Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

## -*- encoding: utf-8 -*- 

""" 

Doctests from French Sage book 

Test file for chapter "Systèmes polynomiaux" ("Polynomial systems") 

 

Sage example in ./mpoly.tex, line 35 (in svn rev 1261):: 

 

sage: R = PolynomialRing(QQ, 'x,y,z') 

sage: x,y,z = R.gens() # donne le n-uplet des indéterminées 

 

Sage example in ./mpoly.tex, line 40:: 

 

sage: R = PolynomialRing(QQ, 'x', 10) 

 

Sage example in ./mpoly.tex, line 44:: 

 

sage: x = R.gens() 

sage: sum(x[i] for i in range(5)) 

x0 + x1 + x2 + x3 + x4 

 

Sage example in ./mpoly.tex, line 52:: 

 

sage: def test_poly(ring, deg=3): 

....: monomials = Subsets( 

....: flatten([(x,)*deg for x in (1,) + ring.gens()]), 

....: deg, submultiset=True) 

....: return add(mul(m) for m in monomials) 

 

Sage example in ./mpoly.tex, line 59:: 

 

sage: test_poly(QQ['x,y']) 

x^3 + x^2*y + x*y^2 + y^3 + x^2 + x*y + y^2 + x + y + 1 

sage: test_poly(QQ['y,x']) 

y^3 + y^2*x + y*x^2 + x^3 + y^2 + y*x + x^2 + y + x + 1 

sage: test_poly(QQ['x,y']) == test_poly(QQ['y,x']) 

True 

 

Sage example in ./mpoly.tex, line 74:: 

 

sage: test_poly(PolynomialRing(QQ, 'x,y', order='deglex')) 

x^3 + x^2*y + x*y^2 + y^3 + x^2 + x*y + y^2 + x + y + 1 

 

Sage example in ./mpoly.tex, line 138:: 

 

sage: R.<x,y> = InfinitePolynomialRing(ZZ, order='lex') 

sage: p = mul(x[k] - y[k] for k in range(2)); p 

x_1*x_0 - x_1*y_0 - x_0*y_1 + y_1*y_0 

sage: p + x[100] 

x_100 + x_1*x_0 - x_1*y_0 - x_0*y_1 + y_1*y_0 

 

Sage example in ./mpoly.tex, line 188:: 

 

sage: R.<x,y,z> = QQ[] 

sage: p = 7*y^2*x^2 + 3*y*x^2 + 2*y*z + x^3 + 6 

sage: p.lt() 

7*x^2*y^2 

 

Sage example in ./mpoly.tex, line 196:: 

 

sage: p[x^2*y] == p[(2,1,0)] == p[2,1,0] == 3 

True 

 

Sage example in ./mpoly.tex, line 202:: 

 

sage: p(0, 3, -1) 

0 

sage: p.subs(x = 1, z = x^2+1) 

2*x^2*y + 7*y^2 + 5*y + 7 

 

Sage example in ./mpoly.tex, line 209:: 

 

sage: print("total={d} (en x)={dx} partiels={ds}" 

....: .format(d=p.degree(), dx=p.degree(x), ds=p.degrees())) 

total=4 (en x)=3 partiels=(3, 2, 1) 

 

Sage example in ./mpoly.tex, line 255:: 

 

sage: R.<x,y> = QQ[]; p = x^2 + y^2; q = x + y 

sage: print("({quo})*({q}) + ({rem}) == {p}".format( \ 

....: quo=p//q, q=q, rem=p%q, p=p//q*q+p%q)) 

(-x + y)*(x + y) + (2*x^2) == x^2 + y^2 

sage: p.mod(q) # n'est PAS équivalent à p%q 

2*y^2 

 

Sage example in ./mpoly.tex, line 277:: 

 

sage: k.<a> = GF(9); R.<x,y,z> = k[] 

sage: (a*x^2*z^2 + x*y*z - y^2).factor(proof=False) 

((a)) * (x*z + (-a - 1)*y) * (x*z + (-a)*y) 

 

Sage example in ./mpoly.tex, line 325:: 

 

sage: R.<x,y,z> = QQ[] 

sage: J = R.ideal(x^2 * y * z - 18, 

....: x * y^3 * z - 24, 

....: x * y * z^4 - 6); 

 

Sage example in ./mpoly.tex, line 333:: 

 

sage: J.dimension() 

0 

 

Sage example in ./mpoly.tex, line 339:: 

 

sage: J.variety() 

[{y: 2, z: 1, x: 3}] 

 

