Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

r""" 

Free module morphisms 

 

The class :class:`FiniteRankFreeModuleMorphism` implements homomorphisms 

between two free modules of finite rank over the same commutative ring. 

 

AUTHORS: 

 

- Eric Gourgoulhon, Michal Bejger (2014-2015): initial version 

 

REFERENCES: 

 

- Chap. 13, 14 of R. Godement : *Algebra* [God1968]_ 

- Chap. 3 of S. Lang : *Algebra* [Lan2002]_ 

 

""" 

#****************************************************************************** 

# Copyright (C) 2015 Eric Gourgoulhon <eric.gourgoulhon@obspm.fr> 

# Copyright (C) 2015 Michal Bejger <bejger@camk.edu.pl> 

# 

# Distributed under the terms of the GNU General Public License (GPL) 

# as published by the Free Software Foundation; either version 2 of 

# the License, or (at your option) any later version. 

# http://www.gnu.org/licenses/ 

#****************************************************************************** 

from six import itervalues 

 

from sage.rings.integer import Integer 

from sage.categories.morphism import Morphism 

from sage.categories.homset import Hom 

from sage.tensor.modules.finite_rank_free_module import FiniteRankFreeModule 

 

 

class FiniteRankFreeModuleMorphism(Morphism): 

r""" 

Homomorphism between free modules of finite rank over a commutative ring. 

 

An instance of this class is a homomorphism 

 

.. MATH:: 

 

\phi:\ M \longrightarrow N, 

 

where `M` and `N` are two free modules of finite rank over the same 

commutative ring `R`. 

 

This is a Sage *element* class, the corresponding *parent* class being 

:class:`~sage.tensor.modules.free_module_homset.FreeModuleHomset`. 

 

INPUT: 

 

- ``parent`` -- hom-set Hom(M,N) to which the homomorphism belongs 

- ``matrix_rep`` -- matrix representation of the homomorphism with 

respect to the bases ``bases``; this entry can actually 

be any material from which a matrix of size rank(N)*rank(M) of 

elements of `R` can be constructed; the *columns* of the matrix give 

the images of the basis of `M` (see the convention in the example below) 

- ``bases`` -- (default: ``None``) pair (basis_M, basis_N) defining the 

matrix representation, basis_M being a basis of module `M` and 

basis_N a basis of module `N` ; if None the pair formed by the 

default bases of each module is assumed. 

- ``name`` -- (default: ``None``) string; name given to the homomorphism 

- ``latex_name`` -- (default: ``None``) string; LaTeX symbol to denote the 

homomorphism; if None, ``name`` will be used. 

- ``is_identity`` -- (default: ``False``) determines whether the 

constructed object is the identity endomorphism; if set to ``True``, then 

N must be M and the entry ``matrix_rep`` is not used. 

 

EXAMPLES: 

 

A homomorphism between two free modules over `\ZZ` is constructed 

as an element of the corresponding hom-set, by means of the function 

``__call__``:: 

 

sage: M = FiniteRankFreeModule(ZZ, 3, name='M') 

sage: N = FiniteRankFreeModule(ZZ, 2, name='N') 

sage: e = M.basis('e') ; f = N.basis('f') 

sage: H = Hom(M,N) ; H 

Set of Morphisms from Rank-3 free module M over the Integer Ring 

to Rank-2 free module N over the Integer Ring 

in Category of finite dimensional modules over Integer Ring 

sage: phi = H([[2,-1,3], [1,0,-4]], name='phi', latex_name=r'\phi') ; phi 

Generic morphism: 

From: Rank-3 free module M over the Integer Ring 

To: Rank-2 free module N over the Integer Ring 

 

Since no bases have been specified in the argument list, the provided 

matrix is relative to the default bases of modules M and N, so that 

the above is equivalent to:: 

 

sage: phi = H([[2,-1,3], [1,0,-4]], bases=(e,f), name='phi', 

....: latex_name=r'\phi') ; phi 

Generic morphism: 

From: Rank-3 free module M over the Integer Ring 

To: Rank-2 free module N over the Integer Ring 

 

An alternative way to construct a homomorphism is to call the method 

:meth:`~sage.tensor.modules.finite_rank_free_module.FiniteRankFreeModule.hom` 

on the domain:: 

 

sage: phi = M.hom(N, [[2,-1,3], [1,0,-4]], bases=(e,f), name='phi', 

....: latex_name=r'\phi') ; phi 

Generic morphism: 

From: Rank-3 free module M over the Integer Ring 

To: Rank-2 free module N over the Integer Ring 

 

The parent of a homomorphism is of course the corresponding hom-set:: 

 

sage: phi.parent() is H 

True 

sage: phi.parent() is Hom(M,N) 

True 

 

Due to Sage's category scheme, the actual class of the homomorphism ``phi`` 

is a derived class of :class:`FiniteRankFreeModuleMorphism`:: 

 

sage: type(phi) 

<class 'sage.tensor.modules.free_module_homset.FreeModuleHomset_with_category_with_equality_by_id.element_class'> 

sage: isinstance(phi, sage.tensor.modules.free_module_morphism.FiniteRankFreeModuleMorphism) 

True 

 

The domain and codomain of the homomorphism are returned respectively by 

the methods ``domain()`` and ``codomain()``, which are implemented as 

Sage's constant functions:: 

 

sage: phi.domain() 

Rank-3 free module M over the Integer Ring 

sage: phi.codomain() 

Rank-2 free module N over the Integer Ring 

sage: type(phi.domain) 

<... 'sage.misc.constant_function.ConstantFunction'> 

 

