Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

""" 

This file contains all the example code from the published book 

'Elementary Number Theory: Primes, Congruences, and Secrets' by 

William Stein, Springer-Verlag, 2009. 

""" 

 

 

""" 

sage: prime_range(10,50) 

[11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47] 

sage: [n for n in range(10,30) if not is_prime(n)] 

[10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28] 

sage: gcd(97,100) 

1 

sage: gcd(97 * 10^15, 19^20 * 97^2) 

97 

sage: factor(1275) 

3 * 5^2 * 17 

sage: factor(2007) 

3^2 * 223 

sage: factor(31415926535898) 

2 * 3 * 53 * 73 * 2531 * 534697 

sage: n = 7403756347956171282804679609742957314259318888\ 

...9231289084936232638972765034028266276891996419625117\ 

...8439958943305021275853701189680982867331732731089309\ 

...0055250511687706329907239638078671008609696253793465\ 

...0563796359 

sage: len(n.str(2)) 

704 

sage: len(n.str(10)) 

212 

sage: n.is_prime() # this is instant 

False 

sage: p = 2^32582657 - 1 

sage: p.ndigits() 

9808358 

sage: s = p.str(10) # this takes a long time 

sage: len(s) # s is a very long string (long time) 

9808358 

sage: s[:20] # the first 20 digits of p (long time) 

'12457502601536945540' 

sage: s[-20:] # the last 20 digits (long time) 

'11752880154053967871' 

sage: prime_pi(6) 

3 

sage: prime_pi(100) 

25 

sage: prime_pi(3000000) 

216816 

sage: plot(prime_pi, 1,1000, rgbcolor=(0,0,1)) 

Graphics object consisting of 1 graphics primitive 

sage: P = plot(Li, 2,10000, rgbcolor='purple') 

sage: Q = plot(prime_pi, 2,10000, rgbcolor='black') 

sage: R = plot(sqrt(x)*log(x),2,10000,rgbcolor='red') 

sage: show(P+Q+R,xmin=0, figsize=[8,3]) 

sage: R = Integers(3) 

sage: list(R) 

[0, 1, 2] 

sage: R = Integers(10) 

sage: a = R(3) # create an element of Z/10Z 

sage: a.multiplicative_order() 

4 

sage: [a^i for i in range(15)] 

[1, 3, 9, 7, 1, 3, 9, 7, 1, 3, 9, 7, 1, 3, 9] 

sage: euler_phi(2007) 

1332 

sage: n = 20 

sage: k = euler_phi(n); k 

8 

sage: [Mod(x,n)^k for x in range(n) if gcd(x,n) == 1] 

[1, 1, 1, 1, 1, 1, 1, 1] 

sage: for n in range(1,10): 

....: print("{} {} {}".format(n, factorial(n-1) % n, -1 % n)) 

1 0 0 

2 1 1 

3 2 2 

4 2 3 

5 4 4 

6 0 5 

7 6 6 

8 0 7 

9 0 8 

sage: CRT(2,3, 3, 5) 

8 

sage: CRT_list([2,3,2], [3,5,7]) 

23 

sage: xgcd(5,7) 

(1, 3, -2) 

sage: xgcd(130,61) 

(1, 23, -49) 

sage: a = Mod(17, 61) 

sage: a^(-1) 

18 

sage: 100.str(2) 

'1100100' 

sage: 0*2^0 + 0*2^1 + 1*2^2 + 0*2^3 + 0*2^4 + 1*2^5 + 1*2^6 

100 

sage: Mod(7,100)^91 

43 

sage: 7^91 

80153343160247310515380886994816022539378033762994852007501964604841680190743 

sage: n = 95468093486093450983409583409850934850938459083 

sage: Mod(2,n)^(n-1) 

34173444139265553870830266378598407069248687241 

sage: factor(n) # takes up to a few seconds. 