Sage example in ./mpoly.tex, line 347:: 

 

sage: V = J.variety(QQbar) 

sage: len(V) 

17 

 

Sage example in ./mpoly.tex, line 353:: 

 

sage: V[-3:] 

[{z: 0.9324722294043558? - 0.3612416661871530?*I, 

y: -1.700434271459229? + 1.052864325754712?*I, 

x: 1.337215067329615? - 2.685489874065187?*I}, 

{z: 0.9324722294043558? + 0.3612416661871530?*I, 

y: -1.700434271459229? - 1.052864325754712?*I, 

x: 1.337215067329615? + 2.685489874065187?*I}, 

{z: 1, y: 2, x: 3}] 

 

Sage example in ./mpoly.tex, line 364:: 

 

sage: (xx, yy, zz) = QQbar['x,y,z'].gens() 

sage: [ pt[xx].degree() for pt in V ] 

[16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 

16, 1] 

 

Sage example in ./mpoly.tex, line 376:: 

 

sage: Set(tuple(abs(pt[i]) for i in (xx,yy,zz)) for pt in V) 

{(3, 2, 1)} 

 

Sage example in ./mpoly.tex, line 387:: 

 

sage: w = QQbar.zeta(17); w # racine primitive de 1 

0.9324722294043558? + 0.3612416661871530?*I 

sage: Set(pt[zz] for pt in V) == Set(w^i for i in range(17)) 

True 

 

Sage example in ./mpoly.tex, line 401:: 

 

sage: set(pt[zz].minpoly() for pt in V[:-1]) 

{x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1} 

 

Sage example in ./mpoly.tex, line 413:: 

 

sage: def polar_form(z): 

....: rho = z.abs(); rho.simplify() 

....: theta = 2 * pi * z.rational_argument() 

....: return (SR(rho) * exp(I*theta)) 

sage: [tuple(polar_form(pt[i]) for i in [xx,yy,zz]) 

....: for pt in V[-3:]] 

[(3*e^(-6/17*I*pi), 2*e^(14/17*I*pi), e^(-2/17*I*pi)), 

(3*e^(6/17*I*pi), 2*e^(-14/17*I*pi), e^(2/17*I*pi)), (3, 2, 1)] 

 

Sage example in ./mpoly.tex, line 432:: 

 

sage: J.triangular_decomposition() 

[Ideal (z^17 - 1, y - 2*z^10, x - 3*z^3) of Multivariate 

Polynomial Ring in x, y, z over Rational Field] 

sage: J.transformed_basis() 

[z^17 - 1, -2*z^10 + y, -3/4*y^2 + x] 

 

Sage example in ./mpoly.tex, line 534:: 

 

sage: R.<x,y> = QQ[] 

sage: J = R.ideal(x^2 + y^2 - 1, 16*x^2*y^2 - 1) 

 

Sage example in ./mpoly.tex, line 539:: 

 

sage: ybar2 = R.quo(J)(y^2) 

sage: [ybar2^i for i in range(3)] 

[1, ybar^2, ybar^2 - 1/16] 

sage: ((ybar2 + 1)^2).lift() 

3*y^2 + 15/16 

 

Sage example in ./mpoly.tex, line 561:: 

 

sage: u = (16*y^4 - 16*y^2 + 1).lift(J); u 

[16*y^2, -1] 

sage: u[0]*J.0 + u[1]*J.1 

16*y^4 - 16*y^2 + 1 

 

Sage example in ./mpoly.tex, line 569:: 

 

sage: (y^4).mod(J) 

y^2 - 1/16 

 

Sage example in ./mpoly.tex, line 575:: 

 

sage: (y^4).reduce([x^2 + y^2 - 1, 16*x^2*y^2 - 1]) 

y^4 

 

Sage example in ./mpoly.tex, line 629:: 

 

sage: 1 in ideal(x^2+y^2-1, (x-4)^2+y^2-1) 

False 

 

Sage example in ./mpoly.tex, line 634:: 

 

sage: R(1).lift(ideal(x^2+y^2-1, (x-4)^2+y^2-1, x-y)) 

[-1/28*y + 1/14, 1/28*y + 1/14, -1/7*x + 1/7*y + 4/7] 

 

Sage example in ./mpoly.tex, line 650:: 

 

sage: J1 = (x^2 + y^2 - 1, 16*x^2*y^2 - 1)*R 

sage: J2 = (x^2 + y^2 - 1, 4*x^2*y^2 - 1)*R 

sage: J1.radical() == J1 

True 

sage: J2.radical() 

