Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

""" 

This file contains a bunch of tests extracted from the published book 

'Modular Forms: a Computational Approach' by William Stein, AMS 2007. 

 

sage: G = SL(2,ZZ); G 

Special Linear Group of degree 2 over Integer Ring 

sage: S, T = G.gens() 

sage: S 

[ 0 1] 

[-1 0] 

sage: T 

[1 1] 

[0 1] 

sage: delta_qexp(6) 

q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 + O(q^6) 

sage: bernoulli(12) 

-691/2730 

sage: bernoulli(50) 

495057205241079648212477525/66 

sage: len(str(bernoulli(10000))) 

27706 

sage: E4 = eisenstein_series_qexp(4, 3) 

sage: E6 = eisenstein_series_qexp(6, 3) 

sage: E4^6 

1/191102976000000 + 1/132710400000*q + 203/44236800000*q^2 + O(q^3) 

sage: E4^3*E6^2 

1/3511517184000 - 1/12192768000*q - 377/4064256000*q^2 + O(q^3) 

sage: E6^4 

1/64524128256 - 1/32006016*q + 241/10668672*q^2 + O(q^3) 

sage: victor_miller_basis(28,5) 

[ 

1 + 15590400*q^3 + 36957286800*q^4 + O(q^5), 

q + 151740*q^3 + 61032448*q^4 + O(q^5), 

q^2 + 192*q^3 - 8280*q^4 + O(q^5) 

] 

sage: R.<q> = QQ[['q']] 

sage: F4 = 240 * eisenstein_series_qexp(4,3) 

sage: F6 = -504 * eisenstein_series_qexp(6,3) 

sage: F4^3 

1 + 720*q + 179280*q^2 + O(q^3) 

sage: Delta = (F4^3 - F6^2)/1728; Delta 

q - 24*q^2 + O(q^3) 

sage: F4^3 - 720*Delta 

1 + 196560*q^2 + O(q^3) 

sage: M = ModularForms(1,36, prec=6).echelon_form() 

sage: M.basis() 

[ 

1 + 6218175600*q^4 + 15281788354560*q^5 + O(q^6), 

q + 57093088*q^4 + 37927345230*q^5 + O(q^6), 

q^2 + 194184*q^4 + 7442432*q^5 + O(q^6), 

q^3 - 72*q^4 + 2484*q^5 + O(q^6) 

] 

sage: T2 = M.hecke_matrix(2); T2 

[ 34359738369 0 6218175600 9026867482214400] 

[ 0 0 34416831456 5681332472832] 

[ 0 1 194184 -197264484] 

[ 0 0 -72 -54528] 

sage: T2.charpoly().factor() 

(x - 34359738369) * (x^3 - 139656*x^2 - 59208339456*x - 1467625047588864) 

sage: bernoulli_mod_p(23) 

[1, 4, 13, 17, 13, 6, 10, 5, 10, 9, 15] 

sage: set_modsym_print_mode ('modular') 

sage: M = ModularSymbols(11, 2) 

sage: M.basis() 

({Infinity, 0}, {-1/8, 0}, {-1/9, 0}) 

sage: S = M.cuspidal_submodule() 

sage: S.integral_basis() # basis over ZZ. 

({-1/8, 0}, {-1/9, 0}) 

sage: set_modsym_print_mode ('manin') # set it back 

sage: continued_fraction(4/7).convergents() 

[0, 1, 1/2, 4/7] 

sage: M = ModularSymbols(2,2) 

sage: M 

Modular Symbols space of dimension 1 for Gamma_0(2) 

of weight 2 with sign 0 over Rational Field 

sage: M.manin_generators() 

[(0,1), (1,0), (1,1)] 

 

sage: M = ModularSymbols(3,2) 

sage: M.manin_generators() 

[(0,1), (1,0), (1,1), (1,2)] 

 

sage: M = ModularSymbols(6,2) 

sage: M.manin_generators() 

[(0,1), (1,0), (1,1), (1,2), (1,3), (1,4), (1,5), (2,1), 

(2,3), (2,5), (3,1), (3,2)] 

sage: M = ModularSymbols(2,2) 

sage: [x.lift_to_sl2z(2) for x in M.manin_generators()] 