The matrix of the homomorphism with respect to a pair of bases is 

returned by the method :meth:`matrix`:: 

 

sage: phi.matrix(e,f) 

[ 2 -1 3] 

[ 1 0 -4] 

 

The convention is that the columns of this matrix give the components of 

the images of the elements of basis ``e`` w.r.t basis ``f``:: 

 

sage: phi(e[0]).display() 

phi(e_0) = 2 f_0 + f_1 

sage: phi(e[1]).display() 

phi(e_1) = -f_0 

sage: phi(e[2]).display() 

phi(e_2) = 3 f_0 - 4 f_1 

 

Test of the module homomorphism laws:: 

 

sage: phi(M.zero()) == N.zero() 

True 

sage: u = M([1,2,3], basis=e, name='u') ; u.display() 

u = e_0 + 2 e_1 + 3 e_2 

sage: v = M([-2,1,4], basis=e, name='v') ; v.display() 

v = -2 e_0 + e_1 + 4 e_2 

sage: phi(u).display() 

phi(u) = 9 f_0 - 11 f_1 

sage: phi(v).display() 

phi(v) = 7 f_0 - 18 f_1 

sage: phi(3*u + v).display() 

34 f_0 - 51 f_1 

sage: phi(3*u + v) == 3*phi(u) + phi(v) 

True 

 

The identity endomorphism:: 

 

sage: Id = End(M).one() ; Id 

Identity endomorphism of Rank-3 free module M over the Integer Ring 

sage: Id.parent() 

Set of Morphisms from Rank-3 free module M over the Integer Ring 

to Rank-3 free module M over the Integer Ring 

in Category of finite dimensional modules over Integer Ring 

sage: Id.parent() is End(M) 

True 

 

The matrix of Id with respect to the basis e is of course the identity 

matrix:: 

 

sage: Id.matrix(e) 

[1 0 0] 

[0 1 0] 

[0 0 1] 

 

The identity acting on a module element:: 

 

sage: Id(v) is v 

True 

 

""" 

def __init__(self, parent, matrix_rep, bases=None, name=None, 

latex_name=None, is_identity=False): 

r""" 

TESTS: 

 

Generic homomorphism:: 

 

sage: M = FiniteRankFreeModule(ZZ, 3, name='M') 

sage: N = FiniteRankFreeModule(ZZ, 2, name='N') 

sage: e = M.basis('e') ; f = N.basis('f') 

sage: from sage.tensor.modules.free_module_morphism import FiniteRankFreeModuleMorphism 

sage: phi = FiniteRankFreeModuleMorphism(Hom(M,N), [[1,0,-3], [2,1,4]], 

....: name='phi', latex_name=r'\phi') 

sage: phi 

Generic morphism: 

From: Rank-3 free module M over the Integer Ring 

To: Rank-2 free module N over the Integer Ring 

sage: phi.matrix(e,f) 

[ 1 0 -3] 

[ 2 1 4] 

sage: latex(phi) 

\phi 

 

Generic endomorphism:: 

 

sage: phi = FiniteRankFreeModuleMorphism(End(M), [[1,0,-3], [2,1,4], [7,8,9]], 

....: name='phi', latex_name=r'\phi') 

sage: phi 

Generic endomorphism of Rank-3 free module M over the Integer Ring 

 

Identity endomorphism:: 

 

sage: phi = FiniteRankFreeModuleMorphism(End(M), 'whatever', is_identity=True) 

sage: phi 

Identity endomorphism of Rank-3 free module M over the Integer Ring 

sage: phi.matrix(e) 

[1 0 0] 

[0 1 0] 

[0 0 1] 

sage: latex(phi) 

\mathrm{Id} 

 

""" 

from sage.matrix.constructor import matrix 

from sage.misc.constant_function import ConstantFunction 

Morphism.__init__(self, parent) 

fmodule1 = parent.domain() 

fmodule2 = parent.codomain() 

if bases is None: 

def_basis1 = fmodule1.default_basis() 

if def_basis1 is None: 

raise ValueError("the {} has no default ".format(fmodule1) + 

"basis") 

def_basis2 = fmodule2.default_basis() 

if def_basis2 is None: 

raise ValueError("the {} has no default ".format(fmodule2) + 

"basis") 

bases = (def_basis1, def_basis2) 

else: 

bases = tuple(bases) # insures bases is a tuple 

if len(bases) != 2: 

raise TypeError("the argument bases must contain 2 bases") 

if bases[0] not in fmodule1.bases(): 

raise TypeError("{} is not a basis on the {}".format(bases[0], 

fmodule1)) 

if bases[1] not in fmodule2.bases(): 

raise TypeError("{} is not a basis on the {}".format(bases[1], 

fmodule2)) 

ring = parent.base_ring() 

n1 = fmodule1.rank() 

n2 = fmodule2.rank() 

if is_identity: 

# Construction of the identity endomorphism 

if fmodule1 != fmodule2: 

raise TypeError("the domain and codomain must coincide " + \ 

"for the identity endomorphism.") 

if bases[0] != bases[1]: 

raise TypeError("the two bases must coincide for " + \ 

"constructing the identity endomorphism.") 

self._is_identity = True 

zero = ring.zero() 

one = ring.one() 

matrix_rep = [] 

for i in range(n1): 

row = [zero]*n1 

row[i] = one 

matrix_rep.append(row) 

if name is None: 

name = 'Id' 

if latex_name is None and name == 'Id': 

latex_name = r'\mathrm{Id}' 

self._repr_type_str = 'Identity' 

else: 

# Construction of a generic morphism 

self._is_identity = False 

if isinstance(matrix_rep, ConstantFunction): 

# the zero morphism 

if matrix_rep().is_zero(): 

matrix_rep = 0 

if matrix_rep == 1: 

if fmodule1 == fmodule2: 

# the identity endomorphism (again): 

self._is_identity = True 

self._repr_type_str = 'Identity' 

name = 'Id' 

latex_name = r'\mathrm{Id}' 

self._matrices = {bases: matrix(ring, n2, n1, matrix_rep)} 

self._name = name 

if latex_name is None: 

self._latex_name = self._name 

else: 

self._latex_name = latex_name 

 

# 

# SageObject methods 

# 

 

def _latex_(self): 

r""" 

LaTeX representation of the object. 