Ideal (2*y^2 - 1, 2*x^2 - 1) of Multivariate Polynomial 

Ring in x, y over Rational Field 

sage: 2*y^2 - 1 in J2 

False 

 

Sage example in ./mpoly.tex, line 680:: 

 

sage: C = ideal(x^2 + y^2 - 1); H = ideal(16*x^2*y^2 - 1) 

sage: C + H == J1 

True 

 

Sage example in ./mpoly.tex, line 697:: 

 

sage: CH = C.intersection(H).quotient(ideal(4*x*y-1)); CH 

Ideal (4*x^3*y + 4*x*y^3 + x^2 - 4*x*y + y^2 - 1) of 

Multivariate Polynomial Ring in x, y over Rational Field 

sage: CH.gen(0).factor() 

(4*x*y + 1) * (x^2 + y^2 - 1) 

 

Sage example in ./mpoly.tex, line 705:: 

 

sage: H.quotient(C) == H 

True 

 

Sage example in ./mpoly.tex, line 720:: 

 

sage: [J.dimension() for J in [J1, J2, C, H, H*J2, J1+J2]] 

[0, 0, 1, 1, 1, -1] 

 

Sage example in ./mpoly.tex, line 780:: 

 

sage: R.<x,y,z> = QQ[] 

sage: J = ideal(2*x+y-2*z, 2*x+2*y+z-1) 

sage: J.elimination_ideal(x) 

Ideal (y + 3*z - 1) of Multivariate Polynomial Ring in x, y, z 

over Rational Field 

sage: J.elimination_ideal([x,y]).gens() 

[0] 

 

Sage example in ./mpoly.tex, line 794:: 

 

sage: J1.gens() 

[x^2 + y^2 - 1, 16*x^2*y^2 - 1] 

 

Sage example in ./mpoly.tex, line 858:: 

 

sage: R.<x,y,t> = QQ[] 

sage: Param = R.ideal((1-t^2)-(1+t^2)*x, 2*t-(1+t^2)*y) 

 

Sage example in ./mpoly.tex, line 863:: 

 

sage: Param.elimination_ideal(t).gens() 

[x^2 + y^2 - 1] 

 

Sage example in ./mpoly.tex, line 886:: 

 

sage: R.<x,y,t> = QQ[] 

sage: eq = x^2 + (y-t)^2 - 1/2*(t^2+1) 

sage: fig = add((eq(t=k/5)*QQ[x,y]).plot() for k in (-15..15)) 

sage: fig.show(aspect_ratio=1,xmin=-2,xmax=2,ymin=-3,ymax=3) 

 

Sage example in ./mpoly.tex, line 900:: 

 

sage: env = ideal(eq, eq.derivative(t)).elimination_ideal(t) 

sage: env.gens() 

[2*x^2 - 2*y^2 - 1] 

 

Sage example in ./mpoly.tex, line 906:: 

 

sage: env.change_ring(QQ[x,y]).plot() 

Graphics object consisting of 1 graphics primitive 

 

Sage example in ./mpoly.tex, line 933:: 

 

sage: R.<x,y,t> = QQ[] 

sage: J = (y-t*x, y-t*(1-x))*R 

sage: (x^2+y^2) - ((1-x)^2+y^2) in J 

False 

 

Sage example in ./mpoly.tex, line 942:: 

 

sage: R.<x,y,t,u> = QQ[] 

sage: J = (y-t*x, y-t*(1-x), t*u-1)*R 

sage: (x^2+y^2) - ((1-x)^2+y^2) in J 

True 

 

Sage example in ./mpoly.tex, line 965:: 

 

sage: R.<x,y,t> = QQ[] 

 

Sage example in ./mpoly.tex, line 968:: 

 

sage: eq.derivative(t).resultant(eq, t) 

x^2 - y^2 - 1/2 

 

Sage example in ./mpoly.tex, line 982:: 

 

sage: R.<x,y> = QQ[] 

sage: ((x^2 + y^2)*(x^2 + y^2 + 1)*R).dimension() 

1 

 

Sage example in ./mpoly.tex, line 996:: 

 

sage: J1.variety() 

[] 

 

Sage example in ./mpoly.tex, line 1002:: 

 

sage: J1.variety(QQbar)[0:2] 

[{y: -0.9659258262890683?, x: -0.2588190451025208?}, 

{y: -0.9659258262890683?, x: 0.2588190451025208?}] 

 

Sage example in ./mpoly.tex, line 1037:: 

