Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

## -*- encoding: utf-8 -*- 

""" 

Doctests from French Sage book 

Test file for chapter "Polynômes" ("Polynomials") 

 

Sage example in ./polynomes.tex, line 55 (in svn rev 1261):: 

 

sage: x = var('x'); p = (2*x+1)*(x+2)*(x^4-1) 

sage: print("{} est de degré {}".format(p, p.degree(x))) 

(x^4 - 1)*(2*x + 1)*(x + 2) est de degré 6 

 

Sage example in ./polynomes.tex, line 69:: 

 

sage: x = polygen(QQ, 'x'); p = (2*x+1)*(x+2)*(x^4-1) 

sage: print("{} est de degré {}".format(p, p.degree())) 

2*x^6 + 5*x^5 + 2*x^4 - 2*x^2 - 5*x - 2 est de degré 6 

 

Sage example in ./polynomes.tex, line 97:: 

 

sage: R = PolynomialRing(QQ, 'x') 

sage: x = R.gen() 

 

Sage example in ./polynomes.tex, line 104:: 

 

sage: x.parent() 

Univariate Polynomial Ring in x over Rational Field 

 

Sage example in ./polynomes.tex, line 125:: 

 

sage: x = polygen(QQ, 'y'); y = polygen(QQ, 'x') 

 

Sage example in ./polynomes.tex, line 128:: 

 

sage: x^2 + 1 

y^2 + 1 

sage: (y^2 + 1).parent() 

Univariate Polynomial Ring in x over Rational Field 

 

Sage example in ./polynomes.tex, line 135:: 

 

sage: Q.<x> = QQ[]; p = x + 1; x = 2; p = p + x 

 

Sage example in ./polynomes.tex, line 154:: 

 

sage: R.<x,y,z,t> = QQ[]; p = (x+y+z*t)^2 

sage: p.polynomial(t).reverse() 

(x^2 + 2*x*y + y^2)*t^2 + (2*x*z + 2*y*z)*t + z^2 

 

Sage example in ./polynomes.tex, line 162:: 

 

sage: x = polygen(QQ); y = polygen(QQ[x], 'y') 

sage: p = x^3 + x*y + y + y^2; p 

y^2 + (x + 1)*y + x^3 

sage: q = QQ['x,y'](p); q 

x^3 + x*y + y^2 + y 

sage: QQ['x']['y'](q) 

y^2 + (x + 1)*y + x^3 

 

Sage example in ./polynomes.tex, line 217:: 

 

sage: def rook_polynomial(n, var='x'): 

....: return ZZ[var]([binomial(n, k)^2 * factorial(k) 

....: for k in (0..n) ]) 

 

Sage example in ./polynomes.tex, line 259:: 

 

sage: x = polygen(QQ) 

sage: p = x^2 - 16*x + 3 

sage: p.factor() 

x^2 - 16*x + 3 

sage: p.change_ring(RDF).factor() 

(x - 15.8102496...) * (x - 0.189750324...) 

 

Sage example in ./polynomes.tex, line 270:: 

 

sage: p.change_ring(GF(3)) 

x^2 + 2*x 

 

Sage example in ./polynomes.tex, line 317:: 

 

sage: list(GF(2)['x'].polynomials(of_degree=2)) 

[x^2, x^2 + 1, x^2 + x, x^2 + x + 1] 

 

Sage example in ./polynomes.tex, line 326:: 

 

sage: A = QQ['x'] 

sage: A.is_ring() and A.is_noetherian() 

True 

 

Sage example in ./polynomes.tex, line 332:: 

 

sage: ZZ.is_subring(A) 

True 

sage: [n for n in range(20) 

....: if Integers(n)['x'].is_integral_domain()] 

[0, 2, 3, 5, 7, 11, 13, 17, 19] 

 

Sage example in ./polynomes.tex, line 395:: 

 

sage: R.<t> = Integers(42)[]; (t^20-1) % (t^5+8*t+7) 

22*t^4 + 14*t^3 + 14*t + 6 

 

Sage example in ./polynomes.tex, line 407:: 

 

sage: ((t^2+t)//t).parent() 

Univariate Polynomial Ring in t over Ring of integers modulo 42 

sage: (t^2+t)/t 

Traceback (most recent call last): 

... 

TypeError: self must be an integral domain. 