 

EXAMPLES:: 

 

sage: M = FiniteRankFreeModule(ZZ, 3, name='M') 

sage: N = FiniteRankFreeModule(ZZ, 2, name='N') 

sage: e = M.basis('e') ; f = N.basis('f') 

sage: phi = M.hom(N, [[-1,2,0], [5,1,2]], name='phi', 

....: latex_name=r'\Phi') 

sage: phi._latex_() 

'\\Phi' 

sage: latex(phi) # indirect doctest 

\Phi 

 

:: 

 

sage: phi = M.hom(N, [[-1,2,0], [5,1,2]], name='F') 

sage: phi._latex_() 

'F' 

 

:: 

 

sage: phi = M.hom(N, [[-1,2,0], [5,1,2]]) 

sage: phi._latex_() 

'\\mbox{Generic morphism:\n From: Rank-3 free module M over the Integer Ring\n To: Rank-2 free module N over the Integer Ring}' 

 

""" 

if self._latex_name is None: 

return r'\mbox{' + str(self) + r'}' 

else: 

return self._latex_name 

 

def __eq__(self, other): 

r""" 

Comparison (equality) operator. 

 

INPUT: 

 

- ``other`` -- a free module morphism (or 0) 

 

OUTPUT: 

 

- ``True`` if ``self`` is equal to ``other`` and ``False`` otherwise 

 

EXAMPLES:: 

 

sage: M = FiniteRankFreeModule(ZZ, 3, name='M') 

sage: N = FiniteRankFreeModule(ZZ, 2, name='N') 

sage: e = M.basis('e') ; f = N.basis('f') 

sage: phi = M.hom(N, [[-1,2,0], [5,1,2]], name='phi', 

....: latex_name=r'\phi') 

sage: psi = M.hom(N, [[-1,2,0], [5,1,2]]) 

sage: phi.__eq__(psi) 

True 

sage: phi == psi 

True 

sage: phi.__eq__(phi) 

True 

sage: phi.__eq__(+phi) 

True 

sage: psi = M.hom(N, [[1,1,0], [4,1,3]]) 

sage: phi.__eq__(psi) 

False 

sage: phi.__eq__(-phi) 

False 

 

Comparison of homomorphisms defined on different bases:: 

 

sage: a = M.automorphism() ; a[0,2], a[1,0], a[2,1] = 1, -1, -1 

sage: ep = e.new_basis(a, 'ep', latex_symbol="e'") 

sage: psi = M.hom(N, [[-2,0,-1], [-1,-2, 5]], bases=(ep,f)) 

sage: phi.__eq__(psi) 

True 

sage: phi.matrix(e,f) == psi.matrix(e,f) # check 

True 

 

Comparison of homomorphisms having the same matrix but defined on 

different modules:: 

 

sage: N1 = FiniteRankFreeModule(ZZ, 2, name='N1') 

sage: f1 = N1.basis('f') 

sage: phi1 = M.hom(N1, [[-1,2,0], [5,1,2]]) 

sage: phi.matrix() == phi1.matrix() # same matrix in the default bases 

True 

sage: phi.__eq__(phi1) 

False 

 

Comparison to zero:: 

 

sage: phi.__eq__(0) 

False 

sage: phi = M.hom(N, 0) 

sage: phi.__eq__(0) 

True 

sage: phi == 0 

True 

sage: phi.__eq__(Hom(M,N).zero()) 

True 

 

""" 

if isinstance(other, (int, Integer)): # other should be 0 

if other == 0: 

return self.is_zero() 

else: 

return False 

elif not isinstance(other, FiniteRankFreeModuleMorphism): 

return False 

elif self.parent() != other.parent(): 

return False 

else: 

bases = self._common_bases(other) 

if bases is None: 

raise ValueError("no common pair of bases has been found to " + 

"compare {} and {}".format(self, other)) 

return bool( self.matrix(*bases) == other.matrix(*bases) ) 

 

def __ne__(self, other): 

r""" 

Inequality operator. 

 

INPUT: 

 

- ``other`` -- a free module morphism (or 0) 

 

OUTPUT: 

 

- ``True`` if ``self`` is different from ``other`` and ``False`` 

otherwise 

 

EXAMPLES:: 

 

sage: M = FiniteRankFreeModule(ZZ, 3, name='M') 

sage: N = FiniteRankFreeModule(ZZ, 2, name='N') 

sage: e = M.basis('e') ; f = N.basis('f') 

sage: phi = M.hom(N, [[-1,2,0], [5,1,2]], name='phi', 

....: latex_name=r'\phi') 

sage: psi = M.hom(N, [[-1,2,0], [5,1,2]]) 

sage: phi.__ne__(psi) 

False 

sage: psi = M.hom(N, [[1,1,0], [4,1,3]]) 

sage: phi.__ne__(psi) 

True 

sage: phi != psi 

True 

sage: phi.__ne__('junk') 

True 

sage: Hom(M,N).zero().__ne__(0) 

False 

 

""" 

return not self == other 

 

# 

# Required module methods 

# 

 

def __bool__(self): 

r""" 

Return ``True`` if ``self`` is nonzero and ``False`` otherwise. 