 

sage: R.<x,y> = PolynomialRing(QQ, order='lex') 

sage: C = ideal(x^2+y^2-1) 

sage: D = ideal((x+y-1)*(x+y+1)) 

sage: J = C + D 

 

Sage example in ./mpoly.tex, line 1054:: 

 

sage: J.triangular_decomposition() 

[Ideal (y, x^2 - 1) of Multivariate Polynomial Ring in x, y 

over Rational Field, 

Ideal (y^2 - 1, x) of Multivariate Polynomial Ring in x, y 

over Rational Field] 

 

Sage example in ./mpoly.tex, line 1094:: 

 

sage: D = ideal((x+2*y-1)*(x+2*y+1)); J = C + D 

sage: J.variety() 

[{y: -4/5, x: 3/5}, {y: 0, x: -1}, {y: 0, x: 1}, {y: 4/5, x: -3/5}] 

sage: [ T.gens() for T in J.triangular_decomposition()] 

[[y, x^2 - 1], [25*y^2 - 16, 4*x + 3*y]] 

 

Sage example in ./mpoly.tex, line 1104:: 

 

sage: Jy = J.elimination_ideal(x); Jy.gens() 

[25*y^3 - 16*y] 

 

Sage example in ./mpoly.tex, line 1109:: 

 

sage: ys = QQ['y'](Jy.0).roots(); ys 

[(4/5, 1), (0, 1), (-4/5, 1)] 

sage: QQ['x'](J.1(y=ys[0][0])).roots() 

[(-3/5, 1), (-13/5, 1)] 

 

Sage example in ./mpoly.tex, line 1119 (edited manually):: 

 

sage: ys = CDF['y'](Jy.0).roots(); ys # abs tol 3e-16 

[(-0.8000000000000002, 1), (0.0, 1), (0.8, 1)] 

sage: [CDF['x'](p(y=ys[0][0])).roots() for p in J.gens()] # abs tol 1e-14 

[[(-0.5999999999999999 - 1.306289919090511e-16*I, 1), (0.6000000000000001 + 1.3062899190905113e-16*I, 1)], [(0.6000000000000001 - 3.135095805817224e-16*I, 1), (2.600000000000001 + 3.1350958058172237e-16*I, 1)]] 

 

Sage example in ./mpoly.tex, line 1135:: 

 

sage: R.<x,y> = QQ[]; J = ideal([ x^7-(100*x-1)^2, y-x^7+1 ]) 

 

Sage example in ./mpoly.tex, line 1138:: 

 

sage: J.variety(AA) 

[{x: 0.00999999900000035?, y: -0.999999999999990?}, 

{x: 0.01000000100000035?, y: -0.999999999999990?}, 

{x: 6.305568998641385?, y: 396340.8901665450?}] 

 

Sage example in ./mpoly.tex, line 1170:: 

 

sage: len(J2.variety(QQbar)), J2.vector_space_dimension() 

(4, 8) 

 

Sage example in ./mpoly.tex, line 1177:: 

 

sage: J2.normal_basis() 

[x*y^3, y^3, x*y^2, y^2, x*y, y, x, 1] 

 

Sage example in ./mpoly.tex, line 1325:: 

 

sage: R.<x,y,z,t> = PolynomialRing(QQ, order='lex') 

 

Sage example in ./mpoly.tex, line 1343:: 

 

sage: ((x+y+z)^2).reduce([x-t, y-t^2, z^2-t]) 

2*z*t^2 + 2*z*t + t^4 + 2*t^3 + t^2 + t 

 

Sage example in ./mpoly.tex, line 1364:: 

 

sage: R.<x,y> = PolynomialRing(QQ, order='lex') 

sage: (g, h) = (x-y, x-y^2); p = x*y - x 

sage: p.reduce([g, h]) # deux réductions par h 

y^3 - y^2 

sage: p.reduce([h, g]) # deux réductions par g 

y^2 - y 

 

Sage example in ./mpoly.tex, line 1373:: 

 

sage: p - y*g + h 

0 

 

Sage example in ./mpoly.tex, line 1572:: 

 

sage: R.<x,y> = PolynomialRing(QQ, order='lex') 

sage: R.ideal(x*y^4, x^2*y^3, x^4*y, x^5).basis_is_groebner() 

True 

 

Sage example in ./mpoly.tex, line 1578:: 

 

sage: R.ideal(x^2+y^2-1, 16*x^2*y^2-1).basis_is_groebner() 

False 

 

Sage example in ./mpoly.tex, line 1593:: 

 

sage: R.ideal(x^2+y^2-1, 16*x^2*y^2-1).groebner_basis() 