[[1, 0, 0, 1], [0, -1, 1, 0], [1, 0, 1, 1]] 

sage: M = ModularSymbols(6,2) 

sage: x = M.manin_generators()[9] 

sage: x 

(2,5) 

sage: x.lift_to_sl2z(6) 

[1, 2, 2, 5] 

sage: M = ModularSymbols(2,2) 

sage: M.manin_basis() 

[1] 

sage: [M.manin_generators()[i] for i in M.manin_basis()] 

[(1,0)] 

sage: M = ModularSymbols(6,2) 

sage: M.manin_basis() 

[1, 10, 11] 

sage: [M.manin_generators()[i] for i in M.manin_basis()] 

[(1,0), (3,1), (3,2)] 

sage: M.basis() 

((1,0), (3,1), (3,2)) 

sage: [x.modular_symbol_rep() for x in M.basis()] 

[{Infinity, 0}, {0, 1/3}, {-1/2, -1/3}] 

sage: M = ModularSymbols(2,2) 

sage: M.manin_gens_to_basis() 

[-1] 

[ 1] 

[ 0] 

sage: M = ModularSymbols(2,2) 

sage: x = (1,0); M(x) 

(1,0) 

sage: M( (3,1) ) # entries are reduced modulo 2 first 

0 

sage: M( (10,19) ) 

-(1,0) 

sage: M = ModularSymbols(6,2) 

sage: M.manin_gens_to_basis() 

[-1 0 0] 

[ 1 0 0] 

[ 0 0 0] 

[ 0 -1 1] 

[ 0 -1 0] 

[ 0 -1 1] 

[ 0 0 0] 

[ 0 1 -1] 

[ 0 0 -1] 

[ 0 1 -1] 

[ 0 1 0] 

[ 0 0 1] 

sage: M = ModularSymbols(6,2) 

sage: M((0,1)) 

-(1,0) 

sage: M((1,2)) 

-(3,1) + (3,2) 

sage: HeilbronnCremona(2).to_list() 

[[1, 0, 0, 2], [2, 0, 0, 1], [2, 1, 0, 1], [1, 0, 1, 2]] 

sage: HeilbronnCremona(3).to_list() 

[[1, 0, 0, 3], [3, 1, 0, 1], [1, 0, 1, 3], [3, 0, 0, 1], 

[3, -1, 0, 1], [-1, 0, 1, -3]] 

sage: HeilbronnCremona(5).to_list() 

[[1, 0, 0, 5], [5, 2, 0, 1], [2, 1, 1, 3], [1, 0, 3, 5], 

[5, 1, 0, 1], [1, 0, 1, 5], [5, 0, 0, 1], [5, -1, 0, 1], 

[-1, 0, 1, -5], [5, -2, 0, 1], [-2, 1, 1, -3], 

[1, 0, -3, 5]] 

sage: len(HeilbronnCremona(37)) 

128 

sage: len(HeilbronnCremona(389)) 

1892 

sage: len(HeilbronnCremona(2003)) 

11662 

sage: M = ModularSymbols(2,2) 

sage: M.T(2).matrix() 

[1] 

sage: M = ModularSymbols(6, 2) 

sage: M.T(2).matrix() 

[ 2 1 -1] 

[-1 0 1] 

[-1 -1 2] 

sage: M.T(3).matrix() 

[3 2 0] 

[0 1 0] 

[2 2 1] 

sage: M.T(3).fcp() # factored characteristic polynomial 

(x - 3) * (x - 1)^2 

sage: M = ModularSymbols(39, 2) 

sage: T2 = M.T(2) 

sage: T2.matrix() 

[ 3 0 -1 0 0 1 1 -1 0] 

[ 0 0 2 0 -1 1 0 1 -1] 

[ 0 1 0 -1 1 1 0 1 -1] 

[ 0 0 1 0 0 1 0 1 -1] 

[ 0 -1 2 0 0 1 0 1 -1] 

[ 0 0 1 1 0 1 1 -1 0] 

[ 0 0 0 -1 0 1 1 2 0] 

[ 0 0 0 1 0 0 2 0 1] 