 

This method is called by self.is_zero(). 

 

EXAMPLES:: 

 

sage: M = FiniteRankFreeModule(ZZ, 3, name='M') 

sage: N = FiniteRankFreeModule(ZZ, 2, name='N') 

sage: e = M.basis('e') ; f = N.basis('f') 

sage: phi = M.hom(N, [[2,-1,3], [1,0,-4]]) 

sage: bool(phi) 

True 

sage: phi.is_zero() # indirect doctest 

False 

sage: phi = M.hom(N, 0) 

sage: bool(phi) 

False 

sage: phi.is_zero() # indirect doctest 

True 

sage: bool(Hom(M,N).zero()) 

False 

""" 

# Some matrix representation is picked at random: 

matrix_rep = next(itervalues(self._matrices)) 

return not matrix_rep.is_zero() 

 

__nonzero__ = __bool__ 

 

def _add_(self, other): 

r""" 

Homomorphism addition. 

 

INPUT: 

 

- ``other`` -- a free module morphism (same parent as ``self``) 

 

OUTPUT: 

 

- the homomorphism resulting from the addition of ``self`` and ``other`` 

 

EXAMPLES:: 

 

sage: M = FiniteRankFreeModule(ZZ, 3, name='M') 

sage: N = FiniteRankFreeModule(ZZ, 2, name='N') 

sage: e = M.basis('e') ; f = N.basis('f') 

sage: phi = M.hom(N, [[-1,2,0], [5,1,2]], name='phi', 

....: latex_name=r'\phi') 

sage: psi = M.hom(N, [[1,1,0], [4,1,3]]) 

sage: s = phi._add_(psi) ; s 

Generic morphism: 

From: Rank-3 free module M over the Integer Ring 

To: Rank-2 free module N over the Integer Ring 

sage: s.matrix(e,f) 

[0 3 0] 

[9 2 5] 

sage: s.matrix(e,f) == phi.matrix(e,f) + psi.matrix(e,f) # check 

True 

sage: s == phi + psi # indirect doctest 

True 

 

Addition of homomorphisms defined on different bases:: 

 

sage: a = M.automorphism() ; a[0,2], a[1,0], a[2,1] = 1, -1, -1 

sage: ep = e.new_basis(a, 'ep', latex_symbol="e'") 

sage: b = N.automorphism() ; b[0,1], b[1,0] = -1, 1 

sage: fp = f.new_basis(b, 'fp', latex_symbol="f'") 

sage: psi = M.hom(N, [[-2,0,-1], [-1,-2, 5]], bases=(ep,fp)) 

sage: s = phi._add_(psi) ; s 

Generic morphism: 

From: Rank-3 free module M over the Integer Ring 

To: Rank-2 free module N over the Integer Ring 

sage: s.matrix(e,f) 

[-6 1 -2] 

[ 4 3 2] 

sage: s.matrix(e,f) == phi.matrix(e,f) + psi.matrix(e,f) # check 

True 

sage: s == phi + psi # indirect doctest 

True 

 

Other tests:: 

 

sage: phi._add_(Hom(M,N).zero()) == phi 

True 

 

""" 

# No need for consistency checks since self and other are guaranteed 

# to have the same parents 

bases = self._common_bases(other) 

if bases is None: 

raise ValueError("no common pair of bases has been found to " + 

"add {} and {}".format(self, other)) 

# Addition at the matrix level: 

resu_mat = self._matrices[bases] + other._matrices[bases] 

if self._name is not None and other._name is not None: 

resu_name = self._name + '+' + other._name 

else: 

resu_name = None 

if self._latex_name is not None and other._latex_name is not None: 

resu_latex_name = self._latex_name + '+' + other._latex_name 

else: 

resu_latex_name = None 

return self.__class__(self.parent(), resu_mat, bases=bases, 

name=resu_name, latex_name=resu_latex_name) 

 

def _sub_(self, other): 

r""" 

Homomorphism subtraction. 

 

INPUT: 

 

- ``other`` -- a free module morphism (same parent as ``self``) 

 

OUTPUT: 

 

- the homomorphism resulting from the subtraction of ``other`` from 

``self`` 

 

EXAMPLES:: 

 

sage: M = FiniteRankFreeModule(ZZ, 3, name='M') 

sage: N = FiniteRankFreeModule(ZZ, 2, name='N') 

sage: e = M.basis('e') ; f = N.basis('f') 

sage: phi = M.hom(N, [[-1,2,0], [5,1,2]], name='phi', 

....: latex_name=r'\phi') 

sage: psi = M.hom(N, [[1,1,0], [4,1,3]]) 

sage: s = phi._sub_(psi) ; s 

Generic morphism: 

From: Rank-3 free module M over the Integer Ring 

To: Rank-2 free module N over the Integer Ring 

sage: s.matrix(e,f) 

[-2 1 0] 

[ 1 0 -1] 

sage: s.matrix(e,f) == phi.matrix(e,f) - psi.matrix(e,f) # check 

True 

sage: s == phi - psi # indirect doctest 

True 

 

Subtraction of homomorphisms defined on different bases:: 

 

sage: a = M.automorphism() ; a[0,2], a[1,0], a[2,1] = 1, -1, -1 

sage: ep = e.new_basis(a, 'ep', latex_symbol="e'") 

sage: b = N.automorphism() ; b[0,1], b[1,0] = -1, 1 

sage: fp = f.new_basis(b, 'fp', latex_symbol="f'") 

sage: psi = M.hom(N, [[-2,0,-1], [-1,-2, 5]], bases=(ep,fp)) 

sage: s = phi._sub_(psi) ; s 

Generic morphism: 