[x^2 + y^2 - 1, y^4 - y^2 + 1/16] 

 

Sage example in ./mpoly.tex, line 1598:: 

 

sage: R.ideal(16*x^2*y^2-1).groebner_basis() 

[x^2*y^2 - 1/16] 

 

Sage example in ./mpoly.tex, line 1603:: 

 

sage: R.ideal(x^2+y^2-1, (x+y)^2-1).groebner_basis() 

[x^2 + y^2 - 1, x*y, y^3 - y] 

 

Sage example in ./mpoly.tex, line 1609:: 

 

sage: R_lex.<x,y> = PolynomialRing(QQ, order='lex') 

sage: J_lex = (x*y+x+y^2+1,x^2*y+x*y^2+1)*R_lex; J_lex.gens() 

[x*y + x + y^2 + 1, x^2*y + x*y^2 + 1] 

sage: J_lex.groebner_basis() 

[x - 1/2*y^3 + y^2 + 3/2, y^4 - y^3 - 3*y - 1] 

 

Sage example in ./mpoly.tex, line 1616:: 

 

sage: R_invlex = PolynomialRing(QQ, 'x,y', order='invlex') 

sage: J_invlex = J_lex.change_ring(R_invlex); J_invlex.gens() 

[y^2 + x*y + x + 1, x*y^2 + x^2*y + 1] 

sage: J_invlex.groebner_basis() 

[y^2 + x*y + x + 1, x^2 + x - 1] 

 

Sage example in ./mpoly.tex, line 1623:: 

 

sage: R_drl = PolynomialRing(QQ, 'x,y', order='degrevlex') 

sage: J_drl = J_lex.change_ring(R_drl); J_drl.gens() 

[x*y + y^2 + x + 1, x^2*y + x*y^2 + 1] 

sage: J_drl.groebner_basis() 

[y^3 - 2*y^2 - 2*x - 3, x^2 + x - 1, x*y + y^2 + x + 1] 

 

Sage example in ./mpoly.tex, line 1662:: 

 

sage: p = (x + y)^5 

sage: J_lex.reduce(p) 

17/2*y^3 - 12*y^2 + 4*y - 49/2 

 

Sage example in ./mpoly.tex, line 1668:: 

 

sage: p.reduce(J_lex.groebner_basis()) 

17/2*y^3 - 12*y^2 + 4*y - 49/2 

 

Sage example in ./mpoly.tex, line 1673:: 

 

sage: R_lex.quo(J_lex)(p) 

17/2*ybar^3 - 12*ybar^2 + 4*ybar - 49/2 

 

Sage example in ./mpoly.tex, line 1678:: 

 

sage: R_drl.quo(J_drl)(p) 

5*ybar^2 + 17*xbar + 4*ybar + 1 

 

Sage example in ./mpoly.tex, line 1685:: 

 

sage: J_lex.normal_basis() 

[y^3, y^2, y, 1] 

sage: J_invlex.normal_basis() 

[x*y, y, x, 1] 

sage: J_drl.normal_basis() 

[y^2, y, x, 1] 

 

Sage example in ./mpoly.tex, line 1701:: 

 

sage: ideal(16*x^2*y^2-1).dimension() 

1 

 

Sage example in ./mpoly.tex, line 1736:: 

 

sage: R.<t,x,y,z> = PolynomialRing(QQ, order='lex') 

sage: J = R.ideal( t+x+y+z-1, t^2-x^2-y^2-z^2-1, t-x*y) 

sage: [u.polynomial(u.variable(0)) for u in J.groebner_basis()] 

[t + x + y + z - 1, 

(y + 1)*x + y + z - 1, 

(z - 2)*x + y*z - 2*y - 2*z + 1, 

(z - 2)*y^2 + (-2*z + 1)*y - z^2 + z - 1] 

 

Sage example in ./mpoly.tex, line 1801:: 

 

sage: from sage.rings.ideal import Cyclic 

sage: Cyclic(QQ['x,y,z']) 

Ideal (x + y + z, x*y + x*z + y*z, x*y*z - 1) of 

Multivariate Polynomial Ring in x, y, z over Rational Field 

 

Sage example in ./mpoly.tex, line 1808:: 

 

sage: def C(R, n): return Cyclic(PolynomialRing(R, 'x', n)) 

 

Sage example in ./mpoly.tex, line 1822:: 

 

sage: p = previous_prime(2^30) 

sage: len(C(GF(p), 6).groebner_basis()) 

45 

 

""" 

from sage.all_cmdline import * # import sage library