1610302526747 * 59285812386415488446397191791023889 

sage: n = 95468093486093450983409583409850934850938459083 

sage: is_prime(n) 

False 

sage: for p in primes(100): 

....: if is_prime(2^p - 1): 

....: print("{} {}".format(p, 2^p - 1)) 

2 3 

3 7 

5 31 

7 127 

13 8191 

17 131071 

19 524287 

31 2147483647 

61 2305843009213693951 

89 618970019642690137449562111 

sage: def is_prime_lucas_lehmer(p): 

....: s = Mod(4, 2^p - 1) 

....: for i in range(3, p+1): 

....: s = s^2 - 2 

....: return s == 0 

sage: # Check primality of 2^9941 - 1 

sage: is_prime_lucas_lehmer(9941) 

True 

sage: # Check primality of 2^next_prime(1000)-1 

sage: is_prime_lucas_lehmer(next_prime(1000)) 

False 

sage: for p in primes(20): 

....: print("{} {}".format(p, primitive_root(p))) 

2 1 

3 2 

5 2 

7 3 

11 2 

13 2 

17 3 

19 2 

sage: R.<x> = PolynomialRing(Integers(13)) 

sage: f = x^15 + 1 

sage: f.roots() 

[(12, 1), (10, 1), (4, 1)] 

sage: f(12) 

0 

sage: R.<x> = PolynomialRing(Integers(13)) 

sage: f = x^6 + 1 

sage: f.roots() 

[(11, 1), (8, 1), (7, 1), (6, 1), (5, 1), (2, 1)] 

sage: log(19683.0) 

9.88751059801299 

sage: log(3.0) 

1.09861228866811 

sage: log(19683.0) / log(3.0) 

9.00000000000000 

sage: plot(log, 0.1,10, rgbcolor=(0,0,1)) 

Graphics object consisting of 1 graphics primitive 

sage: p = 53 

sage: R = Integers(p) 

sage: a = R.multiplicative_generator() 

sage: v = sorted([(a^n, n) for n in range(p-1)]) 

sage: G = plot(point(v,pointsize=50,rgbcolor=(0,0,1))) 

sage: H = plot(line(v,rgbcolor=(0.5,0.5,0.5))) 

sage: G + H 

Graphics object consisting of 2 graphics primitives 

sage: q = 93450983094850938450983409623 

sage: q.is_prime() 

True 

sage: is_prime((q-1)//2) 

True 

sage: g = Mod(-2, q) 

sage: g.multiplicative_order() 

93450983094850938450983409622 

sage: n = 18319922375531859171613379181 

sage: m = 82335836243866695680141440300 

sage: g^n 

45416776270485369791375944998 

sage: g^m 

15048074151770884271824225393 

sage: (g^n)^m 

85771409470770521212346739540 

sage: (g^m)^n 

85771409470770521212346739540 

sage: def rsa(bits): 

....: # only prove correctness up to 1024 bits 

....: proof = (bits <= 1024) 

....: p = next_prime(ZZ.random_element(2**(bits//2 +1)), 

....: proof=proof) 

....: q = next_prime(ZZ.random_element(2**(bits//2 +1)), 

....: proof=proof) 

....: n = p * q 

....: phi_n = (p-1) * (q-1) 

....: while True: 

....: e = ZZ.random_element(1,phi_n) 

....: if gcd(e,phi_n) == 1: break 

....: d = lift(Mod(e,phi_n)^(-1)) 

....: return e, d, n 

sage: def encrypt(m,e,n): 

....: return lift(Mod(m,n)^e) 

sage: def decrypt(c,d,n): 

....: return lift(Mod(c,n)^d) 

sage: e,d,n = rsa(20) 

sage: c = encrypt(123, e, n) 

sage: decrypt(c, d, n) 

123 

sage: def encode(s): 

....: s = str(s) # make input a string 

....: return sum(ord(s[i])*256^i for i in range(len(s))) 

sage: def decode(n): 

....: n = Integer(n) # make input an integer 

....: v = [] 

....: while n != 0: 

....: v.append(chr(n % 256)) 

....: n //= 256 # this replaces n by floor(n/256). 

....: return ''.join(v) 

sage: m = encode('Run Nikita!'); m 

40354769014714649421968722 

sage: decode(m) 

'Run Nikita!' 

sage: def crack_rsa(n, phi_n): 

....: R.<x> = PolynomialRing(QQ) 

....: f = x^2 - (n+1 -phi_n)*x + n 

....: return [b for b, _ in f.roots()] 

sage: crack_rsa(31615577110997599711, 31615577098574867424) 

[8850588049, 3572144239] 

sage: def crack_when_pq_close(n): 

....: t = Integer(ceil(sqrt(n))) 

....: while True: 

....: k = t^2 - n 

....: if k > 0: 