From: Rank-3 free module M over the Integer Ring 

To: Rank-2 free module N over the Integer Ring 

sage: s.matrix(e,f) 

[ 4 3 2] 

[ 6 -1 2] 

sage: s.matrix(e,f) == phi.matrix(e,f) - psi.matrix(e,f) # check 

True 

sage: s == phi - psi # indirect doctest 

True 

 

Other tests:: 

 

sage: phi._sub_(Hom(M,N).zero()) == phi 

True 

sage: Hom(M,N).zero()._sub_(phi) == -phi 

True 

sage: phi._sub_(phi).is_zero() 

True 

 

""" 

# No need for consistency checks since self and other are guaranteed 

# to have the same parents 

bases = self._common_bases(other) 

if bases is None: 

raise ValueError("no common pair of bases has been found to " + 

"subtract {} from {}".format(other, self)) 

# Subtraction at the matrix level: 

resu_mat = self._matrices[bases] - other._matrices[bases] 

if self._name is not None and other._name is not None: 

resu_name = self._name + '-' + other._name 

else: 

resu_name = None 

if self._latex_name is not None and other._latex_name is not None: 

resu_latex_name = self._latex_name + '-' + other._latex_name 

else: 

resu_latex_name = None 

return self.__class__(self.parent(), resu_mat, bases=bases, 

name=resu_name, latex_name=resu_latex_name) 

 

def _lmul_(self, scalar): 

r""" 

Multiplication by ``scalar``. 

 

INPUT: 

 

- ``scalar`` -- element of the ring over which the parent of ``self`` 

is a module. 

 

OUTPUT: 

 

- the homomorphism resulting from the multiplication of ``self`` by 

``scalar`` 

 

EXAMPLES:: 

 

sage: M = FiniteRankFreeModule(ZZ, 3, name='M') 

sage: N = FiniteRankFreeModule(ZZ, 2, name='N') 

sage: e = M.basis('e') ; f = N.basis('f') 

sage: phi = M.hom(N, [[-1,2,0], [5,1,2]], name='phi', 

....: latex_name=r'\phi') 

sage: s = phi._lmul_(7) ; s 

Generic morphism: 

From: Rank-3 free module M over the Integer Ring 

To: Rank-2 free module N over the Integer Ring 

sage: s.matrix(e,f) 

[-7 14 0] 

[35 7 14] 

sage: s == 7 * phi 

True 

""" 

resu = self.__class__(self.parent(), 0) # 0 = provisory value 

for bases, mat in self._matrices.items(): 

resu._matrices[bases] = scalar * mat 

return resu 

 

 

# 

# Other module methods 

# 

 

def __pos__(self): 

r""" 

Unary plus operator. 

 

OUTPUT: 

 

- an exact copy of ``self`` 

 

EXAMPLES:: 

 

sage: M = FiniteRankFreeModule(ZZ, 3, name='M') 

sage: N = FiniteRankFreeModule(ZZ, 2, name='N') 

sage: e = M.basis('e') ; f = N.basis('f') 

sage: phi = M.hom(N, [[-1,2,0], [5,1,2]], name='phi', 

....: latex_name=r'\phi') 

sage: s = phi.__pos__() ; s 

Generic morphism: 

From: Rank-3 free module M over the Integer Ring 

To: Rank-2 free module N over the Integer Ring 

sage: s == +phi 

True 

sage: s == phi 

True 

sage: s is phi 

False 

 

""" 

resu = self.__class__(self.parent(), 0, is_identity=self._is_identity) 

# 0 = provisory value 

for bases, mat in self._matrices.items(): 

resu._matrices[bases] = +mat 

if self._name is not None: 

resu._name = '+' + self._name 

if self._latex_name is not None: 

resu._latex_name = '+' + self._latex_name 

return resu 

 

def __neg__(self): 

r""" 

Unary minus operator. 

 

OUTPUT: 

 

- the homomorphism `-f`, where `f` is ``self`` 

 

EXAMPLES:: 

 

sage: M = FiniteRankFreeModule(ZZ, 3, name='M') 

sage: N = FiniteRankFreeModule(ZZ, 2, name='N') 

sage: e = M.basis('e') ; f = N.basis('f') 

sage: phi = M.hom(N, [[-1,2,0], [5,1,2]], name='phi', 

....: latex_name=r'\phi') 

sage: s = phi.__neg__() ; s 

Generic morphism: 

From: Rank-3 free module M over the Integer Ring 

To: Rank-2 free module N over the Integer Ring 

sage: s == -phi 

True 

sage: s.matrix() 

[ 1 -2 0] 

[-5 -1 -2] 

sage: s.matrix() == -phi.matrix() 

True 

 

""" 

resu = self.__class__(self.parent(), 0) # 0 = provisory value 

for bases, mat in self._matrices.items(): 

resu._matrices[bases] = -mat 

if self._name is not None: 

resu._name = '-' + self._name 

if self._latex_name is not None: 

resu._latex_name = '-' + self._latex_name 

return resu 

 

# 

# Map methods 

# 

 

def _call_(self, element): 

r""" 

Action of the homomorphism ``self`` on some free module element 

 

INPUT: 

 

- ``element`` -- element of the domain of ``self`` 

 

OUTPUT: 

 

- the image of ``element`` by ``self`` 

 

EXAMPLES: 

 

Images of a homomorphism between two `\ZZ`-modules:: 

