Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

""" 

References 

========== 

 

.. [1] Marko Petkovsek, Herbert S. Wilf, Doron Zeilberger, A = B, 

AK Peters, Ltd., Wellesley, MA, USA, 1997, pp. 73--100 

 

TESTS:: 

 

sage: _ = var('a b k m n r') 

sage: SR(1).gosper_sum(k) 

k 

sage: SR(1).gosper_sum(k,0,n) 

n + 1 

sage: SR(1).gosper_sum(k, a, b) 

-a + b + 1 

sage: a.gosper_sum(k) 

a*k 

sage: a.gosper_sum(k,0,n) 

a*(n + 1) 

sage: a.gosper_sum(k,a,b) 

-(a - b - 1)*a 

sage: k.gosper_sum(k) 

1/2*(k - 1)*k 

sage: k.gosper_sum(k,0,n) 

1/2*(n + 1)*n 

sage: k.gosper_sum(k, a, b) 

-1/2*(a + b)*(a - b - 1) 

sage: k.gosper_sum(k, a+1, b) 

-1/2*(a + b + 1)*(a - b) 

sage: k.gosper_sum(k, a, b+1) 

-1/2*(a + b + 1)*(a - b - 2) 

sage: (k^3).gosper_sum(k) 

1/4*(k - 1)^2*k^2 

sage: (k^3).gosper_sum(k, a, b) 

-1/4*(a^2 + b^2 - a + b)*(a + b)*(a - b - 1) 

 

sage: (1/k).gosper_sum(k) 

Traceback (most recent call last): 

... 

ValueError: expression not Gosper-summable 

sage: x = (1/k/(k+1)/(k+2)/(k+3)/(k+5)/(k+7)).gosper_sum(k,a,b) 

sage: y = sum(1/k/(k+1)/(k+2)/(k+3)/(k+5)/(k+7) for k in range(5,500)) 

sage: assert x.subs(a==5,b==499) == y 

 

The following are from A==B, p.78 ff. Since the resulting expressions 

get more and more complicated with many correct representations that 

may differ depending on future capabilities, we check correctness by 

doing random summations:: 

 

sage: def check(ex, var, val1, val2from, val2to): 

....: import random 

....: symb = SR.var('symb') 

....: s1 = ex.gosper_sum(var, val1, symb) 

....: R = random.SystemRandom 

....: val2 = R().randint(val2from, val2to) 

....: s2 = sum(ex.subs(var==i) for i in range(val1, val2+1)) 

....: assert s1.subs(symb==val2) == s2 

 

sage: def check_unsolvable(ex, *args): 

....: try: 

....: SR(ex).gosper_sum(*args) 

....: raise AssertionError 

....: except ValueError: 

....: pass 

 

sage: check((4*n+1) * factorial(n)/factorial(2*n+1), n, 0, 10, 20) 

sage: check_unsolvable(factorial(k), k,0,n) 

sage: (k * factorial(k)).gosper_sum(k,1,n) 

n*factorial(n) + factorial(n) - 1 

sage: (k * factorial(k)).gosper_sum(k) 

factorial(k) 

sage: check_unsolvable(binomial(n,k), k,0,n) 

sage: ((-1)^k*binomial(n,k)).gosper_sum(k,0,n) 

0 

sage: ((-1)^k*binomial(n,k)).gosper_sum(k,0,a) 

-(-1)^a*(a - n)*binomial(n, a)/n 

sage: (binomial(1/2,a-k+1)*binomial(1/2,a+k)).gosper_sum(k,1,b) 

(2*a + 2*b - 1)*(a - b + 1)*b*binomial(1/2, a + b)*binomial(1/2, a - b + 1)/((2*a + 1)*a) 

sage: t = (binomial(2*k,k)/4^k).gosper_sum(k,0,n); t 

(2*n + 1)*binomial(2*n, n)/4^n 

sage: t = t.gosper_sum(n,0,n); t 

1/3*(2*n + 3)*(2*n + 1)*binomial(2*n, n)/4^n 

sage: t = t.gosper_sum(n,0,n); t 

1/15*(2*n + 5)*(2*n + 3)*(2*n + 1)*binomial(2*n, n)/4^n 

sage: t = t.gosper_sum(n,0,n); t 

1/105*(2*n + 7)*(2*n + 5)*(2*n + 3)*(2*n + 1)*binomial(2*n, n)/4^n 

sage: (binomial(2*k+2*a,2*a)*binomial(2*k,k)/binomial(k+a,a)/4^k).gosper_sum(k,0,n) 