[ 0 0 -1 0 0 0 1 0 2] 

sage: T2.fcp() # factored characteristic polynomial 

(x - 1)^2 * (x - 3)^3 * (x^2 + 2*x - 1)^2 

sage: T2 = M.T(2).matrix() 

sage: T5 = M.T(5).matrix() 

sage: T2*T5 - T5*T2 == 0 

True 

sage: T5.charpoly().factor() 

(x - 2)^2 * (x - 6)^3 * (x^2 - 8)^2 

sage: M = ModularSymbols(39, 2) 

sage: M.T(2).decomposition() 

[ 

Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 9 for Gamma_0(39) of weight 2 with sign 0 over Rational Field, 

Modular Symbols subspace of dimension 3 of Modular Symbols space of dimension 9 for Gamma_0(39) of weight 2 with sign 0 over Rational Field, 

Modular Symbols subspace of dimension 4 of Modular Symbols space of dimension 9 for Gamma_0(39) of weight 2 with sign 0 over Rational Field 

] 

sage: M = ModularSymbols(2, 2) 

sage: M.boundary_map() 

Hecke module morphism boundary map defined by the matrix 

[ 1 -1] 

Domain: Modular Symbols space of dimension 1 for 

Gamma_0(2) of weight ... 

Codomain: Space of Boundary Modular Symbols for 

Congruence Subgroup Gamma0(2) ... 

sage: M.cuspidal_submodule() 

Modular Symbols subspace of dimension 0 of Modular 

Symbols space of dimension 1 for Gamma_0(2) of weight 

2 with sign 0 over Rational Field 

sage: M = ModularSymbols(11, 2) 

sage: M.boundary_map().matrix() 

[ 1 -1] 

[ 0 0] 

[ 0 0] 

sage: M.cuspidal_submodule() 

Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign 0 over Rational Field 

sage: S = M.cuspidal_submodule(); S 

Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign 0 over Rational Field 

sage: S.basis() 

((1,8), (1,9)) 

sage: S.T(2).matrix() 

[-2 0] 

[ 0 -2] 

sage: S.T(3).matrix() 

[-1 0] 

[ 0 -1] 

sage: S.T(5).matrix() 

[1 0] 

[0 1] 

sage: E = EllipticCurve([0,-1,1,-10,-20]) 

sage: 2 + 1 - E.Np(2) 

-2 

sage: 3 + 1 - E.Np(3) 

-1 

sage: 5 + 1 - E.Np(5) 

1 

sage: 7 + 1 - E.Np(7) 

-2 

sage: [S.T(p).matrix()[0,0] for p in [2,3,5,7]] 

[-2, -1, 1, -2] 

sage: M = ModularSymbols(11); M.basis() 

((1,0), (1,8), (1,9)) 

sage: S = M.cuspidal_submodule(); S 

Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign 0 over Rational Field 

sage: S.T(2).matrix() 

[-2 0] 

[ 0 -2] 

sage: S.T(3).matrix() 

[-1 0] 

[ 0 -1] 

sage: M = ModularSymbols(33) 

sage: S = M.cuspidal_submodule(); S 

Modular Symbols subspace of dimension 6 of Modular 

Symbols space of dimension 9 for Gamma_0(33) of weight 

2 with sign 0 over Rational Field 

sage: R.<q> = PowerSeriesRing(QQ) 

sage: v = [S.T(n).matrix()[0,0] for n in range(1,6)] 

sage: f00 = sum(v[n-1]*q^n for n in range(1,6)) + O(q^6) 

sage: f00 

q - q^2 - q^3 + q^4 + O(q^6) 

sage: v = [S.T(n).matrix()[0,1] for n in range(1,6)] 

sage: f01 = sum(v[n-1]*q^n for n in range(1,6)) + O(q^6) 

sage: f01 

-2*q^3 + O(q^6) 

sage: v = [S.T(n).matrix()[1,0] for n in range(1,6)] 

sage: f10 = sum(v[n-1]*q^n for n in range(1,6)) + O(q^6) 

sage: f10 

q^3 + O(q^6) 

sage: v = [S.T(n).matrix()[1,1] for n in range(1,6)] 

sage: f11 = sum(v[n-1]*q^n for n in range(1,6)) + O(q^6) 

sage: f11 

q - 2*q^2 + 2*q^4 + q^5 + O(q^6) 

sage: M = ModularSymbols(23) 

sage: S = M.cuspidal_submodule() 

sage: S 

Modular Symbols subspace of dimension 4 of Modular 

Symbols space of dimension 5 for Gamma_0(23) of weight 

2 with sign 0 over Rational Field 

sage: f = S.q_expansion_cuspforms(6) 

sage: f(0,0) 

q - 2/3*q^2 + 1/3*q^3 - 1/3*q^4 - 4/3*q^5 + O(q^6) 

sage: f(0,1) 