 

sage: M = FiniteRankFreeModule(ZZ, 3, name='M') 

sage: N = FiniteRankFreeModule(ZZ, 2, name='N') 

sage: e = M.basis('e') ; f = N.basis('f') 

sage: phi = M.hom(N, [[-1,2,0], [5,1,2]], name='phi', latex_name=r'\phi') 

sage: v = M([1,2,3], basis=e, name='v') 

sage: w = phi(v) ; w 

Element phi(v) of the Rank-2 free module N over the Integer Ring 

sage: w.display() 

phi(v) = 3 f_0 + 13 f_1 

 

TESTS:: 

 

sage: all(w[i] == sum(phi.matrix()[i,j]*v[j] for j in range(3)) for i in range(2)) 

True 

sage: phi.matrix(e,f) 

[-1 2 0] 

[ 5 1 2] 

sage: phi(e[0]).display() 

phi(e_0) = -f_0 + 5 f_1 

sage: phi(e[1]).display() 

phi(e_1) = 2 f_0 + f_1 

sage: phi(e[2]).display() 

phi(e_2) = 2 f_1 

 

Image of an element that is not defined on the default basis:: 

 

sage: a = M.automorphism() 

sage: a[0,2], a[1,0], a[2,1] = 1, -1, -1 

sage: ep = e.new_basis(a, 'ep', latex_symbol="e'") 

sage: v = M([1,2,3], basis=ep, name='v') 

sage: w = phi(v) ; w 

Element phi(v) of the Rank-2 free module N over the Integer Ring 

sage: w.display() 

phi(v) = -5 f_0 + 10 f_1 

sage: all(w[i] == sum(phi.matrix(ep,f)[i,j]*v[ep,j] for j in range(3)) for i in range(2)) 

True 

 

Check of homomorphism properties:: 

 

sage: phi(M.zero()) == N.zero() 

True 

 

""" 

if self._is_identity: 

return element 

dom = self.parent().domain() 

sindex = dom._sindex 

codom = self.parent().codomain() 

basis_codom = codom.default_basis() 

# Search for a common basis to compute the result 

for basis in element._components: 

try: 

self.matrix(basis, basis_codom) 

basis_dom = basis 

break 

except ValueError: 

continue 

else: 

raise ValueError("no common basis found to evaluate the image " + 

"of {} by {}".format(element,self)) 

# Components of the result obtained by matrix multiplication 

mat = self.matrix(basis_dom, basis_codom) 

vcomp = element._components[basis_dom] 

tresu = [] 

for i in range(codom.rank()): 

s = 0 

for j in range(dom.rank()): 

s += mat[i,j] * vcomp[[j+sindex]] 

tresu.append(s) 

# Name of the result 

if self._name is not None and element._name is not None: 

resu_name = self._name + '(' + element._name + ')' 

else: 

resu_name = None 

if self._latex_name is not None and element._latex_name is not None: 

resu_latex_name = self._latex_name + r'\left(' + \ 

element._latex_name + r'\right)' 

else: 

resu_latex_name = None 

# Creation of the result 

return codom(tresu, basis=basis_codom, name=resu_name, 

latex_name=resu_latex_name) 

 

def is_injective(self): 

r""" 

Determine whether ``self`` is injective. 

 

OUTPUT: 

 

- ``True`` if ``self`` is an injective homomorphism and ``False`` 

otherwise 

 

EXAMPLES: 

 

Homomorphisms between two `\ZZ`-modules:: 

 

sage: M = FiniteRankFreeModule(ZZ, 3, name='M') 

sage: N = FiniteRankFreeModule(ZZ, 2, name='N') 

sage: e = M.basis('e') ; f = N.basis('f') 

sage: phi = M.hom(N, [[-1,2,0], [5,1,2]]) 

sage: phi.matrix(e,f) 

[-1 2 0] 

[ 5 1 2] 

sage: phi.is_injective() 

False 

 

Indeed, phi has a non trivial kernel:: 

 

sage: phi(4*e[0] + 2*e[1] - 11*e[2]).display() 

0 

 

An injective homomorphism:: 

 

sage: psi = N.hom(M, [[1,-1], [0,3], [4,-5]]) 

sage: psi.matrix(f,e) 

[ 1 -1] 

[ 0 3] 

[ 4 -5] 

sage: psi.is_injective() 

True 

 

Of course, the identity endomorphism is injective:: 

 

sage: End(M).one().is_injective() 

True 

sage: End(N).one().is_injective() 

True 

 

""" 

# Some matrix representation is picked at random: 

matrix_rep = next(itervalues(self._matrices)) 

return matrix_rep.right_kernel().rank() == 0 

 

def is_surjective(self): 

r""" 

Determine whether ``self`` is surjective. 

 

OUTPUT: 

 

- ``True`` if ``self`` is a surjective homomorphism and ``False`` 

otherwise 

 

EXAMPLES: 

 

This method has not been implemented yet:: 

 

sage: M = FiniteRankFreeModule(ZZ, 3, name='M') 

sage: N = FiniteRankFreeModule(ZZ, 2, name='N') 

sage: e = M.basis('e') ; f = N.basis('f') 

sage: phi = M.hom(N, [[-1,2,0], [5,1,2]]) 

sage: phi.is_surjective() 

Traceback (most recent call last): 

... 