(2*a + 2*n + 1)*binomial(2*a + 2*n, 2*a)*binomial(2*n, n)/(4^n*(2*a + 1)*binomial(a + n, a)) 

sage: (4^k/binomial(2*k,k)).gosper_sum(k,0,n) 

1/3*(2*4^n*n + 2*4^n + binomial(2*n, n))/binomial(2*n, n) 

 

# The following are from A==B, 5.7 Exercises 

sage: for k in range(1,5): (n^k).gosper_sum(n,0,m) 

1/2*(m + 1)*m 

1/6*(2*m + 1)*(m + 1)*m 

1/4*(m + 1)^2*m^2 

1/30*(3*m^2 + 3*m - 1)*(2*m + 1)*(m + 1)*m 

sage: for k in range(1,4): (n^k*2^n).gosper_sum(n,0,m) 

2*2^m*m - 2*2^m + 2 

2*2^m*m^2 - 4*2^m*m + 6*2^m - 6 

2*2^m*m^3 - 6*2^m*m^2 + 18*2^m*m - 26*2^m + 26 

sage: (1 / (n^2 + sqrt(5)*n - 1)).gosper_sum(n,0,m) # known bug 

....: # TODO: algebraic solutions 

sage: check((n^4 * 4^n / binomial(2*n, n)), n, 0, 10, 20) 

sage: check((factorial(3*n) / (factorial(n) * factorial(n+1) * factorial(n+2) * 27^n)), n,0,10,20) 

sage: (binomial(2*n, n)^2 / (n+1) / 4^(2*n)).gosper_sum(n,0,m) 

(2*m + 1)^2*binomial(2*m, m)^2/(4^(2*m)*(m + 1)) 

sage: (((4*n-1) * binomial(2*n, n)^2) / (2*n-1)^2 / 4^(2*n)).gosper_sum(n,0,m) 

-binomial(2*m, m)^2/4^(2*m) 

sage: check(n * factorial(n-1/2)^2 / factorial(n+1)^2, n,0,10,20) 

 

sage: (n^2 * a^n).gosper_sum(n,0,m) 

(a^2*a^m*m^2 - 2*a*a^m*m^2 - 2*a*a^m*m + a^m*m^2 + a*a^m + 2*a^m*m + a^m - a - 1)*a/(a - 1)^3 

sage: ((n - r/2)*binomial(r, n)).gosper_sum(n,0,m) 

1/2*(m - r)*binomial(r, m) 

sage: x = var('x') 

sage: (factorial(n-1)^2 / factorial(n-x) / factorial(n+x)).gosper_sum(n,1,m) 

(m^2*factorial(m - 1)^2*factorial(x + 1)*factorial(-x + 1) + x^2*factorial(m + x)*factorial(m - x) - factorial(m + x)*factorial(m - x))/(x^2*factorial(m + x)*factorial(m - x)*factorial(x + 1)*factorial(-x + 1)) 

sage: ((n*(n+a+b)*a^n*b^n)/factorial(n+a)/factorial(n+b)).gosper_sum(n,1,m).simplify_full() 

-(a^(m + 1)*b^(m + 1)*factorial(a - 1)*factorial(b - 1) - factorial(a + m)*factorial(b + m))/(factorial(a + m)*factorial(a - 1)*factorial(b + m)*factorial(b - 1)) 

 

sage: check_unsolvable(1/n, n,1,m) 

sage: check_unsolvable(1/n^2, n,1,m) 

sage: check_unsolvable(1/n^3, n,1,m) 

sage: ((6*n + 3) / (4*n^4 + 8*n^3 + 8*n^2 + 4*n + 3)).gosper_sum(n,1,m) 