....: s = Integer(int(round(sqrt(t^2 - n)))) 

....: if s^2 + n == t^2: 

....: return t+s, t-s 

....: t += 1 

sage: crack_when_pq_close(23360947609) 

(153649, 152041) 

sage: p = next_prime(2^128); p 

340282366920938463463374607431768211507 

sage: q = next_prime(p) 

sage: crack_when_pq_close(p*q) 

(340282366920938463463374607431768211537, 

340282366920938463463374607431768211507) 

sage: def crack_given_decrypt(n, m): 

....: n = Integer(n); m = Integer(m); # some type checking 

....: # Step 1: divide out powers of 2 

....: while True: 

....: if is_odd(m): break 

....: divide_out = True 

....: for i in range(5): 

....: a = randrange(1,n) 

....: if gcd(a,n) == 1: 

....: if Mod(a,n)^(m//2) != 1: 

....: divide_out = False 

....: break 

....: if divide_out: 

....: m = m//2 

....: else: 

....: break 

....: # Step 2: Compute GCD 

....: while True: 

....: a = randrange(1,n) 

....: g = gcd(lift(Mod(a, n)^(m//2)) - 1, n) 

....: if g != 1 and g != n: 

....: return g 

sage: n=32295194023343; e=29468811804857; d=11127763319273 

sage: crack_given_decrypt(n, e*d - 1) 

737531 

sage: factor(n) 

737531 * 43788253 

sage: e = 22601762315966221465875845336488389513 

sage: d = 31940292321834506197902778067109010093 

sage: n = 268494924039590992469444675130990465673 

sage: p = crack_given_decrypt(n, e*d - 1) 

sage: p # random output (could be other prime divisor) 

13432418150982799907 

sage: n % p 

0 

sage: set_random_seed(0) 

sage: p = next_prime(randrange(2^96)) 

sage: q = next_prime(randrange(2^97)) 

sage: n = p * q 

sage: qsieve(n) # long time (8s on sage.math, 2011) 

([6340271405786663791648052309, 

46102313108592180286398757159], '') 

sage: legendre_symbol(2,3) 

-1 

sage: legendre_symbol(1,3) 

1 

sage: legendre_symbol(3,5) 

-1 

sage: legendre_symbol(Mod(3,5), 5) 

-1 

sage: legendre_symbol(69,389) 

1 

sage: def kr(a, p): 

....: if Mod(a,p)^((p-1)//2) == 1: 

....: return 1 

....: else: 

....: return -1 

sage: for a in range(1,5): 

....: print("{} {}".format(a, kr(a,5))) 

1 1 

2 -1 

3 -1 

4 1 

sage: p = 726377359 

sage: Mod(3, p)^((p-1)//2) 

726377358 

sage: def gauss(a, p): 

....: # make the list of numbers reduced modulo p 

....: v = [(n*a)%p for n in range(1, (p-1)//2 + 1)] 

....: # normalize them to be in the range -p/2 to p/2 

....: v = [(x if (x < p/2) else x - p) for x in v] 

....: # sort and print the resulting numbers 

....: v.sort() 

....: print(v) 

....: # count the number that are negative 

....: num_neg = len([x for x in v if x < 0]) 

....: return (-1)^num_neg 

sage: gauss(2, 13) 

[-5, -3, -1, 2, 4, 6] 

-1 

sage: legendre_symbol(2,13) 

-1 

sage: gauss(4, 13) 

[-6, -5, -2, -1, 3, 4] 

1 

sage: legendre_symbol(4,13) 

1 

sage: gauss(2,31) 

[-15, -13, -11, -9, -7, -5, -3, -1, 2, 4, 6, 8, 10, 12, 14] 

1 

sage: legendre_symbol(2,31) 

1 

sage: K.<zeta> = CyclotomicField(5) 

sage: zeta^5 

1 

sage: 1/zeta 

-zeta^3 - zeta^2 - zeta - 1 

sage: def gauss_sum(a,p): 

....: K.<zeta> = CyclotomicField(p) 

....: return sum(legendre_symbol(n,p) * zeta^(a*n) for n in range(1,p)) 

sage: g2 = gauss_sum(2,5); g2 

2*zeta^3 + 2*zeta^2 + 1 

sage: g2.complex_embedding() 

