_(1) 

Identity map of the Rank-2 free module M over the Integer Ring 

sage: GL._element_constructor_(1).matrix(e) 

[1 0] 

[0 1] 

 

Construction from an invertible endomorphism:: 

 

sage: phi = M.endomorphism([[1,1], [2,3]]) 

sage: a = GL._element_constructor_(phi) ; a 

Automorphism of the Rank-2 free module M over the Integer Ring 

sage: a.matrix(e) 

[1 1] 

[2 3] 

sage: a.matrix(e) == phi.matrix(e) 

True 

 

Construction from an invertible tensor of type `(1,1)`:: 

 

sage: t = M.tensor((1,1), name='t') 

sage: t[e,:] = [[1,1], [2,3]] 

sage: a = GL._element_constructor_(t) ; a 

Automorphism t of the Rank-2 free module M over the Integer Ring 

sage: a.matrix(e) == t[e,:] 

True 

 

""" 

from sage.tensor.modules.free_module_tensor import FreeModuleTensor 

from sage.tensor.modules.free_module_morphism import \ 

FiniteRankFreeModuleMorphism 

if comp == 1: 

return self.one() 

if isinstance(comp, FreeModuleTensor): 

tens = comp # for readability 

# Conversion of a type-(1,1) tensor to an automorphism 

if tens.tensor_type() == (1,1): 

resu = self.element_class(self._fmodule, name=tens._name, 

latex_name=tens._latex_name) 

for basis, comp in tens._components.items(): 

resu._components[basis] = comp.copy() 

# Check whether the tensor is invertible: 

try: 

resu.inverse() 

except (ZeroDivisionError, TypeError): 

raise TypeError("the {} is not invertible ".format(tens)) 

return resu 

else: 

raise TypeError("the {} cannot be converted ".format(tens) 

+ "to an automorphism.") 

if isinstance(comp, FiniteRankFreeModuleMorphism): 

# Conversion of an endomorphism to an automorphism 

endo = comp # for readability 

if endo.is_endomorphism() and self._fmodule is endo.domain(): 

resu = self.element_class(self._fmodule, name=endo._name, 

latex_name=endo._latex_name) 

for basis, mat in endo._matrices.items(): 

resu.add_comp(basis[0])[:] = mat 

# Check whether the endomorphism is invertible: 

try: 

resu.inverse() 

except (ZeroDivisionError, TypeError): 

raise TypeError("the {} is not invertible ".format(endo)) 

return resu 

else: 

raise TypeError("cannot coerce the {}".format(endo) + 

" to an element of {}".format(self)) 

 

# standard construction 

resu = self.element_class(self._fmodule, name=name, 

latex_name=latex_name) 

if comp: 

resu.set_comp(basis)[:] = comp 

return resu 

 

 

def _an_element_(self): 

r""" 

Construct some specific free module automorphism. 

 

OUTPUT: 

 

- instance of 

:class:`~sage.tensor.modules.free_module_automorphism.FreeModuleAutomorphism` 

 

EXAMPLES:: 

 

sage: M = FiniteRankFreeModule(ZZ, 2, name='M') 

sage: e = M.basis('e') 

sage: GL = M.general_linear_group() 

sage: a = GL._an_element_() ; a 

Automorphism of the Rank-2 free module M over the Integer Ring 

sage: a.matrix(e) 

[ 1 0] 

[ 0 -1] 

 

""" 

resu = self.element_class(self._fmodule) 

if self._fmodule._def_basis is not None: 

comp = resu.set_comp() 

for i in self._fmodule.irange(): 

if i%2 == 0: 

comp[[i,i]] = self._fmodule._ring.one() 

else: 

comp[[i,i]] = -(self._fmodule._ring.one()) 

return resu 

 

#### End of parent methods #### 

 

#### Monoid methods #### 

 

def one(self): 

r""" 

Return the group identity element of ``self``. 

 

The group identity element is nothing but the module identity map. 

 

OUTPUT: 

 

- instance of 

:class:`~sage.tensor.modules.free_module_automorphism.FreeModuleAutomorphism` 

representing the identity element. 

 

EXAMPLES: 

 

Identity element of the general linear group of a rank-2 free module:: 

 

sage: M = FiniteRankFreeModule(ZZ, 2, name='M', start_index=1) 

sage: GL = M.general_linear_group() 

sage: GL.one() 

Identity map of the Rank-2 free module M over the Integer Ring 

 

The identity element is cached:: 

 

sage: GL.one() is GL.one() 

True 

 

Check that the element returned is indeed the neutral element for 

the group law:: 

 

sage: e = M.basis('e') 

sage: a = GL([[3,4],[5,7]], basis=e) ; a 

Automorphism of the Rank-2 free module M over the Integer Ring 

sage: a.matrix(e) 

[3 4] 

[5 7] 

sage: GL.one() * a == a 

True 

sage: a * GL.one() == a 

True 

sage: a * a^(-1) == GL.one() 

True 

sage: a^(-1) * a == GL.one() 

True 

 

The unit element of `\mathrm{GL}(M)` is the identity map of `M`:: 

 

sage: GL.one()(e[1]) 

Element e_1 of the Rank-2 free module M over the Integer Ring 

sage: GL.one()(e[2]) 

Element e_2 of the Rank-2 free module M over the Integer Ring 

 

Its matrix is the identity matrix in any basis:: 

 

sage: GL.one().matrix(e) 

[1 0] 

[0 1] 

sage: f = M.basis('f', from_family=(e[1]+2*e[2], e[1]+3*e[2])) 

sage: GL.one().matrix(f) 

[1 0] 

[0 1] 

 

""" 

if self._one is None: 

self._one = self.element_class(self._fmodule, is_identity=True) 

# Initialization of the components (Kronecker delta) in some basis: 

if self._fmodule.bases(): 

self._one.components(self._fmodule.bases()[0]) 

return self._one 

 

#### End of monoid methods #### 

 

def _repr_(self): 

r""" 

Return a string representation of ``self``. 

 

EXAMPLES:: 

 

sage: M = FiniteRankFreeModule(ZZ, 2, name='M') 

sage: GL = M.general_linear_group() 

sage: GL._repr_() 

'General linear group of the Rank-2 free module M over the Integer Ring' 

 

""" 

return "General linear group of the {}".format(self._fmodule) 

 

def _latex_(self): 

r""" 

Return a string representation of ``self``. 

 

EXAMPLES:: 

 

sage: M = FiniteRankFreeModule(ZZ, 2, name='M') 

sage: GL = M.general_linear_group() 

sage: GL._latex_() 

\mathrm{GL}\left( M \right) 

 

""" 

from sage.misc.latex import latex 

return r"\mathrm{GL}\left("+ latex(self._fmodule)+ r"\right)" 

 

 

def base_module(self): 

r""" 

Return the free module of which ``self`` is the general linear group. 

 

OUTPUT: 

 

- instance of :class:`FiniteRankFreeModule` representing the free 

module of which ``self`` is the general linear group 

 

EXAMPLES:: 

 

sage: M = FiniteRankFreeModule(ZZ, 2, name='M') 

sage: GL = M.general_linear_group() 

sage: GL.base_module() 

Rank-2 free module M over the Integer Ring 

sage: GL.base_module() is M 

True 

 

""" 

return self._fmodule