(m + 2)*m/(2*m^2 + 4*m + 3) 

sage: (2^n * (n^2 - 2*n - 1)/(n^2 * (n+1)^2)).gosper_sum(n,1,m) 

-2*(m^2 - 2^m + 2*m + 1)/(m + 1)^2 

sage: ((4^n * n^2)/((n+2) * (n+1))).gosper_sum(n,1,m) 

2/3*(2*4^m*m - 2*4^m + m + 2)/(m + 2) 

sage: check_unsolvable(2^n / (n+1), n,0,m-1) 

sage: check((4*(1-n) * (n^2-2*n-1) / n^2 / (n+1)^2 / (n-2)^2 / (n-3)^2), n, 4, 10, 20) 

sage: check(((n^4-14*n^2-24*n-9) * 2^n / n^2 / (n+1)^2 / (n+2)^2 / (n+3)^2), n, 1, 10, 20) 

 

Exercises 3 (h), (i), (j) require symbolic product support so we leave 

them out for now. 

 

:: 

 

sage: _ = var('a b k m n r') 

sage: check_unsolvable(binomial(2*n, n) * a^n, n) 

sage: (binomial(2*n,n)*(1/4)^n).gosper_sum(n) 

2*(1/4)^n*n*binomial(2*n, n) 

sage: ((k-1) / factorial(k)).gosper_sum(k) 

-k/factorial(k) 

sage: F(n, k) = binomial(n, k) / 2^n 

sage: check_unsolvable(F(n, k), k) 

sage: _ = (F(n+1,k)-F(n,k)).gosper_term(k) 

sage: F(n,k).WZ_certificate(n,k) 

1/2*k/(k - n - 1) 

sage: F(n, k) = binomial(n, k)^2 / binomial(2*n, n) 

sage: check_unsolvable(F(n, k), k) 

sage: _ =(F(n+1, k) - F(n, k)).gosper_term(k) 

sage: F(n,k).WZ_certificate(n,k) 

1/2*(2*k - 3*n - 3)*k^2/((k - n - 1)^2*(2*n + 1)) 

sage: F(n, k) = binomial(n,k) * factorial(n) / factorial(k) / factorial(a-k) / factorial(a+n) 

sage: check_unsolvable(F(n, k), k) 

sage: _ = (F(n+1, k) - F(n, k)).gosper_term(k) 

sage: F(n,k).WZ_certificate(n,k) 

k^2/((a + n + 1)*(k - n - 1)) 

 

sage: (1/n/(n+1)/(n+2)/(n+5)).gosper_sum(n) 

1/720*(55*n^5 + 550*n^4 + 1925*n^3 + 2510*n^2 - 1728)/((n + 4)*(n + 3)*(n + 2)*(n + 1)*n) 

sage: (1/n/(n+1)/(n+2)/(n+7)).gosper_sum(n) 

1/1050*(91*n^7 + 1911*n^6 + 15925*n^5 + 66535*n^4 + 142534*n^3 + 132104*n^2 - 54000)/((n + 6)*(n + 5)*(n + 4)*(n + 3)*(n + 2)*(n + 1)*n) 

sage: (1/n/(n+1)/(n+2)/(n+5)/(n+7)).gosper_sum(n) 

1/10080*(133*n^7 + 2793*n^6 + 23275*n^5 + 97755*n^4 + 213472*n^3 + 206892*n^2 - 103680)/((n + 6)*(n + 5)*(n + 4)*(n + 3)*(n + 2)*(n + 1)*n) 

 

The following are from A=B, 7.2 WZ Proofs of the hypergeometric database:: 

 

sage: _ = var('a b c i j k m n r') 

sage: F(n,k) = factorial(n+k)*factorial(b+k)*factorial(c-n-1)*factorial(c-b-1)/factorial(c+k)/factorial(n-1)/factorial(c-n-b-1)/factorial(k+1)/factorial(b-1) 

sage: F(n,k).WZ_certificate(n,k) 