 

Sage example in ./polynomes.tex, line 420:: 

 

sage: x = polygen(QQ); [chebyshev_T(n, x) for n in (0..4)] 

[1, x, 2*x^2 - 1, 4*x^3 - 3*x, 8*x^4 - 8*x^2 + 1] 

 

Sage example in ./polynomes.tex, line 436:: 

 

sage: S.<x> = ZZ[]; p = 2*(x^10-1)*(x^8-1) 

sage: p.gcd(p.derivative()) 

2*x^2 - 2 

 

Sage example in ./polynomes.tex, line 447:: 

 

sage: R.<x> = QQ[]; p = (x^5-1); q = (x^3-1) 

sage: print("le pgcd est %s = (%s)*p + (%s)*q" % p.xgcd(q)) 

le pgcd est x - 1 = (-x)*p + (x^3 + 1)*q 

 

Sage example in ./polynomes.tex, line 484:: 

 

sage: R.<x> = QQ[]; p = 3*x^2 - 6 

sage: p.is_irreducible(), p.change_ring(ZZ).is_irreducible() 

(True, False) 

 

Sage example in ./polynomes.tex, line 527:: 

 

sage: x = polygen(ZZ); p = 54*x^4+36*x^3-102*x^2-72*x-12 

sage: p.factor() 

2 * 3 * (3*x + 1)^2 * (x^2 - 2) 

 

Sage example in ./polynomes.tex, line 533:: 

 

sage: for A in [QQ, ComplexField(16), GF(5), QQ[sqrt(2)]]: 

....: print("{} :".format(A)); print(A['x'](p).factor()) 

Rational Field : 

(54) * (x + 1/3)^2 * (x^2 - 2) 

Complex Field with 16 bits of precision : 

(54.00) * (x - 1.414) * (x + 0.3333)^2 * (x + 1.414) 

Finite Field of size 5 : 

(4) * (x + 2)^2 * (x^2 + 3) 

Number Field in sqrt2 with defining polynomial x^2 - 2 : 

(54) * (x - sqrt2) * (x + sqrt2) * (x + 1/3)^2 

 

Sage example in ./polynomes.tex, line 601:: 

 

sage: R.<x> = ZZ[]; p = (2*x^2-5*x+2)^2 * (x^4-7); p.roots() 

[(2, 2)] 

 

Sage example in ./polynomes.tex, line 608:: 

 

sage: p.roots(QQ) 

[(2, 2), (1/2, 2)] 

sage: p.roots(Zp(19, print_max_terms=3)) 

[(7 + 16*19 + 17*19^2 + ... + O(19^20), 1), 

(12 + 2*19 + 19^2 + ... + O(19^20), 1), 

(10 + 9*19 + 9*19^2 + ... + O(19^20), 2), 

(2 + O(19^20), 2)] 

 

Sage example in ./polynomes.tex, line 623:: 

 

sage: racines = p.roots(AA); racines 

[(-1.626576561697786?, 1), (0.500000000000000?, 2), 

(1.626576561697786?, 1), (2.000000000000000?, 2)] 

 

Sage example in ./polynomes.tex, line 629:: 

 

sage: a = racines[0][0]^4; a.simplify(); a 

7 

 

Sage example in ./polynomes.tex, line 646:: 

 

sage: x = polygen(ZZ); (x-12).resultant(x-20) 

-8 

 

Sage example in ./polynomes.tex, line 701:: 

 

sage: R.<a,b,c,d> = QQ[]; x = polygen(R); p = a*x^2+b*x+c 

sage: p.resultant(p.derivative()) 

-a*b^2 + 4*a^2*c 

sage: p.discriminant() 

b^2 - 4*a*c 

sage: (a*x^3 + b*x^2 + c*x + d).discriminant() 

b^2*c^2 - 4*a*c^3 - 4*b^3*d + 18*a*b*c*d - 27*a^2*d^2 

 

Sage example in ./polynomes.tex, line 770:: 

 

sage: R.<x> = QQ[] 

sage: J1 = (x^2 - 2*x + 1, 2*x^2 + x - 3)*R; J1 

Principal ideal (x - 1) of Univariate Polynomial Ring in x 

over Rational Field 

 

Sage example in ./polynomes.tex, line 778:: 

 

sage: J2 = R.ideal(x^5 + 2) 

sage: ((3*x+5)*J1*J2).reduce(x^10) 

421/81*x^6 - 502/81*x^5 + 842/81*x - 680/81 

 

Sage example in ./polynomes.tex, line 785:: 