O(q^6) 

sage: f(1,0) 

-1/3*q^2 + 2/3*q^3 + 1/3*q^4 - 2/3*q^5 + O(q^6) 

sage: S.q_expansion_basis(6) 

[ 

q - q^3 - q^4 + O(q^6), 

q^2 - 2*q^3 - q^4 + 2*q^5 + O(q^6) 

] 

sage: R = Integers(49) 

sage: R 

Ring of integers modulo 49 

sage: R.unit_gens() 

(3,) 

sage: Integers(25).unit_gens() 

(2,) 

sage: Integers(100).unit_gens() 

(51, 77) 

sage: Integers(200).unit_gens() 

(151, 101, 177) 

sage: Integers(2005).unit_gens() 

(402, 1206) 

sage: Integers(200000000).unit_gens() 

(174218751, 51562501, 187109377) 

sage: list(DirichletGroup(5)) 

[Dirichlet character modulo 5 of conductor 1 mapping 2 |--> 1, 

Dirichlet character modulo 5 of conductor 5 mapping 2 |--> zeta4, 

Dirichlet character modulo 5 of conductor 5 mapping 2 |--> -1, 

Dirichlet character modulo 5 of conductor 5 mapping 2 |--> -zeta4] 

sage: list(DirichletGroup(5, QQ)) 

[Dirichlet character modulo 5 of conductor 1 mapping 2 |--> 1, Dirichlet character modulo 5 of conductor 5 mapping 2 |--> -1] 

sage: G = DirichletGroup(200) 

sage: G 

Group of Dirichlet characters modulo 200 with values in Cyclotomic Field of order 20 and degree 8 

sage: G.exponent() 

20 

sage: G.gens() 

(Dirichlet character modulo 200 of conductor 4 mapping 151 |--> -1, 101 |--> 1, 177 |--> 1, 

Dirichlet character modulo 200 of conductor 8 mapping 151 |--> 1, 101 |--> -1, 177 |--> 1, 

Dirichlet character modulo 200 of conductor 25 mapping 151 |--> 1, 101 |--> 1, 177 |--> zeta20) 

sage: K = G.base_ring() 

sage: zeta = K.0 

sage: eps = G([1,-1,zeta^5]) 

sage: eps 

Dirichlet character modulo 200 of conductor 40 mapping 151 |--> 1, 101 |--> -1, 177 |--> zeta20^5 

sage: eps(3) 

zeta20^5 

sage: -zeta^15 

zeta20^5 

sage: kronecker(151,200) 

1 

sage: kronecker(101,200) 

-1 

sage: kronecker(177,200) 

1 

sage: G = DirichletGroup(20) 

sage: G.galois_orbits() 

[ 

[Dirichlet character modulo 20 of conductor 20 mapping 11 |--> -1, 17 |--> -1], 

[Dirichlet character modulo 20 of conductor 20 mapping 11 |--> -1, 17 |--> -zeta4, 

Dirichlet character modulo 20 of conductor 20 mapping 11 |--> -1, 17 |--> zeta4], 

[Dirichlet character modulo 20 of conductor 4 mapping 11 |--> -1, 17 |--> 1], 

[Dirichlet character modulo 20 of conductor 5 mapping 11 |--> 1, 17 |--> -1], 

[Dirichlet character modulo 20 of conductor 5 mapping 11 |--> 1, 17 |--> -zeta4, 

Dirichlet character modulo 20 of conductor 5 mapping 11 |--> 1, 17 |--> zeta4], 

[Dirichlet character modulo 20 of conductor 1 mapping 11 |--> 1, 17 |--> 1] 

] 

sage: G = DirichletGroup(11, QQ); G 

Group of Dirichlet characters modulo 11 with values in Rational Field 

sage: list(G) 