NotImplementedError: FiniteRankFreeModuleMorphism.is_surjective() 

has not been implemented yet 

 

except for the identity endomorphism (!):: 

 

sage: End(M).one().is_surjective() 

True 

sage: End(N).one().is_surjective() 

True 

 

""" 

if self._is_identity: 

return True 

raise NotImplementedError( 

"FiniteRankFreeModuleMorphism.is_surjective() " + 

"has not been implemented yet") 

# 

# Morphism methods 

# 

 

def is_identity(self): 

r""" 

Check whether ``self`` is the identity morphism. 

 

EXAMPLES:: 

 

sage: M = FiniteRankFreeModule(ZZ, 2, name='M') 

sage: e = M.basis('e') 

sage: phi = M.endomorphism([[1,0], [0,1]]) 

sage: phi.is_identity() 

True 

sage: (phi+phi).is_identity() 

False 

sage: End(M).zero().is_identity() 

False 

sage: a = M.automorphism() ; a[0,1], a[1,0] = 1, -1 

sage: ep = e.new_basis(a, 'ep', latex_symbol="e'") 

sage: phi = M.endomorphism([[1,0], [0,1]], basis=ep) 

sage: phi.is_identity() 

True 

 

Example illustrating that the identity can be constructed from a 

matrix that is not the identity one, provided that it is relative to 

different bases:: 

 

sage: phi = M.hom(M, [[0,1], [-1,0]], bases=(ep,e)) 

sage: phi.is_identity() 

True 

 

Of course, if we ask for the matrix in a single basis, it is the 

identity matrix:: 

 

sage: phi.matrix(e) 

[1 0] 

[0 1] 

sage: phi.matrix(ep) 

[1 0] 

[0 1] 

 

""" 

if self._is_identity: 

return True 

# The identity must be an endomorphism: 

fmodule = self.domain() 

if fmodule != self.codomain(): 

return False 

# Some basis in which ``self`` has a representation is picked at 

# random and the test is performed on the images of the basis 

# elements: 

basis = list(self._matrices)[0][0] 

for i in fmodule.irange(): 

if self(basis[i]) != basis[i]: 

return False 

self._is_identity = True 

return True 

 

# 

# End of Morphism methods 

# 

 

def matrix(self, basis1=None, basis2=None): 

r""" 

Return the matrix of ``self`` w.r.t to a pair of bases. 

 

If the matrix is not known already, it is computed from the matrix in 

another pair of bases by means of the change-of-basis formula. 

 

INPUT: 

 

- ``basis1`` -- (default: ``None``) basis of the domain of ``self``; if 

none is provided, the domain's default basis is assumed 

- ``basis2`` -- (default: ``None``) basis of the codomain of ``self``; 

if none is provided, ``basis2`` is set to ``basis1`` if ``self`` is 

an endomorphism, otherwise, ``basis2`` is set to the codomain's 

default basis. 

 

OUTPUT: 

 

- the matrix representing the homomorphism ``self`` w.r.t 

to bases ``basis1`` and ``basis2``; more precisely, the columns of 

this matrix are formed by the components w.r.t. ``basis2`` of 

the images of the elements of ``basis1``. 

 

EXAMPLES: 

 

Matrix of a homomorphism between two `\ZZ`-modules:: 

 

sage: M = FiniteRankFreeModule(ZZ, 3, name='M') 

sage: N = FiniteRankFreeModule(ZZ, 2, name='N') 

sage: e = M.basis('e') ; f = N.basis('f') 

sage: phi = M.hom(N, [[-1,2,0], [5,1,2]]) 

sage: phi.matrix() # default bases 

[-1 2 0] 

[ 5 1 2] 

sage: phi.matrix(e,f) # bases explicited 

[-1 2 0] 

[ 5 1 2] 

sage: type(phi.matrix()) 

<type 'sage.matrix.matrix_integer_dense.Matrix_integer_dense'> 

 

Matrix in bases different from those in which the homomorphism has 

been defined:: 

 

sage: a = M.automorphism(matrix=[[-1,0,0],[0,1,2],[0,1,3]], basis=e) 

sage: ep = e.new_basis(a, 'ep', latex_symbol="e'") 

sage: b = N.automorphism(matrix=[[3,5],[4,7]], basis=f) 

sage: fp = f.new_basis(b, 'fp', latex_symbol="f'") 

sage: phi.matrix(ep, fp) 

[ 32 -1 -12] 

[-19 1 8] 

 

Check of the change-of-basis formula:: 

 

sage: phi.matrix(ep, fp) == (b^(-1)).matrix(f) * phi.matrix(e,f) * a.matrix(e) 

True 

 

Single change of basis:: 

 

sage: phi.matrix(ep, f) 

[ 1 2 4] 

[-5 3 8] 

sage: phi.matrix(ep,f) == phi.matrix(e,f) * a.matrix(e) 

True 

sage: phi.matrix(e, fp) 

[-32 9 -10] 

[ 19 -5 6] 

sage: phi.matrix(e, fp) == (b^(-1)).matrix(f) * phi.matrix(e,f) 

True 

 

Matrix of an endomorphism:: 

 

sage: phi = M.endomorphism([[1,2,3], [4,5,6], [7,8,9]], basis=ep) 

sage: phi.matrix(ep) 

[1 2 3] 

[4 5 6] 

[7 8 9] 

sage: phi.matrix(ep,ep) # same as above 

[1 2 3] 

[4 5 6] 

[7 8 9] 

sage: phi.matrix() # matrix w.r.t to the module's default basis 

[ 1 -3 1] 

[-18 39 -18] 

[-25 54 -25] 

 

""" 

from sage.matrix.constructor import matrix 

fmodule1 = self.domain() 

fmodule2 = self.codomain() 

if basis1 is None: 

basis1 = fmodule1.default_basis() 

elif basis1 not in fmodule1.bases(): 

raise TypeError(str(basis1) + " is not a basis on the " + \ 

str(fmodule1) + ".") 