-2.236067977... + ...e-16*I 

sage: g2^2 

5 

sage: [gauss_sum(a, 7)^2 for a in range(1,7)] 

[-7, -7, -7, -7, -7, -7] 

sage: [gauss_sum(a, 13)^2 for a in range(1,13)] 

[13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13] 

sage: S.<x> = PolynomialRing(GF(13)) 

sage: R.<alpha> = S.quotient(x^2 - 3) 

sage: (2+3*alpha)*(1+2*alpha) 

7*alpha + 7 

sage: def find_sqrt(a, p): 

....: assert (p-1)%4 == 0 

....: assert legendre_symbol(a,p) == 1 

....: S.<x> = PolynomialRing(GF(p)) 

....: R.<alpha> = S.quotient(x^2 - a) 

....: while True: 

....: z = GF(p).random_element() 

....: w = (1 + z*alpha)^((p-1)//2) 

....: (u, v) = (w[0], w[1]) 

....: if v != 0: break 

....: if (-u/v)^2 == a: return -u/v 

....: if ((1-u)/v)^2 == a: return (1-u)/v 

....: if ((-1-u)/v)^2 == a: return (-1-u)/v 

sage: b = find_sqrt(3,13) 

sage: b # random: either 9 or 3 

9 

sage: b^2 

3 

sage: b = find_sqrt(3,13) 

sage: b # see, it's random 

4 

sage: find_sqrt(5,389) # random: either 303 or 86 

303 

sage: find_sqrt(5,389) # see, it's random 

86 

 

# Several of the examples below had to be changed due to improved 

# behavior of the continued_fraction function #8017 and #14567. 

 

sage: continued_fraction(17/23) 

[0; 1, 2, 1, 5] 

sage: reset('e') 

sage: continued_fraction(e) 

[2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, ...] 

sage: continued_fraction_list(e, bits=21) 

[2, 1, 2, 1, 1, 4, 1, 1, 6] 

sage: continued_fraction_list(e, bits=30) 

[2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8] 

sage: a = continued_fraction(17/23); a 

[0; 1, 2, 1, 5] 

sage: a.value() 

17/23 

sage: b = continued_fraction(6/23); b 

[0; 3, 1, 5] 

sage: c = continued_fraction(pi); c 

[3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, ...] 

sage: [c.convergent(i) for i in range(5)] 

[3, 22/7, 333/106, 355/113, 103993/33102] 

sage: [c.p(n)*c.q(n-1) - c.q(n)*c.p(n-1) for n in range(-1, 13)] 

[1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1] 

sage: [c.p(n)*c.q(n-2) - c.q(n)*c.p(n-2) for n in range(13)] 

[3, -7, 15, -1, 292, -1, 1, -1, 2, -1, 3, -1, 14] 

sage: c = continued_fraction([1,2,3,4,5]) 

sage: c.convergents() 

[1, 3/2, 10/7, 43/30, 225/157] 

sage: [c.p(n) for n in range(len(c))] 

[1, 3, 10, 43, 225] 

sage: [c.q(n) for n in range(len(c))] 

[1, 2, 7, 30, 157] 

sage: c = continued_fraction([1,1,1,1,1,1,1,1]) 

sage: v = [(i, c.p(i)/c.q(i)) for i in range(len(c))] 

sage: P = point(v, rgbcolor=(0,0,1), pointsize=40) 

sage: L = line(v, rgbcolor=(0.5,0.5,0.5)) 

sage: L2 = line([(0,c.value()),(len(c)-1,c.value())], \ 

....: thickness=0.5, rgbcolor=(0.7,0,0)) 

sage: (L+L2+P).show(xmin=0,ymin=1) 

sage: def cf(bits): 

....: x = (1 + sqrt(RealField(bits)(5))) / 2 

....: return continued_fraction(x) 

sage: cf(10) 

[1; 1, 1, 1, 1, 1, 1, 2] 

sage: cf(30) 

[1; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2] 

sage: cf(50) 

[1; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2] 

sage: def cf_sqrt_d(d, bits): 

....: x = sqrt(RealField(bits)(d)) 

....: return continued_fraction(x) 

sage: cf_sqrt_d(389,50) 

[19; 1, 2, 1, 1, 1, 1, 2, 1, 38, 1, 2, 1, 1, 1, 1, 2, 1, 38] 

sage: cf_sqrt_d(389,100) 