[Dirichlet character modulo 11 of conductor 1 mapping 2 |--> 1, 

Dirichlet character modulo 11 of conductor 11 mapping 2 |--> -1] 

sage: eps = G.0 # 0th generator for Dirichlet group 

sage: eps 

Dirichlet character modulo 11 of conductor 11 mapping 2 |--> -1 

sage: G.unit_gens() 

(2,) 

sage: eps(2) 

-1 

sage: eps(3) 

1 

sage: [eps(11*n) for n in range(10)] 

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 

sage: R = CyclotomicField(4) 

sage: CyclotomicField(4) 

Cyclotomic Field of order 4 and degree 2 

sage: G = DirichletGroup(15, R) 

sage: G 

Group of Dirichlet characters modulo 15 with values in Cyclotomic Field of order 4 and degree 2 

sage: list(G) 

[Dirichlet character modulo 15 of conductor 1 mapping 11 |--> 1, 7 |--> 1, 

Dirichlet character modulo 15 of conductor 3 mapping 11 |--> -1, 7 |--> 1, 

Dirichlet character modulo 15 of conductor 5 mapping 11 |--> 1, 7 |--> zeta4, 

Dirichlet character modulo 15 of conductor 15 mapping 11 |--> -1, 7 |--> zeta4, 

Dirichlet character modulo 15 of conductor 5 mapping 11 |--> 1, 7 |--> -1, 

Dirichlet character modulo 15 of conductor 15 mapping 11 |--> -1, 7 |--> -1, 

Dirichlet character modulo 15 of conductor 5 mapping 11 |--> 1, 7 |--> -zeta4, 

Dirichlet character modulo 15 of conductor 15 mapping 11 |--> -1, 7 |--> -zeta4] 

sage: e = G.1 

sage: e(4) 

-1 

sage: e(-1) 

-1 

sage: e(5) 

0 

sage: [e(n) for n in range(15)] 

[0, 1, zeta4, 0, -1, 0, 0, zeta4, -zeta4, 

0, 0, 1, 0, -zeta4, -1] 

sage: G = DirichletGroup(15, GF(5)); G 

Group of Dirichlet characters modulo 15 with values in Finite Field of size 5 

sage: list(G) 

[Dirichlet character modulo 15 of conductor 1 mapping 11 |--> 1, 7 |--> 1, 

Dirichlet character modulo 15 of conductor 3 mapping 11 |--> 4, 7 |--> 1, 

Dirichlet character modulo 15 of conductor 5 mapping 11 |--> 1, 7 |--> 2, 

Dirichlet character modulo 15 of conductor 15 mapping 11 |--> 4, 7 |--> 2, 

Dirichlet character modulo 15 of conductor 5 mapping 11 |--> 1, 7 |--> 4, 

Dirichlet character modulo 15 of conductor 15 mapping 11 |--> 4, 7 |--> 4, 

Dirichlet character modulo 15 of conductor 5 mapping 11 |--> 1, 7 |--> 3, 

Dirichlet character modulo 15 of conductor 15 mapping 11 |--> 4, 7 |--> 3] 

sage: e = G.1 

sage: e(-1) 

4 

sage: e(2) 

2 

sage: e(5) 

0 

sage: [e(n) for n in range(15)] 

[0, 1, 2, 0, 4, 0, 0, 2, 3, 0, 0, 1, 0, 3, 4] 

sage: G = DirichletGroup(5) 

sage: e = G.0 

sage: e(2) 

zeta4 

sage: e.bernoulli(1) 

-1/5*zeta4 - 3/5 

sage: e.bernoulli(9) 

-108846/5*zeta4 - 176868/5 

sage: E = EisensteinForms(Gamma1(13),2) 

sage: E.eisenstein_series() 