 

sage: B = R.quo((3*x+5)*J1*J2) # quo nomme automatiquement 'xbar' 

sage: B(x^10) # le générateur de B image de x 

421/81*xbar^6 - 502/81*xbar^5 + 842/81*xbar - 680/81 

sage: B(x^10).lift() 

421/81*x^6 - 502/81*x^5 + 842/81*x - 680/81 

 

Sage example in ./polynomes.tex, line 856:: 

 

sage: x = polygen(RR); r = (1 + x)/(1 - x^2); r.parent() 

Fraction Field of Univariate Polynomial Ring in x over Real 

Field with 53 bits of precision 

sage: r 

(x + 1.00000000000000)/(-x^2 + 1.00000000000000) 

 

Sage example in ./polynomes.tex, line 864:: 

 

sage: r.reduce(); r 

1.00000000000000/(-x + 1.00000000000000) 

 

Sage example in ./polynomes.tex, line 907:: 

 

sage: R.<x> = QQ[]; r = x^10/((x^2-1)^2*(x^2+3)) 

sage: poly, parts = r.partial_fraction_decomposition() 

sage: poly 

x^4 - x^2 + 6 

sage: for part in parts: print(part.factor()) 

(17/32) * (x - 1)^-1 

(1/16) * (x - 1)^-2 

(-17/32) * (x + 1)^-1 

(1/16) * (x + 1)^-2 

(-243/16) * (x^2 + 3)^-1 

 

Sage example in ./polynomes.tex, line 931:: 

 

sage: C = ComplexField(15) 

sage: Frac(C['x'])(r).partial_fraction_decomposition() 

(x^4 - x^2 + 6.000, 

[0.5312/(x - 1.000), 

0.06250/(x^2 - 2.000*x + 1.000), 

4.385*I/(x - 1.732*I), 

(-4.385*I)/(x + 1.732*I), 

(-0.5312)/(x + 1.000), 

0.06250/(x^2 + 2.000*x + 1.000)]) 

 

Sage example in ./polynomes.tex, line 966:: 

 

sage: A = Integers(101); R.<x> = A[] 

sage: f6 = sum( (i+1)^2 * x^i for i in (0..5) ); f6 

36*x^5 + 25*x^4 + 16*x^3 + 9*x^2 + 4*x + 1 

sage: num, den = f6.rational_reconstruct(x^6, 1, 3); num/den 

(100*x + 100)/(x^3 + 98*x^2 + 3*x + 100) 

 

Sage example in ./polynomes.tex, line 974:: 

 

sage: S = PowerSeriesRing(A, 'x', 7); S(num)/S(den) 

1 + 4*x + 9*x^2 + 16*x^3 + 25*x^4 + 36*x^5 + 49*x^6 + O(x^7) 

 

Sage example in ./polynomes.tex, line 1015:: 

 

sage: x = var('x'); s = tan(x).taylor(x, 0, 20) 

sage: p = previous_prime(2^30); ZpZx = Integers(p)['x'] 

sage: Qx = QQ['x'] 

 

Sage example in ./polynomes.tex, line 1020:: 

 

sage: num, den = ZpZx(s).rational_reconstruct(ZpZx(x)^10,4,5) 

sage: num/den 

(1073741779*x^3 + 105*x)/(x^4 + 1073741744*x^2 + 105) 

 

Sage example in ./polynomes.tex, line 1026:: 

 

sage: def lift_sym(a): 

....: m = a.parent().defining_ideal().gen() 

....: n = a.lift() 

....: if n <= m // 2: return n 

....: else: return n - m 

 

Sage example in ./polynomes.tex, line 1034:: 

 

sage: Qx(map(lift_sym, num))/Qx(map(lift_sym, den)) 

(-10*x^3 + 105*x)/(x^4 - 45*x^2 + 105) 

 

Sage example in ./polynomes.tex, line 1042:: 

 

sage: def mypade(pol, n, k): 

....: x = ZpZx.gen(); 

....: n,d = ZpZx(pol).rational_reconstruct(x^n, k-1, n-k) 

....: return Qx(map(lift_sym, n))/Qx(map(lift_sym, d)) 

 

Sage example in ./polynomes.tex, line 1109:: 

 

sage: R.<x> = PowerSeriesRing(QQ) 

 

Sage example in ./polynomes.tex, line 1126:: 

 

sage: R.<x> = QQ[[]] 

sage: f = 1 + x + O(x^2); g = x + 2*x^2 + O(x^4) 

sage: f + g 

1 + 2*x + O(x^2) 

sage: f * g 

x + 3*x^2 + O(x^3) 