[19; 1, 2, 1, 1, 1, 1, 2, 1, 38, 1, 2, 1, 1, 1, 1, 2, 1, 38, 1, 2, 1, 1, 1, 1, 2, 1, 38, 1, 2, 1, 1, 1, 1, 2, 1, 38, 1, 2, 2] 

sage: def newton_root(f, iterates=2, x0=0, prec=53): 

....: x = RealField(prec)(x0) 

....: R = PolynomialRing(ZZ,'x') 

....: f = R(f) 

....: g = f.derivative() 

....: for i in range(iterates): 

....: x = x - f(x)/g(x) 

....: return x 

sage: reset('x') 

sage: a = newton_root(3847*x^2 - 14808904*x + 36527265); a 

2.46815700480740 

sage: cf = continued_fraction(a); cf 

[2; 2, 7, 2, 1, 5, 1, 1, 1, 1, 1, 1, 103, 8, 1, 2, 3, 2] 

sage: c = cf[:12]; c 

[2; 2, 7, 2, 1, 5, 1, 1, 1, 1, 2] 

sage: c.value() 

9495/3847 

sage: def sum_of_two_squares_naive(n): 

....: for i in range(int(sqrt(n))): 

....: if is_square(n - i^2): 

....: return i, (Integer(n-i^2)).sqrt() 

....: return "%s is not a sum of two squares"%n 

sage: sum_of_two_squares_naive(23) 

'23 is not a sum of two squares' 

sage: sum_of_two_squares_naive(389) 

(10, 17) 

sage: sum_of_two_squares_naive(2007) 

'2007 is not a sum of two squares' 

sage: sum_of_two_squares_naive(2008) 

'2008 is not a sum of two squares' 

sage: sum_of_two_squares_naive(2009) 

(28, 35) 

sage: 28^2 + 35^2 

2009 

sage: sum_of_two_squares_naive(2*3^4*5*7^2*13) 

(189, 693) 

sage: def sum_of_two_squares(p): 

....: p = Integer(p) 

....: assert p%4 == 1, "p must be 1 modulo 4" 

....: r = Mod(-1,p).sqrt().lift() 

....: v = continued_fraction(-r/p) 

....: n = floor(sqrt(p)) 

....: for x in v.convergents(): 

....: c = r*x.denominator() + p*x.numerator() 

....: if -n <= c and c <= n: 

....: return (abs(x.denominator()),abs(c)) 

sage: p = next_prime(next_prime(10^10)) 

sage: sum_of_two_squares(p) 

(55913, 82908) 

sage: sum_of_two_squares_naive(p) 

(55913, 82908) 

sage: E = EllipticCurve([-5, 4]) 

sage: E 

Elliptic Curve defined by y^2 = x^3 - 5*x + 4 

over Rational Field 

sage: P = E.plot(thickness=4,rgbcolor=(0.1,0.7,0.1)) 

sage: P.show(figsize=[4,6]) 

sage: E = EllipticCurve(GF(37), [1,0]) 

sage: E 

Elliptic Curve defined by y^2 = x^3 + x over 

Finite Field of size 37 

sage: E.plot(pointsize=45) 

Graphics object consisting of 1 graphics primitive 

sage: E = EllipticCurve([-5,4]) 

sage: P = E([1,0]); Q = E([0,2]) 

sage: P + Q 

(3 : 4 : 1) 

sage: P + P 

(0 : 1 : 0) 

sage: P + Q + Q + Q + Q 

(350497/351649 : 16920528/208527857 : 1) 

sage: R.<x1,y1,x2,y2,x3,y3,a,b> = QQ[] 

sage: rels = [y1^2 - (x1^3 + a*x1 + b), 

....: y2^2 - (x2^3 + a*x2 + b), 

....: y3^2 - (x3^3 + a*x3 + b)] 

... 

sage: Q = R.quotient(rels) 

sage: def op(P1,P2): 

....: x1,y1 = P1; x2,y2 = P2 

....: lam = (y1 - y2)/(x1 - x2); nu = y1 - lam*x1 

....: x3 = lam^2 - x1 - x2; y3 = -lam*x3 - nu 

....: return (x3, y3) 

sage: P1 = (x1,y1); P2 = (x2,y2); P3 = (x3,y3) 

sage: Z = op(P1, op(P2,P3)); W = op(op(P1,P2),P3) 

sage: (Q(Z[0].numerator()*W[0].denominator() - 

....: Z[0].denominator()*W[0].numerator())) == 0 

True 

sage: (Q(Z[1].numerator()*W[1].denominator() - 

....: Z[1].denominator()*W[1].numerator())) == 0 

True 

sage: def lcm_upto(B): 