[ 

1/2 + q + 3*q^2 + 4*q^3 + 7*q^4 + 6*q^5 + O(q^6), 

-7/13*zeta6 - 11/13 + q + (2*zeta6 + 1)*q^2 + (-3*zeta6 + 1)*q^3 + (6*zeta6 - 3)*q^4 - 4*q^5 + O(q^6), 

q + (zeta6 + 2)*q^2 + (-zeta6 + 3)*q^3 + (3*zeta6 + 3)*q^4 + 4*q^5 + O(q^6), 

-zeta6 + q + (2*zeta6 - 1)*q^2 + (3*zeta6 - 2)*q^3 + (-2*zeta6 - 1)*q^4 + 6*q^5 + O(q^6), 

q + (zeta6 + 1)*q^2 + (zeta6 + 2)*q^3 + (zeta6 + 2)*q^4 + 6*q^5 + O(q^6), 

-1 + q - q^2 + 4*q^3 + 3*q^4 - 4*q^5 + O(q^6), 

q + q^2 + 4*q^3 + 3*q^4 + 4*q^5 + O(q^6), 

zeta6 - 1 + q + (-2*zeta6 + 1)*q^2 + (-3*zeta6 + 1)*q^3 + (2*zeta6 - 3)*q^4 + 6*q^5 + O(q^6), 

q + (-zeta6 + 2)*q^2 + (-zeta6 + 3)*q^3 + (-zeta6 + 3)*q^4 + 6*q^5 + O(q^6), 

7/13*zeta6 - 18/13 + q + (-2*zeta6 + 3)*q^2 + (3*zeta6 - 2)*q^3 + (-6*zeta6 + 3)*q^4 - 4*q^5 + O(q^6), 

q + (-zeta6 + 3)*q^2 + (zeta6 + 2)*q^3 + (-3*zeta6 + 6)*q^4 + 4*q^5 + O(q^6) 

] 

sage: e = E.eisenstein_series() 

sage: for e in E.eisenstein_series(): 

....: print(e.parameters()) 

(Dirichlet character modulo 13 of conductor 1 mapping 2 |--> 1, Dirichlet character modulo 13 of conductor 1 mapping 2 |--> 1, 13) 

(Dirichlet character modulo 13 of conductor 1 mapping 2 |--> 1, Dirichlet character modulo 13 of conductor 13 mapping 2 |--> zeta6, 1) 

(Dirichlet character modulo 13 of conductor 13 mapping 2 |--> zeta6, Dirichlet character modulo 13 of conductor 1 mapping 2 |--> 1, 1) 

(Dirichlet character modulo 13 of conductor 1 mapping 2 |--> 1, Dirichlet character modulo 13 of conductor 13 mapping 2 |--> zeta6 - 1, 1) 

(Dirichlet character modulo 13 of conductor 13 mapping 2 |--> zeta6 - 1, Dirichlet character modulo 13 of conductor 1 mapping 2 |--> 1, 1) 

(Dirichlet character modulo 13 of conductor 1 mapping 2 |--> 1, Dirichlet character modulo 13 of conductor 13 mapping 2 |--> -1, 1) 

(Dirichlet character modulo 13 of conductor 13 mapping 2 |--> -1, Dirichlet character modulo 13 of conductor 1 mapping 2 |--> 1, 1) 

(Dirichlet character modulo 13 of conductor 1 mapping 2 |--> 1, Dirichlet character modulo 13 of conductor 13 mapping 2 |--> -zeta6, 1) 

(Dirichlet character modulo 13 of conductor 13 mapping 2 |--> -zeta6, Dirichlet character modulo 13 of conductor 1 mapping 2 |--> 1, 1) 

(Dirichlet character modulo 13 of conductor 1 mapping 2 |--> 1, Dirichlet character modulo 13 of conductor 13 mapping 2 |--> -zeta6 + 1, 1) 

(Dirichlet character modulo 13 of conductor 13 mapping 2 |--> -zeta6 + 1, Dirichlet character modulo 13 of conductor 1 mapping 2 |--> 1, 1) 

sage: dimension_cusp_forms(Gamma0(2007),2) 

221 

sage: dimension_eis(Gamma0(2007),2) 

7 

sage: dimension_modular_forms(Gamma0(2007),2) 

228 

sage: dimension_new_cusp_forms(Gamma0(11),12) 

8 

sage: dimension_cusp_forms(Gamma0(11),12) 

10 

sage: dimension_new_cusp_forms(Gamma0(2007),12) 

1017 

sage: dimension_cusp_forms(Gamma0(2007),12) 

2460 

sage: dimension_cusp_forms(Gamma1(2007),2) 

147409 

sage: dimension_eis(Gamma1(2007),2) 