-(c + k)*(k + 1)/((c - n - 1)*n) 

sage: F(n,k)=(-1)^(n+k)*factorial(2*n+c-1)*factorial(n)*factorial(n+c-1)/factorial(2*n+c-1-k)/factorial(2*n-k)/factorial(c+k-1)/factorial(k) 

sage: F(n,k).WZ_certificate(n,k) 

1/2*(c^2 - 2*c*k + k^2 + 7*c*n - 6*k*n + 10*n^2 + 4*c - 3*k + 10*n + 2)*(c + k - 1)*k/((c - k + 2*n + 1)*(c - k + 2*n)*(k - 2*n - 1)*(k - 2*n - 2)) 

sage: F(n,k)=factorial(a+k-1)*factorial(b+k-1)*factorial(n)*factorial(n+c-b-a-k-1)*factorial(n+c-1)/factorial(k)/factorial(n-k)/factorial(k+c-1)/factorial(n+c-a-1)/factorial(n+c-b-1) 

sage: F(n,k).WZ_certificate(n,k) 

-(a + b - c + k - n)*(c + k - 1)*k/((a - c - n)*(b - c - n)*(k - n - 1)) 

sage: F(n,k)=(-1)^k*binomial(n+b,n+k)*binomial(n+c,c+k)*binomial(b+c,b+k)/factorial(n+b+c)*factorial(n)*factorial(b)*factorial(c) 

sage: F(n,k).WZ_certificate(n,k) 

1/2*(b + k)*(c + k)/((b + c + n + 1)*(k - n - 1)) 

sage: phi(t) = factorial(a+t-1)*factorial(b+t-1)/factorial(t)/factorial(-1/2+a+b+t) 

sage: psi(t) = factorial(t+a+b-1/2)*factorial(t)*factorial(t+2*a+2*b-1)/factorial(t+2*a-1)/factorial(t+a+b-1)/factorial(t+2*b-1) 

sage: F(n,k) = phi(k)*phi(n-k)*psi(n) 

sage: F(n,k).WZ_certificate(n,k) 

(2*a + 2*b + 2*k - 1)*(2*a + 2*b - 2*k + 3*n + 2)*(a - k + n)*(b - k + n)*k/((2*a + 2*b - 2*k + 2*n + 1)*(2*a + n)*(a + b + n)*(2*b + n)*(k - n - 1)) 

 

The following are also from A=B, 7 The WZ Phenomenon:: 

 

sage: F(n,k) = factorial(n-i)*factorial(n-j)*factorial(i-1)*factorial(j-1)/factorial(n-1)/factorial(k-1)/factorial(n-i-j+k)/factorial(i-k)/factorial(j-k) 

sage: F(n,k).WZ_certificate(n,k) 

(k - 1)/n 

sage: F(n,k) = binomial(3*n,k)/8^n 

sage: F(n,k).WZ_certificate(n,k) 

1/8*(4*k^2 - 30*k*n + 63*n^2 - 22*k + 93*n + 32)*k/((k - 3*n - 1)*(k - 3*n - 2)*(k - 3*n - 3)) 

 

Example 7.5.1 gets a different but correct certificate (the certificate 

in the book fails the proof):: 

 

sage: F(n,k) = 2^(k+1)*(k+1)*factorial(2*n-k-2)*factorial(n)/factorial(n-k-1)/factorial(2*n) 

sage: c = F(n,k).WZ_certificate(n,k); c 

-1/2*(k - 2*n + 1)*k/((k - n)*(2*n + 1)) 

sage: G(n,k) = c*F(n,k) 

sage: t = (F(n+1,k) - F(n,k) - G(n,k+1) + G(n,k)) 

sage: t.simplify_full().is_trivial_zero() 

True 

sage: c = k/2/(-1+k-n) 

sage: GG(n,k) = c*F(n,k) 

sage: t = (F(n+1,k) - F(n,k) - GG(n,k+1) + GG(n,k)) 

sage: t.simplify_full().is_trivial_zero() 

False 

"""