if basis2 is None: 

if self.is_endomorphism(): 

basis2 = basis1 

else: 

basis2 = fmodule2.default_basis() 

elif basis2 not in fmodule2.bases(): 

raise TypeError(str(basis2) + " is not a basis on the " + \ 

str(fmodule2) + ".") 

if (basis1, basis2) not in self._matrices: 

if self._is_identity: 

# The identity endomorphism 

# ------------------------- 

if basis1 == basis2: 

# the matrix is the identity matrix: 

ring = fmodule1.base_ring() 

zero = ring.zero() 

one = ring.one() 

size = fmodule1.rank() 

mat = [] 

for i in range(size): 

row = [zero]*size 

row[i] = one 

mat.append(row) 

else: 

# the matrix is the change-of-basis matrix: 

change = fmodule1.change_of_basis(basis1, basis2) 

mat = [[change[[i,j]] for j in fmodule1.irange()] 

for i in fmodule1.irange()] 

self._matrices[(basis1, basis2)] = matrix(mat) 

else: 

# Generic homomorphism 

# -------------------- 

b1_list = [bases[0] for bases in self._matrices] 

b2_list = [bases[1] for bases in self._matrices] 

if basis1 in b1_list: 

for b2 in b2_list: 

if (basis2, b2) in fmodule2._basis_changes: 

nb2 = b2 

break 

else: 

raise ValueError("no start basis could be found for " + 

"applying the change-of-basis formula") 

change2 = fmodule2._basis_changes[(basis2, nb2)] 

mat2 = matrix( [[change2[[i,j]] for j in fmodule2.irange()] 

for i in fmodule2.irange()] ) 

self._matrices[(basis1, basis2)] = \ 

mat2 * self._matrices[(basis1,nb2)] 

elif basis2 in b2_list: 

for b1 in b1_list: 

if (b1, basis1) in fmodule1._basis_changes: 

nb1 = b1 

break 

else: 

raise ValueError("no start basis could be found for " + 

"applying the change-of-basis formula") 

change1 = fmodule1._basis_changes[(nb1, basis1)] 

mat1 = matrix( [[change1[[i,j]] for j in fmodule1.irange()] 

for i in fmodule1.irange()] ) 

self._matrices[(basis1, basis2)] = \ 

self._matrices[(nb1,basis2)] * mat1 

else: # most general change-of-basis formula 

for (b1, b2) in self._matrices: 

if (b1, basis1) in fmodule1._basis_changes and \ 

(basis2, b2) in fmodule2._basis_changes: 

nb1, nb2 = b1, b2 

break 

else: 

raise ValueError("no start basis could be found for " + 

"applying the change-of-basis formula") 

change1 = fmodule1._basis_changes[(nb1, basis1)] 

change2 = fmodule2._basis_changes[(basis2, nb2)] 

mat1 = matrix( [[change1[[i,j]] for j in fmodule1.irange()] 

for i in fmodule1.irange()] ) 

mat2 = matrix( [[change2[[i,j]] for j in fmodule2.irange()] 

for i in fmodule2.irange()] ) 

self._matrices[(basis1, basis2)] = \ 

mat2 * self._matrices[(nb1,nb2)] * mat1 

return self._matrices[(basis1, basis2)] 

 

def _common_bases(self, other): 

r""" 

Return a pair of bases in which ``self`` and ``other`` have a known 

matrix representation. 

 

INPUT: 

 

- ``other`` -- another homomorphism in the same hom-set 

 

OUTPUT: 

 

- a pair of bases in which ``self`` and ``other`` have a known 

matrix representation. 

 

EXAMPLES:: 

 

sage: M = FiniteRankFreeModule(ZZ, 3, name='M') 

sage: N = FiniteRankFreeModule(ZZ, 2, name='N') 

sage: e = M.basis('e') ; f = N.basis('f') 

sage: phi = M.hom(N, [[-1,2,0], [5,1,2]]) 

sage: psi = M.hom(N, [[1,1,0], [4,1,3]]) 

sage: phi._common_bases(psi) # matrices of phi and psi both defined on (e,f) 

(Basis (e_0,e_1,e_2) on the Rank-3 free module M over the Integer Ring, 

Basis (f_0,f_1) on the Rank-2 free module N over the Integer Ring) 

sage: a = M.automorphism() ; a[0,2], a[1,0], a[2,1] = 1, -1, -1 

sage: ep = e.new_basis(a, 'ep', latex_symbol="e'") 

sage: psi = M.hom(N, [[1,1,0], [4,1,3]], bases=(ep,f)) 

sage: phi._common_bases(psi) # matrix of psi w.r.t. (e,f) computed 

(Basis (e_0,e_1,e_2) on the Rank-3 free module M over the Integer Ring, 

Basis (f_0,f_1) on the Rank-2 free module N over the Integer Ring) 

sage: psi = M.hom(N, [[1,1,0], [4,1,3]], bases=(ep,f)) 

sage: psi._common_bases(phi) # matrix of phi w.r.t. (ep,f) computed 

(Basis (ep_0,ep_1,ep_2) on the Rank-3 free module M over the Integer Ring, 

Basis (f_0,f_1) on the Rank-2 free module N over the Integer Ring) 

 

""" 

resu = None 

for bases in self._matrices: 

try: 

other.matrix(*bases) 

resu = bases 

break 

except ValueError: 

continue 

if resu is None: 

for bases in other._matrices: 

try: 

self.matrix(*bases) 

resu = bases 

break 

except ValueError: 

continue 

return resu