3551 

sage: dimension_modular_forms(Gamma1(2007),2) 

150960 

sage: G = DirichletGroup(2007) 

sage: e = prod(G.gens(), G(1)) 

sage: dimension_cusp_forms(e,2) 

222 

sage: dimension_cusp_forms(e,3) 

0 

sage: dimension_cusp_forms(e,4) 

670 

sage: dimension_cusp_forms(e,24) 

5150 

sage: dimension_eis(e,2) 

4 

sage: dimension_eis(e,3) 

0 

sage: dimension_eis(e,4) 

4 

sage: dimension_eis(e,24) 

4 

sage: G = DirichletGroup(2007, QQ) 

sage: e = prod(G.gens(), G(1)) 

sage: dimension_new_cusp_forms(e,2) 

76 

sage: p = 389 

sage: k = GF(p) 

sage: a = k(7/13); a 

210 

sage: a.rational_reconstruction() 

7/13 

sage: M = MatrixSpace(QQ,4,8) 

sage: A = M([[-9,6,7,3,1,0,0,0],[-10,3,8,2,0,1,0,0],[3,-6,2,8,0,0,1,0],[-8,-6,-8,6,0,0,0,1]]) 

sage: A41 = MatrixSpace(GF(41),4,8)(A) 

sage: E41 = A41.echelon_form() 

sage: B = A.matrix_from_columns([0,1,2,4]) 

sage: E = B^(-1)*A 

sage: B = A.matrix_from_columns([0,1,2,3]) 

sage: M = ModularSymbols(Gamma0(6)); M 

Modular Symbols space of dimension 3 for Gamma_0(6) 

of weight 2 with sign 0 over Rational Field 

sage: M.new_subspace() 

Modular Symbols subspace of dimension 1 of Modular Symbols space of dimension 3 for Gamma_0(6) of weight 2 with sign 0 over Rational Field 

sage: M.old_subspace() 

Modular Symbols subspace of dimension 3 of Modular 

Symbols space of dimension 3 for Gamma_0(6) of weight 

2 with sign 0 over Rational Field 

sage: G = DirichletGroup(13) 

sage: G 

Group of Dirichlet characters modulo 13 with values in Cyclotomic Field of order 12 and degree 4 

sage: dimension_modular_forms(Gamma1(13),2) 

13 

sage: [dimension_modular_forms(e,2) for e in G] 

[1, 0, 3, 0, 2, 0, 2, 0, 2, 0, 3, 0] 

sage: G = DirichletGroup(100) 

sage: G 

Group of Dirichlet characters modulo 100 with values in Cyclotomic Field of order 20 and degree 8 

sage: dimension_modular_forms(Gamma1(100),2) 

370 

sage: v = [dimension_modular_forms(e,2) for e in G]; v 

[24, 0, 0, 17, 18, 0, 0, 17, 18, 0, 0, 21, 18, 0, 0, 17, 

18, 0, 0, 17, 24, 0, 0, 17, 18, 0, 0, 17, 18, 0, 0, 21, 

18, 0, 0, 17, 18, 0, 0, 17] 

sage: sum(v) 

370 

sage: S = CuspForms(Gamma0(45), 2, prec=14); S 

Cuspidal subspace of dimension 3 of Modular Forms space 

of dimension 10 for Congruence Subgroup Gamma0(45) of 

weight 2 over Rational Field 

sage: S.basis() 

[ 

q - q^4 - q^10 - 2*q^13 + O(q^14), 

q^2 - q^5 - 3*q^8 + 4*q^11 + O(q^14), 

q^3 - q^6 - q^9 - q^12 + O(q^14) 

] 

sage: S.new_subspace().basis() 

[ 

q + q^2 - q^4 - q^5 - 3*q^8 - q^10 + 4*q^11 - 2*q^13 + O(q^14) 

] 

sage: CuspForms(Gamma0(9),2) 

Cuspidal subspace of dimension 0 of Modular Forms space 

of dimension 3 for Congruence Subgroup Gamma0(9) of 

weight 2 over Rational Field 

sage: CuspForms(Gamma0(15),2, prec=10).basis() 

[ 

q - q^2 - q^3 - q^4 + q^5 + q^6 + 3*q^8 + q^9 + O(q^10) 

] 

"""