 

Sage example in ./polynomes.tex, line 1136:: 

 

sage: (1 + x^3).prec() 

+Infinity 

 

Sage example in ./polynomes.tex, line 1141:: 

 

sage: R.<x> = PowerSeriesRing(Reals(24), default_prec=4) 

sage: 1/(1 + RR.pi() * x)^2 

1.00000 - 6.28319*x + 29.6088*x^2 - 124.025*x^3 + O(x^4) 

 

Sage example in ./polynomes.tex, line 1148:: 

 

sage: R.<x> = QQ[[]] 

sage: 1 + x + O(x^2) == 1 + x + x^2 + O(x^3) 

True 

 

Sage example in ./polynomes.tex, line 1158:: 

 

sage: (1/(1+x)).sqrt().integral().exp()/x^2 + O(x^4) 

x^-2 + x^-1 + 1/4 + 1/24*x - 1/192*x^2 + 11/1920*x^3 + O(x^4) 

 

Sage example in ./polynomes.tex, line 1178:: 

 

sage: (1+x^2).sqrt().solve_linear_de(prec=6, b=x.exp()) 

1 + 2*x + 3/2*x^2 + 5/6*x^3 + 1/2*x^4 + 7/30*x^5 + O(x^6) 

 

Sage example in ./polynomes.tex, line 1186:: 

 

sage: S.<x> = PowerSeriesRing(QQ, default_prec=5) 

sage: f = S(1) 

sage: for i in range(5): 

....: f = (x*f).exp() 

....: print(f) 

1 + x + 1/2*x^2 + 1/6*x^3 + 1/24*x^4 + O(x^5) 

1 + x + 3/2*x^2 + 5/3*x^3 + 41/24*x^4 + O(x^5) 

1 + x + 3/2*x^2 + 8/3*x^3 + 101/24*x^4 + O(x^5) 

1 + x + 3/2*x^2 + 8/3*x^3 + 125/24*x^4 + O(x^5) 

1 + x + 3/2*x^2 + 8/3*x^3 + 125/24*x^4 + O(x^5) 

 

Sage example in ./polynomes.tex, line 1233:: 

 

sage: L.<x> = LazyPowerSeriesRing(QQ) 

sage: lazy_exp = x.exponential(); lazy_exp 

O(1) 

 

Sage example in ./polynomes.tex, line 1239:: 

 

sage: lazy_exp[5] 

1/120 

sage: lazy_exp 

1 + x + 1/2*x^2 + 1/6*x^3 + 1/24*x^4 + 1/120*x^5 + O(x^6) 

 

Sage example in ./polynomes.tex, line 1247:: 

 

sage: f = L(1) # la série paresseuse constante 1 

sage: for i in range(5): 

....: f = (x*f).exponential() 

....: f.compute_coefficients(5) # force le calcul des 

....: print(f) # premiers coefficients 

1 + x + 1/2*x^2 + 1/6*x^3 + 1/24*x^4 + 1/120*x^5 + O(x^6) 

1 + x + 3/2*x^2 + 5/3*x^3 + 41/24*x^4 + 49/30*x^5 + O(x^6) 

1 + x + 3/2*x^2 + 8/3*x^3 + 101/24*x^4 + 63/10*x^5 + O(x^6) 

1 + x + 3/2*x^2 + 8/3*x^3 + 125/24*x^4 + 49/5*x^5 + O(x^6) 

1 + x + 3/2*x^2 + 8/3*x^3 + 125/24*x^4 + 54/5*x^5 + O(x^6) 

 

Sage example in ./polynomes.tex, line 1264:: 

 

sage: f[7] 

28673/630 

 

Sage example in ./polynomes.tex, line 1271:: 

 

sage: from sage.combinat.species.series import LazyPowerSeries 

sage: f = LazyPowerSeries(L, name='f') 

sage: f.define((x*f).exponential()) 

sage: f.coefficients(8) 

[1, 1, 3/2, 8/3, 125/24, 54/5, 16807/720, 16384/315] 

 

Sage example in ./polynomes.tex, line 1309:: 

 

sage: R = PolynomialRing(ZZ, 'x', sparse=True) 

sage: p = R.cyclotomic_polynomial(2^50); p, p.derivative() 

(x^562949953421312 + 1, 562949953421312*x^562949953421311) 

 

""" 

from sage.all_cmdline import * # import sage library