....: return prod([p^int(math.log(B)/math.log(p)) 

....: for p in prime_range(B+1)]) 

sage: lcm_upto(10^2) 

69720375229712477164533808935312303556800 

sage: LCM([1..10^2]) 

69720375229712477164533808935312303556800 

sage: def pollard(N, B=10^5, stop=10): 

....: m = prod([p^int(math.log(B)/math.log(p)) 

....: for p in prime_range(B+1)]) 

....: for a in [2..stop]: 

....: x = (Mod(a,N)^m - 1).lift() 

....: if x == 0: continue 

....: g = gcd(x, N) 

....: if g != 1 or g != N: return g 

....: return 1 

sage: pollard(5917,5) 

61 

sage: pollard(779167,5) 

1 

sage: pollard(779167,15) 

2003 

sage: pollard(4331,7) 

1 

sage: pollard(4331,5) 

61 

sage: pollard(187, 15, 2) 

1 

sage: pollard(187, 15) 

11 

sage: def ecm(N, B=10^3, trials=10): 

....: m = prod([p^int(math.log(B)/math.log(p)) 

....: for p in prime_range(B+1)]) 

....: R = Integers(N) 

....: # Make Sage think that R is a field: 

....: R.is_field = lambda : True 

....: for _ in range(trials): 

....: while True: 

....: a = R.random_element() 

....: if gcd(4*a.lift()^3 + 27, N) == 1: break 

....: try: 

....: m * EllipticCurve([a, 1])([0,1]) 

....: except ZeroDivisionError as msg: 

....: # msg: "Inverse of <int> does not exist" 

....: return gcd(Integer(str(msg).split()[2]), N) 

....: return 1 

sage: set_random_seed(2) 

sage: ecm(5959, B=20) 

101 

sage: ecm(next_prime(10^20)*next_prime(10^7), B=10^3) 

10000019 

sage: p = 785963102379428822376694789446897396207498568951 

sage: E = EllipticCurve(GF(p), \ 

....: [317689081251325503476317476413827693272746955927, 

....: 79052896607878758718120572025718535432100651934]) 

sage: E.cardinality() 

785963102379428822376693024881714957612686157429 

sage: E.cardinality().is_prime() 

True 

sage: B = E([ 

....: 771507216262649826170648268565579889907769254176, 

....: 390157510246556628525279459266514995562533196655]) 

sage: n=670805031139910513517527207693060456300217054473 

sage: r=70674630913457179596452846564371866229568459543 

sage: P = E([14489646124220757767, 

....: 669337780373284096274895136618194604469696830074]) 

sage: encrypt = (r*B, P + r*(n*B)) 

sage: encrypt[1] - n*encrypt[0] == P # decrypting works 

True 

sage: T = lambda v: EllipticCurve(v 

....: ).torsion_subgroup().invariants() 

sage: T([-5,4]) 

(2,) 

sage: T([-43,166]) 

(7,) 

sage: T([-4,0]) 

(2, 2) 

sage: T([-1386747, 368636886]) 

(2, 8) 

sage: r = lambda v: EllipticCurve(v).rank() 

sage: r([-5,4]) 

1 

sage: r([0,1]) 

0 

sage: r([-3024, 46224]) 

2 

sage: r([-112, 400]) 

3 

sage: r([-102627, 12560670]) 

4 

sage: def cong(n): 

....: G = EllipticCurve([-n^2,0]).gens() 

....: if len(G) == 0: return False 

....: x,y,_ = G[0] 

....: return ((n^2-x^2)/y,-2*x*n/y,(n^2+x^2)/y) 

sage: cong(6) 

(3, 4, 5) 

sage: cong(5) 

(3/2, 20/3, 41/6) 

sage: cong(1) 

False 

sage: cong(13) 

(323/30, 780/323, 106921/9690) 

sage: (323/30 * 780/323)/2 

13 

sage: (323/30)^2 + (780/323)^2 == (106921/9690)^2 

True 

"""